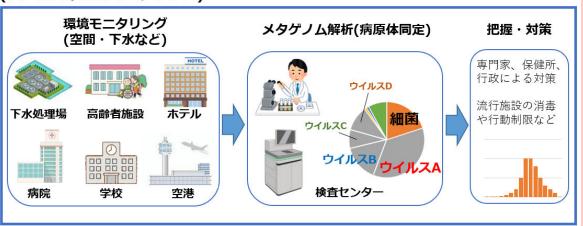


下水疫学とメタゲノム解析を融合した 革新的ウイルス感染症流行検知システム


大阪大学 微生物病研究所 元岡大祐

若手連携テーマウイルスの検出

研究背景と目的

(次世代感染流行モニタリング)

通常の検査法(PCR)とメタゲノム解析

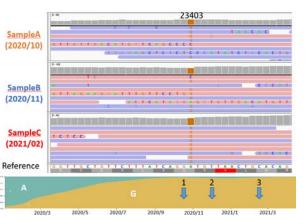
PCR法

メタゲノム解析

標的病原体を感度よく

全病原体を一網打尽

メタゲノム解析は、未知ウイルスも検出可

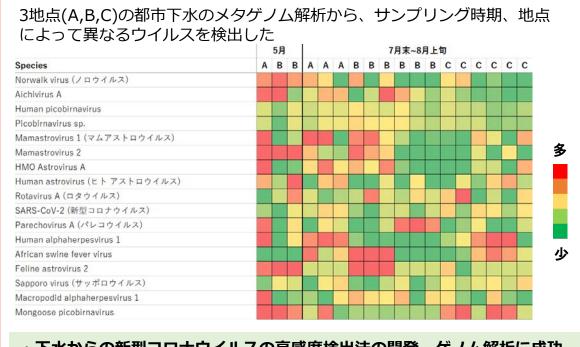

研究成果の概要(ゲノム変異解析)

- 1) ウイルス濃縮に成功
- 2) ウイルス全ゲノム解析に成功

	下水濃縮前 (ウイルス配列数)	<mark>下水濃縮後</mark> (ウイルス配列数)	ゲノムカバー率 (濃縮後)
サンプルA	0	4,796,468	100%
サンプルB	0	9,042	100%
サンプルC	0	10,772	98%

3) 変異検出可


その時期に流行していた変 異を捉えることができた


ゲノムとメタゲノムの違い

下水メタゲノム解析のワークフロー

研究成果の概要(様々なウイルス検出)

- ・下水からの新型コロナウイルスの高感度検出法の開発、ゲノム解析に成功
- ・メタゲノム解析により、様々なウイルスの同時検出に成功

参画機関: 大阪大学 医学系研究科 産業科学研究所