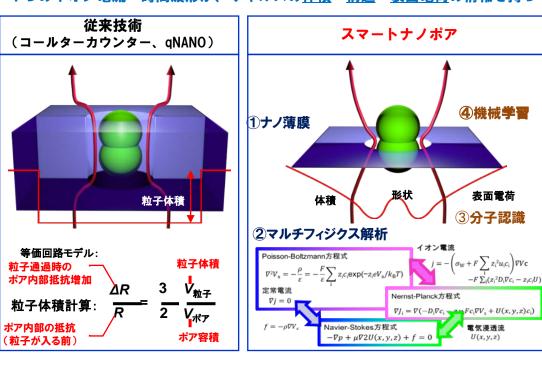


涙液からのストレス物質検出

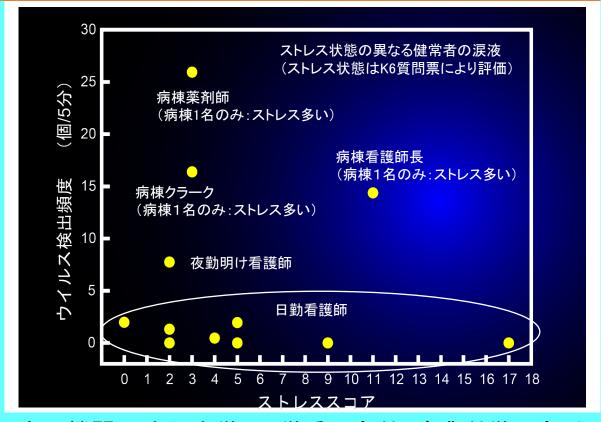
「ウイルス検出デバイスの開発」

ストレス物質 ・ウイルスの検出 大阪大学医学系研究科 西田 幸二 大阪大学産業科学研究所 谷口 正輝

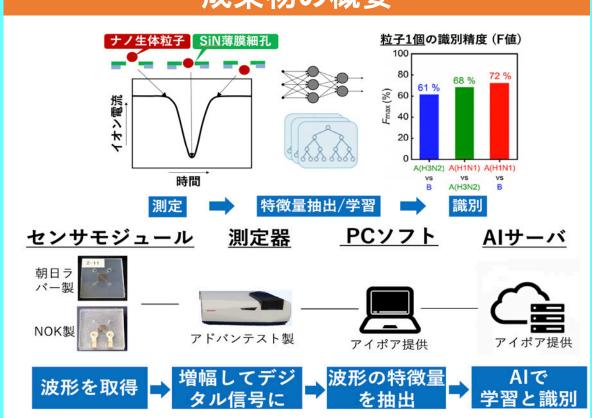

ベンチマーク ストレス計測器 確立されたストレス計測方法・計測器は、開発されていない 生理信号 ストレスマーカー アドバンテスト 日立システムズ ライブエイド ニプロ (大阪大学) 涙中の単純 脈拍:心電図 皮膚間 唾液中の 検査対象 ヘルペスウイルス* インピーダンス アミラーゼ 同時計測 ナノポアのイオン クロモゲンの加 インピーダンス 脈拍(PPG) 水分解反応に 電流変化による検 検出原理 心電波(ECG) 計測 よる黄色発色 体の体積・構造・ 計測時間 90秒 60秒 60秒 300秒 130万円 75万円 3万円

研究の概要 検査対象 サンプル採取 ウイルス計測 解析 相関解析 涙中のウイルス計測 機械学習を用いた単純へ 単純ヘルペスウイルス定 涙の採取と問診 量解析結果と問診の相関 解析 ルペスウイルスの定量解 単純ヘルペスウイルスと 問診の相関 単純ヘルペスウイル スとストレスの相関 機械学習 ナノポアデバイス 涙(20µl)採取 単純ヘルペスウイルスと 問診の相関 夜勤看護師

ナノポアの計測原理


* JID, 187 (2003) 1571. IOVS, 51 (2010) 4703, IOVS, 46 (2005) 241. Jpn. J. Opthalmol, 60 (2016) 294.

1つのイオン電流ー時間波形が、ウイルスの<u>体積・構造・表面電荷</u>の情報を持つ


涙液中のウイルス検出

感染症臨床ビッグデータ×ナノポア計測データ×AI = 新型感染症検査システム(開発中)

参画機関: 大阪大学 医学系研究科 産業科学研究所

成果物の概要

