(12) United States Patent

Inoue et al.
(10) Patent No.: US 9,255,274 B2
(45) Date of Patent:

Feb. 9, 2016
(54) PROTEIN-RESPONSIVE TRANSLATIONAL REGULATORY SYSTEM USING RNA-PROTEIN INTERACTING MOTIF
(75) Inventors: Tan Inoue, Kyoto (JP); Hirohide Saito, Kyoto (JP); Tetsuhiro Kobayashi, Fukui
(JP); Tomoaki Hara, Kyoto (JP)
Assignee: Japan Science and Technology Agency, Saitama (JP)
(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 633 days.
(21) Appl. No.: $\quad 12 / 743,853$
(22) PCT Filed:

Nov. 21, 2008
(86) PCT No.:

PCT/JP2008/071213
§ 371 (c)(1),
(2), (4) Date: Jul. 21, 2010

PCT Pub. No.: WO2009/066757
PCT Pub. Date: May 28, 2009
Prior Publication Data
US 2011/0040077 A1 Feb. 17, 2011
(30) Foreign Application Priority Data
$\begin{array}{rr}\text { Nov. 22, } 2007 & \text { (JP) ...008-303662 } \\ \text { Jul. 17, } 2008 & \text { (JP) }\end{array}$
(51) Int. Cl.

C07H 21/04	(2006.01)
C12P 21/06	(2006.01)
C12N 15/67	(2006.01)

(52) U.S. CI

CPC \qquad C12N 15/67 (2013.01)
(58) Field of Classification Search None
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

$6,428,971$	B 1	$8 / 2002$	Shinabarger et al.
$2002 / 0169306$	A1	$11 / 2002$	Kitazato et al.
$2006 / 0063232$	A1	$3 / 2006$	Grabherr et al.
$2007 / 0136827$	A1	$6 / 2007$	Collins et al.

FOREIGN PATENT DOCUMENTS

JP 2005-341865 12/2005
OTHER PUBLICATIONS
Caillet et al in "The modular structure of Escherichia coli threonyltRNA synthetase as both an enzyme and a regulator of gene expression," (Molecular Microbiology, 2003, vol. 47, No.4, pp. 961-974).* Moore et al "Molecular Basis of Box C/D RNA-Protein Interactions" Structure vol. 12 May 2004 pp. 807-818 (IDS ref).*

Caban et al., "The L7Ae RNA binding motif is a multifunctional domain required for the ribosome-dependent Sec incorporation activity of Sec insertion sequence binding protein 2," Mol. Cell. Biol. 27(18):6350-60 (2007).
Edwards et al., "Riboswitches: small-molecule recognition by gene regulatory RNAs," Curr. Opin. Struct. Biol. 17 (3):273-9 (2007).
Extended European Search report issued in related European Application No. 08851746.1. (Nov. 4, 2011).
Winkler et al., "Regulation of bacterial gene expression by riboswitches," Ann. Rev. Microbiol. 59:487-517 (2005).
Baker, C.S., et al., "CsrA Inhibits Translation Initiation of Escherichia coli hfq by Binding to a Single Site Overlapping the Shine-Dalgarno Sequence", Journal of Bacteriology, Aug. 2007, vol. 189, No. 15, pp. 5472-5481.
Saito, H. and Inoue, T., "RNA and RNP as New Molecular Parts in Synthetic Biology", Journal of Biotechnology, Oct. 15, 2007, vol. 132, No. 1, pp. 1-7.
Tetsuhiro Kobayashi, et al., "RNP Motif o Riyoshita Tanpakushitsu Oto Hon'yaku Seigyo System no Kochiku," 30th Annual Meeting of the Molecular Biology Society of Japan, Dai 80 Kai, The Japanese Biochemical Society Taikai godo Taikai Koen Yoshishu, Nov. 25, 2007, p. 879 (4P-1323).
Tomoaki Hara et al., "RNP Motif L7Ae/BoxC/D o Riyo shita Tanpakushitsu Oto Hon'yaku Seigyo System no Kochicku," Dai 10 Kai The RNA Society of Japan Nenkai Yoshishu, Jul. 23, 2008, p. 141 (p. 41).

Farren J. Isaacs et al., "Engineered Riboregulators Enable Post-Transcriptional Control of Gene Expression," Nature Biotechnology, Jul. 2004, vol. 22, No. 7, pp. 841-847.
International Search Report mailed Dec. 16, 2008 in co-pending related International Application No. PCT/JP2008/071213, pp. 4.
Baker, CS., et al., CsrA inhibits translation initiation of Escherichia coli hfq by binding to a single site overlapping the Shine-Dalgarno sequence, J. Bacteriology, Aug. 2007, vol. 189, No. 15, p. 5472-5481. Isaacs, Farren J., et al., Engineered riboregulators enable post-transcriptional control of gene expression, Nature Biotechnology, Jul. 2004, vol. 22, No. 7, p. 841-847.
Saito H. and Inoue T., RNA and RNP as new molecular parts in synthetic biology, J. Biotechnology, Oct. 15, 2007, (EPub Aug. 8, 2007), vol. 132, No. 1, p. 1-7.
(Continued)

Primary Examiner - Catherine S Hibbert
(74) Attorney, Agent, or Firm - Meunier Carlin \& Curfman LLC

(57)

ABSTRACT

An object of the present invention is to provide a translationally regulatable mRNA which has wider application and can perform specific ON-OFF regulation, an RNA-protein complex specifically bound to the mRNA, and a translational regulatory system. The present invention provides an mRNA having an RNA-protein complex interacting motif-derived nucleotide sequence 5^{\prime} to the ribosome-binding site or within the 5 ' region of the open reading frame, and an mRNA having a nucleotide sequence complementary to an RNA-protein complex interacting motif-derived nucleotide sequence 5^{\prime} to the ribosome-binding site or within the 5 ' region of the open reading frame.

References Cited

OTHER PUBLICATIONS

Tetsuhiro, Kobayashi et al., RNP Motif o Riyo shita Tanpakushitsu Oto Hon'yaku Seigyo System no Kochiku, 30th Annual Meeting of the Molecular Biology Society of Japan, Dai 80 Kai The Japanese Biochemical Society Taikai Godo Taikai Koen Yoshishu, Nov. 25, 2007, p. 879 (4P-1323).
Tomoaki Hara, et al., RNP Motif L7Ae/BoxC/D o Riyo shita Tanpakushitsu Oto Hon'Yaku Seigyo System no Kochiku, Dai 10 Kai The RNA Society of Japan Nenkai Yoshishu, Jul. 23, 2008, p. 141 (p. 41).

International Search Report, mailed Dec. 16, 2008 in related International application No. PCT/JP2008/071213.
Ptashne, Mark, "Regulation of Transcription: from lambda to eukaryotes," Trends in Biochemical Sciences, vol. 30, No. 6, Jun. 2005, pp. 275-279.
Altuvia, Shoshy, et al., The Escherichia coli OxyS regulatory RNA represses fhla translation by blocking ribosome binding, The EMBO Journal, 1998, vol. 17, No. 20, p. 6069-6075.
Bauer, et al., "Engineered riboswitches as novel tools in molecular biology," J. Biotechnol. 124(1):4-11 (2006).
Chen, Guangnan, et al., Features of a Leader Peptide Coding Region that Regulate Translation Initiation for the Anti-TRAP Protein of B. subtilis, Molecular Cell, 2004, vol. 13, p. 703-711
Davidson, et al., "Synthetic RNA circuits," Nature Chem. Biology 3(1):23-8 (2007).
Isaacs, Farren, et al., RNA synthetic biology, Nature Biotechnology, May 2006, vol. 24, No. 5, p. 545-554.
Ishikawa, Keitaro, et al., Expression of a cascading genetic network within liposomes, FEBS, Sep. 2004, p. 387-390.
Noireaux, Vincent, et al., A vesicle bioreactor as a step toward an artificial cell assembly, Procedures National Academy Science, 2004, vol. 101, No. 51, p. 17669-17674.

Nomura, Shin-ichiro, et al., Gene Expression within Cell-Sized Lipid Vesicles, ChemBioChem, 2003, 4 (11), p. 1172-1175.
Repoila, et al., "Small non-coding RNAs, co-ordinators of adaptation processes in Escherichia coli: the Rpos paradigm," Mol. Microbiol 48(4):855-61 (2003).
Sharma, Cynthia M., et al. A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites, Gene \& Development, Nov, 2007, vol. 21, p. 2804-2817
International Search Report mailed Feb. 24, 2009 in related International application No. PCT/JP2008/071214.
Kashida, Shunichi, et al., Jinko RNA to RNAI Mochiita Hito Saibo deno Hon'yaku Seigyo System, Dai 9 Kai Nippon RNS Gakkai Nenkai (Dai 9 Kai RNA Meeting) Yoshishu, Jul. 28, 2007, p. 199, p. 53.

Extended European Search Report in European Patent Application No. EP12002217.3, Aug. 1, 2012.
Saito H, et al. "Towards Constructing Synthetic Cells: RNA/RNP Evolution and Cell-Free Translational Systems in Giant Liposomes," Micro-Nanomechatronics and Human Science, 2007. MHS '07. International Symposium on. Nov. 12, 2007, pp. 286-291.
MHS2007 \& Micro-Nano COE Final Conference Program, 2007 International Symposium on Micro-NanoMechatronics and Human Science, Nov. 11-14, 2007, Nagoya, Japan, pp. 1-16.
Office Action dated Jul. 30, 2013, in Japanese Patent Application No 2008-186385.
Moore et al., Molecular basis of box C/D RNA-protein interactions; cocrystal structure of archaeal L7Ae and a box C/D RNA. Structure. May 2004;12(5):807-18.
Sankaranarayanan et al., the structure of threonyl-tRNA synthetasetRNA(Thr) complex enlightens its repressor activity and reveals an essential zinc ion in the active site. Cell. Apr. 30, 1999;97(3):371-81.

[^0]FIG.1(A)

FIG.1(B)

FIG. 2

FIG.3(A)

FIG.3(B)

FIG. 4
$0 \quad 2 \quad 10 \quad 20 \quad 50 \quad 100200500 \mathrm{nM}$

L7AE

FIG. 5

FIG. 6

FIG. 7

$$
\begin{array}{llllllll}
0 & 0.8 & 2 & 4 & 8 & 20 & 40 & 80 \\
\mathrm{nM}
\end{array}
$$

ThrRS

FIG.8A

FIG. 8 B

FIG. 8 C
L7-UTR2 mut (EGF)

L7Ae-binding site mut

FIG.8D
[7-ITR2 minimu (EGFP)

l7Ae-binding site mut

FIG. 8 F Game coms

L7Ae-binding ste

FIG. 8 G 170tria gerps

17Ae-binding site
FIG. 9

FIG. 10

FIG. 11

FIG.12(A)

FIG.12(B)

FIG.12(C)

FIG. 13

FIG.14(A)
L7-0RF (EGFP)

FIG.14(B)
L7-ORF mut (EGFP)

FIG. 15

FIG. 16

FIG. 18

FIG. 19

FIG. 20

FIG. 21

FIG. 22

FIG. 23

FIG. 24

FIG. 25

ColE1 origin 2241... 2923

FIG. 26

FIG. 27

FIG. 28

FIG. 29

FIG. 30

FIG. 31
pCDNA-A vS pCONA-LTAE

FIG. 32

BoxC/D GFP vs BoxC/D mut GFP

FIG. 33
PCDNAA
$0.00 \mu \mathrm{~g}$
$0.7 A E$
$0.05 \mu \mathrm{~g}$
$0.10 \mu \mathrm{~g}$
$0.15 \mu \mathrm{~g}$
$0.20 \mu \mathrm{~g}$

FIG. 35

PROTEIN-RESPONSIVE TRANSLATIONAL REGULATORY SYSTEM USING RNA-PROTEIN INTERACTING MOTIF

TECHNICAL FIELD

The present invention relates to a translationally regulatable mRNA, a translational regulatory system, and a translational regulation method using RNA-protein interaction.

BACKGROUND ART

With the progress of post-genomic science, information has accumulated about the structures and functions of biomolecules such as proteins or RNAs. There has been a growing tendency of synthetic biology, which exploits such increasing information to understand the systems of life through "synthesis", in contrast to previous reductive or analytical biology. Particularly, the artificial (re)construction of biomolecules or genetic circuits has received considerable attention in terms of not only life science research but also industrial application. Particularly, there has been a demand for the progress of translational regulatory systems which can recognize a particular protein and regulate arbitrary gene expression.

Heretofore, the conventional technique is known, in which the induction of transcription of DNA is regulated by small molecules or proteins (see Non-Patent Document 1). This technique is a method for modulating the regulation of transcription from DNAs to RNAs. However, this technique had the problem that it cannot be applied directly as a technique of regulating translation from RNAs to proteins. Moreover, there is a naturally occurring system (S15, ThrRS, etc.) in which the protein regulates a translation level upon binding to its own mRNA 5^{\prime} untranslated region (5^{\prime}-UTR). However, no artificial translational repression/activation system of a target gene using such an RNP interacting motif has been constructed intracellularly or extracellularly.

Moreover, RNAs called "riboswitches", in which mRNAs induce structural change in response to metabolites, resulting in the regulation of gene expression, have been discovered in recent years in bacteria and have received attention. However, natural riboswitches use substrates limited to small molecules such as vitamins or amino acids and therefore, cannot regulate gene expression in response to biomacromolecules such as RNAs or proteins. Furthermore, natural riboswitches are limited to systems for performing the feedback regulation of their own expressions and therefore, have not been applied so far to the development of artificial systems that regulate arbitrary gene expression. Thus, the development of artificial riboswitches having such functions has been expected.

The conventional technique is known as to translational regulation using RNA aptamers or antisense. There also exists a technique which involves introducing a small molecule theophylline-binding aptamer into an artificial RNA using yeast to prepare an "RNA switch" which performs ON/OFF regulation of gene expression in a manner dependent on the presence of theophylline (Non-Patent Document 2). However, this technique had the problem that it is a system responding to the aptamer for small molecules and therefore, cannot be applied to biomacromolecules such as proteins as substrates.

Non-Patent Document 1: Trends Biochem Sci. 2005; 30 (6): 275-9
Non-Patent Document 2: Nat Biotechnol. 200422 (7): 841-7. 2004

DISCLOSURE OF THE INVENTION

Problems to be Solved by the Invention
An object of the present invention is to provide a translationally regulatable mRNA which has wider application and can perform specific ON-OFF regulation, an mRNA-protein complex, and a translational regulatory system and a translational regulation method using the same.

Means for Solving the Problems

The present invention has been achieved for attaining the object. Specifically, according to one embodiment, the present invention provides an mRNA having an RNA-protein complex interacting motif-derived nucleotide sequence 5^{\prime} to the ribosome-binding site or within the 5 ' region of the open reading frame.

According to another embodiment, the present invention 25 provides an mRNA having a nucleotide sequence complementary to an RNA-protein complex interacting motif-derived nucleotide sequence 5^{\prime} to the ribosome-binding site or within the 5 ' region of the open reading frame.

In any of the mRNAs, the interacting motif is preferably an L7Ae-derived nucleotide sequence.

In any of the mRNAs, the interacting motif is preferably a threonyl-tRNA synthetase (ThrRS)-derived nucleotide sequence.

According to an alternative embodiment, the present invention provides an RNA-protein complex comprising the mRNA and a protein specifically binding to the nucleotide sequence.

According to a further embodiment, the present invention provides a translational regulatory system comprising the mRNA and a protein specifically binding to the nucleotide sequence.

The present invention further provides a method for translational regulation of mRNA, comprising contacting the mRNA with a protein specifically binding to the protein5 binding motif. In this context, the term "contacting" refers to mixing in a system in which the mRNA and the protein are movable. For example, such system may be a cell.

According to a further embodiment, the present invention provides a translational regulatory system comprising the 50 mRNA , an RNA which specifically binds to the nucleotide sequence and is complementary to the nucleotide sequence, and a protein specifically binding to the complementary RNA. In other words, this system can be referred to as a translational regulatory system comprising (a) an mRNA 55 having a nucleotide sequence complementary to an RNAprotein complex interacting motif-derived nucleotide sequence 5^{\prime} to the ribosome-binding site or within the 5^{\prime} region of the open reading frame, (b) an RNA having the RNA-protein complex interacting motif-derived nucleotide 60 sequence, and (c) a protein specifically binding to the RNA (b).

According to a further embodiment, the present invention provides an artificial information conversion system which converts input information of an arbitrary substrate protein to 65
which regulates the translational repression and activation of different genes using one protein, the system comprising (a) an mRNA having a nucleotide sequence complementary to an RNA-protein complex interacting motif-derived nucleotide sequence 5 ' to the ribosome-binding site or within the 5^{\prime} region of the open reading frame, (b) an RNA having the RNA-protein complex interacting motif-derived nucleotide sequence, (c) a protein specifically binding to the RNA (b), and (d) an mRNA having a nucleotide sequence identical to the nucleotide sequence in the RNA (b), 5 ' to the ribosomebinding site or within the 5^{\prime} region of the open reading frame, the mRNA encoding a gene different from that encoded by the mRNA (a).

According to a further embodiment, the present invention provides a plasmid vector comprising a nucleic acid sequence encoding any of the mRNAs.

According to a further embodiment, the present invention provides an intracellular translational regulatory system comprising a first plasmid vector comprising a nucleic acid sequence encoding the mRNA, and a second plasmid vector comprising a nucleic acid sequence encoding a protein specifically binding to the RNA-protein complex interacting motif-derived nucleotide sequence in the mRNA produced by the first vector.

The intracellular translational regulatory system is preferably a system for regulating protein translation in a human cancer cell.

According to a further embodiment, the present invention provides a translational regulatory system comprising a fusion protein containing L7Ae as a tag sequence and a first protein. Preferably, the translational regulatory system further comprises an mRNA having a sequence specifically binding to L7Ae and a sequence encoding a second protein.

According to a further embodiment, the present invention provides an intracellular translational regulatory system comprising a plasmid vector containing a nucleic acid sequence encoding an mRNA encoding L7Ae and a first protein. Preferably, the intracellular translational regulatory system further comprises a plasmid vector containing a nucleic acid sequence encoding an mRNA having a sequence specifically binding to L7Ae, the mRNA encoding a second protein.

Advantages of the Invention

The present invention has the advantage that an mRNA of the present invention can regulate the translation reaction of the desired gene. Moreover, the present invention enables intracellular translational regulation and a simultaneous translational regulatory system which regulates the translational repression and activation of different genes using one protein.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1(A) is a diagram showing an mRNA according to the first embodiment, and FIG. 1(B) is a diagram showing the state where a protein is bound to the mRNA according to the first embodiment;

FIG. 2 is a diagram showing an mRNA according to the second embodiment;

FIG. 3(A) is a diagram showing an mRNA according to the third embodiment, and FIG. 3(B) is a diagram showing the state where a complementary strand is dissociated from the mRNA according to the third embodiment;

FIG. 4 is a diagram showing EMSA on Box C/D;
FIG. 5 is a diagram showing EMSA on Box C/D mini and Box C/D minimut;

FIG. 6 is a diagram showing EMSA on ThrRS Domain 2; FIG. 7 is a diagram showing EMSA on ThrRS Domain 234;

FIG. 8A is a diagram showing the secondary structure of EGFP UTR (SEQ ID NO:98);

FIG. 8 B is a diagram showing the secondary structure of L7-UTR2 (SEQ ID NO:99);

FIG. 8C is a diagram showing the secondary structure of L7-UTR2 mut of L7Ae (SEQ ID NO:100);
FIG. 8D is a diagram showing the secondary structure of L7-UTR2 minimut (SEQ ID NO:101);

FIG. 8E is a diagram showing the secondary structure of L7-UTRS (SEQ ID NO:102);

FIG. 8 F is a diagram showing the secondary structure of L7-UTR9 (SEQ ID NO:103);

FIG. 8 G is a diagram showing the secondary structure of L7-UTR13 (SEQ ID NO:104);

FIG. 9 is a diagram showing the influence of the distance between the ribosome-binding site and the L7Ae-binding site;

FIG. 10 is a diagram showing comparison with translational regulation in mutants;

FIG. 11 is a diagram showing competition assay;
FIG. 12 is a diagram showing the secondary structure of ThrRS-UTRW (SEQ ID NO:105, FIG. 12A), ThrRS-UTR2 (SEQ ID NO: 106, FIG. 12B) and ThrRS-UTR2 mut (SEQ ID NO:107, FIG. 12C);

FIG. 13 is a diagram showing that a complex of ThrRSUTR and ThrRS can inhibit translation;

FIG. 14 is a diagram showing the secondary structure of L7-ORF (EGFP) (SEQ ID NO:108, FIG. 14A) and L7-ORF mut (EGFP) (SEQ ID NO:109, FIG. 14B);

FIG. 15 is a diagram showing ORF-based translational regulation;

FIG. 16 is a diagram showing results of translational regulation assay on an ON switch;

FIG. $\mathbf{1 7 (a)}$ is a schematic diagram showing the secondary structure of Box C/D-DsRed Ex (SEQ ID NO:110), FIG. $17(b)$ is a schematic diagram showing the secondary structure of Box C/D mut-DsRed Ex (SEQ ID NO:111), and FIG. 17(c) is a schematic diagram showing the secondary structure of DsRed Ex (SEQ ID NO:112) (used as a control) having a normal 5'-UTR sequence;

FIG. 18 is a graph showing a Relative fluorescent intensity (fluorescence intensity of the protein translated from the corresponding mRNA in the absence of L7Ae was normalized to 1.0);

FIG. 19 is a graph showing results of simultaneously regulating the translations of two mRNAs by the addition of a protein;

FIG. 20 is a vector diagram showing a pcDNA-A vector;
FIG. 21 is a vector diagram showing an L7Ae expression vector pcDNA-L7Ae, which is a plasmid vector in which the L7Ae gene was inserted downstream of the CMV promoter of a pcDNA3. 1 vector (Invitrogen Corp.);

FIG. 22 is a diagram showing L7Ae expression in cultured human cells;
FIG. 23 is a diagram showing that the L7Ae expression in cultured human cells has no cytotoxicity;

FIG. 24 is a vector diagram showing a Box C/D-GFP vector;

FIG. 25 is a vector diagram showing a Box C/D mut GFP vector;

FIG. 26 is a diagram showing L7Ae expression;
FIG. 27 is diagram showing EGFP expression;

FIG. 28 is a diagram showing the quantification of L7Aedependent translational repression of EGFP by western blotting;

FIG. 29 is a diagram showing the FACS measurement of L7Ae-dependent translational repression of EGFP;

FIG. $\mathbf{3 0}$ is a diagram showing results of quantifying the translational repression of EGFP in an amount of pcDNA or peDNA-L7Ae added of 0 to $1.6 \mu \mathrm{~g}$;

FIG. 31 is a graph showing mRNA level comparison among samples (samples derived from Box C/D-GFP and pcDNA-L7Ae and samples derived from Box C/D-GFP and pcDNA-A) with a sample derived from only Box C/D as 1;

FIG. 32 is a graph showing mRNA level comparison among samples (samples derived from Box C/D-GFP and pcDNA-L7Ae and samples derived from Box C/D mut GFP and Box C/D-GFP) with a sample derived from only Box C/D as 1 ;

FIG. $\mathbf{3 3}$ is a fluorescence microscopic image showing the relationship of the amount of an empty vector or an L7Aeexpressing vector added with translational regulation in Box C/D-mut-GFP or Box C/D-GFP;

FIG. 34 is a fluorescence microscopic image showing that L7Ae can be used as a tag sequence for a target protein; and FIG. 35 is a graph showing measurement of the association rate (Ka), dissociation rate (Kd), and association (KA) and dissociation (KD) constants between the Box C/D RNA and the L7Ae protein, demonstrating that in this RNA-protein complex, a motif having high affinity and a slow dissociation rate is effective for intracellular translational regulation.

DESCRIPTION OF SYMBOLS

1 mRNA
$1 a \mathrm{mRNA}$
$1 b$ mRNA
2 RNA-protein complex interacting motif-derived nucleotide sequence
$2 a$ RNA-protein complex interacting motif-derived nucleotide sequence
$2 b$ nucleotide sequence complementary to RNA-protein complex interacting motif-derived nucleotide sequence
3 ribosome-binding site
4 open reading frame
$4 a$ open reading frame
$4 b$ open reading frame
5 protein
$5 b$ protein
6 competitor RNA

BEST MODE FOR CARRYING OUT THE INVENTION

Hereinafter, the present invention will be described in detail with reference to the embodiments. However, the description below is not intended to limit the present invention.

With the rapid expansion of molecular biology from the late 20th century to the present, an enormous number of genes have been identified, and the functions of various biomacromolecules, particularly, proteins encoded thereby, have been elucidated. Furthermore, the detailed tertiary structures of DNAs, RNAs, and proteins have been elucidated. They have been demonstrated to function on the atomic level through intermolecular interactions and selective chemical reactions. Accordingly, if these interactions and chemical reactions could be regulated freely, novel disease therapies or methods for solving the energy problem should be developed.

Examples of approaches to achieve this include methods which involve: designing and preparing a novel molecule functioning to directly regulate the functions of a targeted molecule through the intermolecular interaction; and regulating cells or tissues using the prepared molecule. RNAs can form diverse tertiary structures. As in proteins, some RNAs have enzymatic functions, and the correlation between the functions and the structures has been revealed in detail through tertiary structure analysis. Moreover, RNAs composed by four basic units are formed based on simple construction principles. Accordingly, RNAs can be used widely in the design and construction of molecules having sophisticated tertiary structures as nano-blocks. On the other hand, proteins, which are composed of basic units as many as 20 , have far more diverse and complicated tertiary structures and functions than those of RNAs. Although an enormous number of natural protein structures have been analyzed currently at high resolutions, their molecular designs and constructions are difficult and are thus limited to those having simple structures. As a result, realistically, RNAs or RNPs (RNA-protein complexes) are designed and constructed as nano-scale 3D objects having complicated functions and structures, at this time. Specifically, the combination of an "artificial RNA prepared by molecular design" and a "natural protein having a known structure" is a highly feasible approach for developing functional molecules by molecular design.

The present inventors conceived the idea that ribosomecatalyzed translation reaction is inhibited by binding a particular protein to the 5 ' side of a ribosome-binding site (RBS) or the 5^{\prime} region of an open reading frame of an mRNA, and have completed the present invention.

According to the first embodiment, the present invention provides an mRNA having an RNA-protein complex interacting motif-derived protein-binding motif on the 5' side of the ribosome-binding site. FIG. 1(A) is a diagram schematically showing the mRNA according this embodiment. In FIG. 1(A), an mRNA 1 comprises an RNA-protein complex interacting motif-derived nucleotide sequence 2, a ribosome-binding site 3, and an open reading frame 4.

[Open Reading Frame]

The mRNA 1 according to this embodiment may be an arbitrary mRNA that has the ribosome-binding site $\mathbf{3}$ and has translational functions. The sequence of the open reading frame $\mathbf{4}$ is not limited to a particular sequence. Thus, the sequence of the open reading frame 4 may have a gene that can be expressed into a desired protein, and has a start codon, though it is not limited to a particular sequence. For example, an mRNA having an open reading frame 4 having a gene encoding a fluorescent protein may be used for the purpose of confirming whether the translational functions act. Examples of the fluorescent protein include EGFP, GFP-UV, and DsRed. Their sequences are generally known.

In addition, the sequence of the open reading frame 4 may encode a protein that works as a particular pharmaceutical agent. Specifically, examples of the protein include, but not limited to, $\mathrm{Bcl}-2$ family proteins regulating the apoptosis of cancer cells and antibodies specifically recognizing the surfaces of cancer cells.
[RNA-Protein Complex Interacting Motif-Derived Nucleotide Sequence]

The RNA-protein complex interacting motif-derived nucleotide sequence 2 is a site to which a particular protein specifically binds. The nucleotide sequence $\mathbf{2}$ may comprise an RNA-protein complex interacting motif-derived nucleotide sequence or a nucleotide sequence mutated from the nucleotide sequence.

In the present invention, the RNA-protein complex interacting motif-derived nucleotide sequence encompasses: a nucleotide sequence known as an RNA sequence in the RNAprotein interacting motif of a known natural RNA-protein complex; and a nucleotide sequence as an RNA sequence in an artificial RNA-protein complex interacting motif obtained by the in vitro evolution method. These RNA-protein complexes are assemblies of proteins and RNAs which are confirmed in vivo in large numbers, and are 3D objects having complicated structures.

The natural RNA-protein complex interacting motif-derived nucleotide sequence is usually composed of approximately 10 to 80 bases and known to specifically bind to a interacting motif having Kd of approximately 0.1 nM to approximately $1 \mu \mathrm{M}$, though the Kd is not limited to this range.

TABLE 1

RNA	Protein	Kd	Reference
5 S RNA (Xenopus laevis oocyte)	5R1	$0.64 \pm 0.10 \mathrm{nM}$	Nat Struct Biol. 1998 July; 5(7): 543-6
5 S RNA (Xenopus laevis oocyte)	5R2	$0.35 \pm 0.03 \mathrm{nM}$	Nat Struct Biol. 1998 July; 5(7): 543-6
dsRNA	B2	$1.4 \pm 0.13 \mathrm{nM}$	Nat Struct Mol Biol. 2005 November; 12(11): 952-7
RNA splicing motif with UGCAUGU element	Fox-1	0.49 nM at 150 mM salt	EMBO J. 2006 Jan. 11; 25(1): 163-73.
TGE	GLD-1	$9.2 \pm 2 \mathrm{nM}$	J Mol Biol. 2005 Feb. 11; 346(1): 91-104.
sodB mRNA	Hfq	1.8 nM	EMBO J. 2004 Jan. 28; 23(2): 396-405.
RyhB (siRNA)	Hfq	1500 nM	Annu Rev Microbiol. 2004; 58: 303-28
mRNA	HuD	$0.7 \pm 0.02 \mathrm{nM}$	Nat Struct Biol. 2001 February; 8(2): 141-5
S domain of 7S RNA	human SRP19		RNA. 2005 July; 11(7): 1043-50. Epub 2005 May 31
Large subunit of SRP RNA	human SRP19	2 nM	Nat Struct Biol. 2001 June; 8(6): 515-20
23 S rRNA	L1		Nat Struct Biol. 2003 February; 10(2): 104-8
23 SrRNA	L11		Nat Struct Biol. 2000 October; 7(10): 834-7
5 S rRNA	L18		Biochem J. 2002 May 1; 363(Pt 3): 553-61
23 SrRNA	L20	$13 \pm 2 \mathrm{nM}$	J Biol Chem. 2003 Sep. 19; 278(38): 36522-30.
Own mRNA site1	L20	$88 \pm 23 \mathrm{nM}$	J Biol Chem. 2003 Sep. 19; 278(38): 36522-30.
Own mRNA site2	L20	$63 \pm 23 \mathrm{nM}$	Mol Microbiol. 2005 June; 56(6): 1441-56
23 S rRNA	L23		J Biomol NMR. 2003 June; 26(2): 131-7
5S rRNA	L25		EMBO J. 1999 Nov. 15; 18(22): 6508-21
Own mRNA	L30		Nat Struct Biol. 1999 December; 6(12): 1081-3.
mRNA	LicT		EMBO J. 2002 Apr. 15; 21(8): 1987-97
Own mRNA	MS2 coat	$39 \pm 5 \mathrm{nM}$	FEBS J. 2006 April; 273(7): 1463-75
Stem-loop RNA motif	Nova-2		Cell. 2000 Feb. 4; 100(3): 323-32
SL2	Nucleocapsid	$110 \pm 50 \mathrm{nM}$	J Mol Biol. 2000 Aug. 11; 301(2): 491-511
Pre-rRNA	Nucleolin		EMBO J. 2000 Dec. 15; 19(24): 6870-81
	p19	$0.17 \pm 0.02 \mathrm{nM}$	Cell. 2003 Dec. 26; 115 (7): 799-811
Box C/D	L7Ae	$0.9 \pm 0.2 \mathrm{nM}$	RNA. 2005 August; 11(8): 1192-200.

TABLE 2

RNA	Protein	Kd	Reference
siRNA with the characteristic two-base 3 ' overhangs	PAZ(PiWi Argonaut and Zwille)		Nat Struct Biol. 2003 December; 10(12): 1026-32.
dsRNA	Rnase III		Cell. 2006 Jan. 27; 124(2): 355-66
HIV-1 RRE (IIB)	RR1-38	$3-8 \mathrm{nM}$	Nat Struct Biol. 1998 July; 5(7): 543-6
Own mRNA	S15	5 nM	EMBO J. 2003 Apr. 15; 22(8): 1898-908
16 S rRNA	S15	6 nM	Nat Struct Biol. 2000 April; 7(4): 273-277.
Own mRNA	S15	43 nM	EMBO J. 2003 Apr. 15; 22(8): 1898-908
16 S rRNA	S4	$\begin{aligned} & 6.5 \mu \mathrm{M} \text { in } 4^{\circ} \mathrm{C} . \\ & 1.7 \mathrm{nM} \text { in } 42^{\circ} \mathrm{C} . \end{aligned}$	J Biol Chem. 1979 Mar. 25; 254(6): 1775-7
16 S rRNA	S4	$18 \mu \mathrm{M}$	J Biol Chem. 1979 Mar. 25; 254(6): 1775-7
16S rRNA	S8	$26 \pm 7 \mathrm{nM}$	J Mol Biol. 2001 Aug. 10; 311(2): 311-24
mRNA	S8	200 nM	RNA. 2004 June; 10 (6): 954-64
mRNA	SacY	1400 nM	EMBO J. 1997 Aug. 15; 16(16): 5019-29
SnRNA	Sm		Cold Spring Harb Symp Quant Biol. 2006; 71: 313-20.
tmRNA	SmpB	$21 \pm 7 \mathrm{nM}$	J Biochem (Tokyo). 2005 December; 138(6): 729-39
TD3 of tmRNA	SmpB	650 nM	J Biochem (Tokyo). 2005 December; 138(6): 729-39
U1 snRNA	snRNP U1A	$\begin{aligned} & 0.032 \pm 0.007 \mathrm{nM} \\ & (\text { salt dependence }) \end{aligned}$	Nat Struct Biol. 2000 October; 7(10): 834-7
S domain of 7S RNA	SRP54	500 nM	RNA. 2005 July; 11(7): 1043-50.
TAR	Tat	$200-800 \mathrm{nM}$	Nucleic Acids Res. 1996 Oct. 15; 24(20): 3974-81
BIV TAR	Tat	1.3 nM or 8 nM or 60 nM (Mg dependence)	Mol Cell. 2000 November; 6(5): 1067-76
tRNA ${ }^{\text {Thr }}$	ThrRS	500 nM	Nat Struct Biol. 2002 May; 9(5): 343-7
thrS mRNA operator	ThrRS	10 nM	Trends Genet. 2003 March; 19(3): 155-61
Single stranded mRNA	TIS11d		Nat Struct Mol Biol. 2004 March; 11(3): 257-64.

TABLE 2-continued

RNA	Protein	Kd	Reference
PSTVd	Virp1	500 nM	Nucleic Acids Res. 2003 Oct. 1; 31(19): 5534-43
RNA hairpin; Smaug	Vts1p	30 nM	Nat Struct Mol Biol. 2006 February; 13(2): 177-8.
recognition element (SRE) λ BoxB	90 nM	Cell. 1998 Apr. 17; 93(2): 289-99	

The artificial RNA-protein complex interacting motif-derived nucleotide sequence is the nucleotide sequence of an RNA in the RNA-protein interacting motif of an artificially designed RNA-protein complex. Such a nucleotide sequence is usually composed of approximately 10 to 80 bases and designed to specifically bind to a particular amino acid sequence of a particular protein in a noncovalent manner, i.e., through hydrogen bond. Examples of such an artificial RNAprotein complex interacting motif-derived nucleotide sequence include, but not limited to, RNA aptamers specifically binding to apoptosis-inducing protein Bcl-2 family, and RNA aptamers specifically recognizing cancer cell surface antigens. Moreover, nucleotide sequences listed in Table 3 below are also known, and these can also be used as the RNA-protein complex interacting motif-derived nucleotide sequence 2 of the present invention.
known to have feedback inhibition which inhibits translation upon binding to its own mRNA.

Moreover, a moiety that interacts with a Bcl-xL aptamer protein specifically binding to a cancer cell-specific endogenous protein Bcl-xL may be used as the RNA-protein complex interacting motif-derived nucleotide sequence 2 . Such a Bcl-2 family CED-9-derived nucleotide sequence used as the RNA-protein complex interacting motif-derived nucleotide sequence $\mathbf{2}$ is R9-2; 5'-GGGUGCUUCGAGCGUAGGAA-GAAAGCCGGGGGCUGCAGAUAAUGUAUAGC-3'
(SEQ ID NO:113), which is described in detail in Yang C, et al., J Biol Chem. 2006; 281 (14): 9137-44. In addition, a nucleotide sequence derived from an RNA aptamer sequence binding to NF-kappa B can be used as the RNA-protein complex interacting motif-derived nucleotide sequence 2 .

TABLE 3

RNA	Protein	Kd \quad Reference
Rev aptamer 5	Rev	190 nMRNA. 2005 December; 11(12): 1848-57
Aptamer	p50	5.4 ± 2.2 nMProc Natl Acad Sci USA. 2003 Aug. 5;
		100 (16): 9268-73.
BMV Gag aptamer	BMV Gag	20 nMRNA. 2005 December; 11(12): 1848-57
BMV Gag aptamer	CCMV Gag	260 nMRNA. 2005 December; 11(12): 1848-57
CCMV Gag aptamer CCMV Gag	280 nMRNA. 2005 December; 11(12):1848-57	
CCMV Gag aptamer	BMV Gag	480 nMRNA. 2005 December; 11(12):1848-57

The artificial RNA-protein complex can be prepared by using the molecular design and in vitro evolution methods in combination. The in vitro evolution method can produce aptamers or ribozymes by screening functional RNAs from a molecular library having various sequence diversities and repeating the amplification and transcription reactions of the genes (DNAs). Thus, an RNA-protein interacting motif adapted to an RNP having functions and structures of interest based on molecular design in advance can be extracted from natural RNP molecules or can be prepared artificially by the in vitro evolution method.

In this embodiment, for the RNA-protein complex interacting motif-derived nucleotide sequence $\mathbf{2}$, the RNA-protein complex serving as an origin of the nucleotide sequence preferably has a dissociation constant Kd of approximately 0.1 nM to approximately $1 \mu \mathrm{M}$. This is because affinity sufficient for competing with ribosome-mRNA interaction is necessary.

Specific examples of the RNA-protein complex interacting motif-derived nucleotide sequence 2 include, but not limited to, nucleotide sequences such as a nucleotide sequence 5'-GGGCGUGAUGCGAAAGCUGACCC-3' (SEQ ID NO:9) which can bind to L7Ae (Moore T et al., Structure Vol. 12, pp. 807-818 (2004)) known to participate in RNA modification such as RNA methylation or pseudouridylation, and a nucleotide sequence 5^{\prime}-GGCGUAUGUGAUCUUUCGU-GUGGGUCACCACUGCGCC-3' (SEQ ID NO:19) which can bind to threonyl-tRNA synthetase (Cell (Cambridge, Mass.) v97, pp. 371-381 (1999)), an aminoacylating enzyme,

The RNA-protein complex interacting motif-derived nucleotide sequence 2 is incorporated to 5^{\prime} to the ribosome40 binding site 3 in the mRNA 1 . The term " 5 ' to the ribosomebinding site" in the mRNA refers to a position 2 to 10 bases (inclusive) distant from the ribosome-binding site toward the 5^{\prime} end. In FIG. 1(A), a nucleotide sequence that may be located between the RNA-protein complex interacting motif5 derived nucleotide sequence 2 and the ribosome-binding site 3 is indicated in line. In this embodiment, the nucleotide sequence that may be located between the RNA-protein complex interacting motif-derived nucleotide sequence 2 and the ribosome-binding site $\mathbf{3}$ is not limited to a particular nucle50 otide sequence.

Moreover, the mRNA 1 according to this embodiment may have a 5^{\prime}-terminal sequence forming a stem-loop structure (not shown), which is located 5 ' to the RNA-protein complex interacting motif-derived nucleotide sequence 2. This is 55 because the transcriptional efficiency of the mRNA 1 may be enhanced. Examples of the sequence forming a stem-loop structure include usually known structures. Those skilled in the art can introduce an arbitrary stem structure for enhancing transcriptional efficiency into the 5' end using the standard 60 method.

Next, the mechanism of translational regulation according to the first embodiment will be described specifically. [ON-to-OFF Translational Regulation]

When a protein specifically binding to the RNA-protein 65 complex interacting motif-derived nucleotide sequence 2 is absent in the state shown in FIG. 1(A), a ribosome, if any, can freely bind to the ribosome-binding site $\mathbf{3}$ under conditions
involving approximately 33 to $41^{\circ} \mathrm{C}$. and pH 6.0 to 8.0 . Accordingly, the translation of the mRNA is performed as normal. Here, a protein 5 specifically binding to the RNAprotein complex interacting motif-derived nucleotide sequence $\mathbf{2}$ is added thereto. FIG. 1(B) shows the relationship of the mRNA 1 and the protein 5 in the presence of the protein. In FIG. 1(B), the protein 5 is specifically bound to the RNAprotein complex interacting motif-derived nucleotide sequence 2. Further, the protein 5 blocks the ribosome-binding site $\mathbf{3}$ through its steric hindrance. Therefore, a ribosome, if any, cannot bind to the ribosome-binding site 3 . Accordingly, the translation reaction of the mRNA 1 fails to function. In this way, the translation reaction of the mRNA 1 can be regulated in an ON-to-OFF manner by adding the particular protein $\mathbf{5}$ to the protein-free system of the mRNA 1 (state of FIG. 1(A)).

Moreover, similar ON-to-OFF translational regulation can be achieved not only by adding the particular protein to the system but also by responding to, for example, a protein endogenously expressed in vivo. Specifically, for example, an mRNA 1 that has an aptamer against proteins (e.g., Bcl-xL) specifically expressed in certain cancer cells, as the RNAprotein complex interacting motif-derived nucleotide sequence $\mathbf{2}$ and has a fluorescent protein-encoding sequence as an open reading sequence may be introduced in cells in vivo. In such a case, fluorescent protein expression is regulated in an ON-to-OFF manner only in cells that have expressed the proteins specifically expressed in certain cancer cells. Therefore, cells that do not emit fluorescence, i.e., cancer-bearing cells, can be detected specifically.

Thus, such an mRNA and a protein can be used as a translational regulatory system. Moreover, in light of the abovementioned mechanism, a translational regulation method can be provided by contacting the mRNA with the protein. Furthermore, a complex of the mRNA and the protein may be used in such a translational system or translational regulation method. Moreover, the use of them enables construction of an artificial information conversion system which converts input information of an arbitrary substrate protein to output information of an arbitrary target protein.

The mRNA according to the first embodiment of the present invention allows regulation of translation reaction as described above. Moreover, in the applicative aspect of use of the mRNA according to the first embodiment, the RNAprotein complex interacting motif-derived nucleotide sequence $\mathbf{2}$ is designed to specifically bind to a protein formed due to a particular disease. Further, the open reading frame is designed to incorporate therein a gene encoding a protein that relieves or treats the disease. The resulting mRNA can be used as a drug for the particular disease.

The second embodiment of the present invention provides an mRNA having an RNA-protein complex interacting motifderived nucleotide sequence within the open reading frame. FIG. 2 is a diagram schematically showing the mRNA according to this embodiment. In FIG. 2, an mRNA $1 a$ according to this embodiment comprises an open reading frame $4 a$ and an RNA-protein complex interacting motifderived nucleotide sequence $2 a$ located therewithin.

This embodiment is not only used preferably in the translational regulation of the mRNA free from a ribosome-binding site, specifically, an mRNA derived from an origin other than bacteria (e.g., E. coli), but also used in an mRNA containing a ribosome-binding site. In FIG. 2, the description of the ribosome-binding site is omitted. However, this embodiment is not intended to exclude the presence of the ribosomebinding site.

In this embodiment, the RNA-protein complex interacting motif-derived nucleotide sequence $2 a$ is located within the open reading frame $4 a$. The position of the RNA-protein complex interacting motif-derived nucleotide sequence $2 a$ may be set to an arbitrary position within the open reading frame $\mathbf{4} a$. The RNA-protein complex interacting motif-derived nucleotide sequence $2 a$ can be placed, for example, immediately 3 ' to the start codon AUG. Moreover, the RNAprotein complex interacting motif-derived nucleotide sequence $2 a$ may be placed via approximately 1 to 20 bases 3^{\prime} to the start codon AUG. Particularly, it may be placed via approximately 1 to 10 bases 3^{\prime} to the start codon AUG. In this context, when the RNA-protein complex interacting motifderived nucleotide sequence $2 a$ is inserted within the open reading frame $4 a$, the motif-derived nucleotide sequence $2 a$ can be supplemented, if necessary, with 1 base or 2 bases such that the base number of the inserted nucleotide sequence is an multiple of 3 to prevent frameshift.
When a protein specifically binding to the RNA-protein complex interacting motif-derived nucleotide sequence $2 a$ is absent in the state shown in FIG. 2, a ribosome, if any, initiates the translation of the mRNA $1 a$ under conditions involving approximately 36 to $42^{\circ} \mathrm{C}$. and pH 6 to 7.6 . However, in the presence of the protein, the protein specifically binds to the RNA-protein complex interacting motif-derived nucleotide sequence $2 a$ and sterically blocks the adjacent open reading frame $4 a$. Therefore, the ribosome-catalyzed translation is repressed.
According to the second embodiment, the mRNA translation can be regulated by sterically blocking the open reading frame $4 a$. In this context, the use of the mRNA according to this embodiment can also achieve, as in the first embodiment, a translational regulatory system comprising the mRNA and the protein, a complex of the mRNA and the protein, and a translational regulation method.

According to the third embodiment, the present invention provides an mRNA having a nucleotide sequence complementary to an RNA-protein complex interacting motif-derived nucleotide sequence 5^{\prime} to the ribosome-binding site or within the 5 ' region of the open reading frame. FIG. $\mathbf{3}(\mathrm{A})$ is a diagram schematically showing the mRNA according to this embodiment. In FIG. 3(A), an mRNA $1 b$ according to this embodiment comprises an open reading frame $4 b$ and a nucleotide sequence $2 b$ complementary to an RNA-protein complex interacting motif-derived nucleotide sequence, located therewithin. In this case as well, the complementary nucleotide sequence $2 b$ can be supplemented, if necessary, with 1 base or 2 bases such that the base number of the inserted nucleotide sequence is a multiple of 3 .

The mRNA $1 b$ according to this embodiment differs from the mRNA of the second embodiment in that the RNA-protein complex interacting motif-derived nucleotide sequence according to the second embodiment is changed to the nucleotide sequence $2 b$ complementary to an RNA-protein complex interacting motif-derived nucleotide sequence. In this context, the nucleotide sequence $2 b$ complementary to an RNA-protein complex interacting motif-derived nucleotide sequence may comprise not only a completely complementary sequence but also a sequence mutated therefrom.

[OFF-to-ON Translational Regulation]

Next, the OFF-to-ON translational regulation of the mRNA will be described using the mRNA $1 b$ according to this embodiment. In the state shown in FIG. 3(A), the nucleotide sequence $2 b$ complementary to an RNA-protein complex interacting motif-derived nucleotide sequence, in the mRNA $1 b$, is bound in advance to a competitor RNA 6 having the RNA-protein complex interacting motif-derived nucle-
otide sequence of the mRNA $1 b$. When a protein $5 b$ shown in FIG. 3(B) is intracellularly absent, the competitor RNA 6 is bound to the sequence $2 b$ in the mRNA $1 b$. This state is the state shown in FIG. 3(A). This competitor RNA 6 does not have to be completely identical to the RNA-protein complex interacting motif-derived nucleotide sequence and may contain a mutation. In this state, translation does not start even in the presence of a ribosome. This is because the competitor RNA 6 blocks ribosome binding to the mRNA $1 b$.

To this system, a protein $5 b$ specifically binding to the competitor RNA 6 having the RNA-protein complex interacting motif-derived nucleotide sequence is added. The added state is shown in FIG. 3(B). The state shown here in FIG. 3 (B) is brought about by the intracellular expression of the protein $5 b$. Here, the addition of the protein $5 b$ can inhibit the specific binding between the competitor RNA 6 having the protein-binding motif-derived sequence and the mRNA $\mathbf{1} b$. The ribosome-catalyzed translation reaction of the open reading frame $4 b$ starts upon inhibition of the binding between the RNA 6 and the mRNA $1 b$ through the reaction with the particular protein $5 b$. In this way, the translation reaction of the mRNA $1 b$ can be regulated in an OFF-to-ON manner by adding the protein $5 b$ to the system in which the particular competitor RNA 6 is bound to the mRNA $1 b$ (state of FIG. 3(A)).

In FIG. 3, the embodiment is shown, in which the nucleotide sequence $2 b$ complementary to an RNA-protein complex interacting motif-derived nucleotide sequence is located within the open reading frame $4 b$. However, in a modification of this embodiment, the nucleotide sequence complementary to an RNA-protein complex interacting motif-derived nucleotide sequence may be located 5 ' to the ribosome-binding site. The aspect may be the same as that of the first embodiment in which the RNA-protein complex interacting motif-derived nucleotide sequence is located 5^{\prime} to the ribosome-binding site. In this case as well, OFF-to-ON translational regulation can be performed by the same action as in the third embodiment. Moreover, the use of the mRNA according to this embodiment can also achieve a translational regulatory system comprising the mRNA and the protein, a complex of the mRNA and the protein, and a translational regulation method.

According to the fourth embodiment, the present invention provides a modification of the third embodiment and relates to a simultaneous OFF-to-ON/ON-to-OFF translational regulatory system.

The simultaneous translational regulatory system according to the fourth embodiment of the present invention comprises an mRNA $\mathbf{1} b$, a competitor RNA $\mathbf{6}$, and a protein $\mathbf{5} b$ specifically binding to the competitor RNA 6 shown in FIG. 3 (A) described in the third embodiment and further comprises a second mRNA. The second mRNA has a sequence identical to the competitor RNA 6, 5 ' to the ribosome-binding site or within the 5^{\prime} region of the open reading frame, and encodes a gene different from that encoded by the mRNA $1 b$. Since the second mRNA has a sequence identical to the competitor RNA 6, and it specifically binds to the protein $5 b$. Specifically, the second mRNA is of type whose translation is inhibited in a manner dependent on the presence of the protein $5 b$. In the description below, the mRNA $1 b$ shown in FIG. 3(A) is referred to as a first mRNA.
[Simultaneous OFF-to-ON/ON-to-OFF Translational Regulation]

In this context, the addition of the protein $5 b$ to the system containing the first mRNA $1 b$ and the competitor RNA 6 achieves OFF-to-ON translational regulation as described in the third embodiment. Furthermore, when the second mRNA is present in this system in the presence of an excess of the
protein $\mathbf{5} b$, this protein $\mathbf{5} b$ specifically binds to the second mRNA and hinders its translation. Therefore, the translation of the second mRNA is regulated to achieve ON-to-OFF translational regulation. In this way, the fourth embodiment enables simultaneous OFF-to-ON/ON-to-OFF translational regulation.

For example, the first mRNA $1 b$ and the second mRNA may have fluorescent protein genes differing in type as their ORFs. In such a case, OFF-to-ON translational regulation is performed in one of them, while ON-to-OFF translational regulation is performed in the other mRNA. They can be observed easily using a fluorescence microscope or the like by applying EGFP (green) to one of the fluorescent protein genes and DsRed (red) to the other gene. Thus, this system would be useful.

According to the fifth embodiment, the present invention provides an intracellular translational regulatory system comprising a vector containing a nucleic acid encoding any of the RNAs and/or any of the proteins used in the first to fourth embodiments.
Translational regulation can be performed preferably, particularly in cancer cells. Both the repression and promotion of protein expression can be performed according to the procedures of the ON-to-OFF translational regulation and the OFF-to-ON translational regulation, respectively. Moreover, the presence or absence of such regulation can be confirmed based on the expression of a marker protein. In this case, the mRNA and a protein-encoding gene can be introduced into cells using plasmid vectors.
A technique of preparing plasmid vectors expressing the desired RNA or protein is already known by those skilled in the art. These vectors can be prepared by conventional methods. For example, L7Ae-expressing vectors can be constructed by inserting the L7Ae-encoding gene downstream of a CMV promoter within vectors conventionally used in intracellular protein expression for humans. On the other hand, vectors expressing an mRNA in which Box C/D known as a sequence to which L7Ae specifically binds, or its mutant Box C/D mut is inserted within the 5^{\prime} region of the EGFP open reading frame, can also be prepared by amplifying the corresponding genes by PCR and inserting them within vectors routinely used in intracellular protein expression for humans. Furthermore, when L7Ae is desired to be intracellularly expressed at the intended timing, vectors capable of expressing L7Ae by addition to a tetracycline (Tet) medium may be prepared. Such vectors capable of expressing L7Ae by the addition to a tetracycline medium contain an L7Ae-encoding gene downstream of a Tet operator sequence and comprise, as a component, a vector or cell constitutively expressing a Tet repressor.
The fifth embodiment of the present invention enables intracellular translational regulation. Translational regulation in cells, particularly, cancer cells, is highly possibly applicable therapeutically and can therefore serve as very useful means.

According to the sixth embodiment, the present invention provides a translational regulatory system comprising a fusion protein containing L7Ae as a tag sequence and a first protein.

This fusion protein is specifically a fusion protein comprising L7Ae and a first protein as another arbitrary protein. Hereinafter, such a fusion protein is also referred to as a tag sequence-fused protein. Examples of the first protein as an arbitrary protein include, but not limited to, fluorescent proteins, apoptosis-inducing proteins, apoptosis-repressing proteins, and organellar localized proteins. Theoretically, the desired protein can be used.

The translational regulatory system according to this embodiment further comprises an mRNA having a sequence specifically binding to L7Ae and a sequence encoding a second protein. Specifically, the fusion protein is preferably used together with the mRNA. In the mRNA, the sequence specifically binding to L7Ae is preferably a Box C/D sequence. Alternatively, a sequence mutated from the Box C/D sequence with the Kink-turn motif structure maintained may be used. On the other hand, the second protein encoded by this mRNA is preferably a protein different from the fusion protein. Theoretically, the second protein may be an arbitrary protein and can be determined based on its combination with the first protein constituting the fusion protein. The second protein encoded by the mRNA is preferably a green fluorescent protein for a red fluorescent protein used as the first protein or is preferably an apoptosis-repressing protein for an apoptosis-inducing protein used as the first protein. In addition, some combinations such as some intracellular signaling proteins may be used, in which the translation of the second protein is preferably repressed by the expression of the first protein.

Such a tag sequence-fused protein and an mRNA can be prepared according to the known method as long as genes encoding the desired first and second proteins are known. Moreover, when the protein and the mRNA are used in an intracellular translational regulatory system, plasmid vectors expressing them can be prepared and introduced into cells. These plasmid vectors can be prepared in the same way as in the description of the fifth embodiment by inserting the desired gene thereinto.

Next, the action of the translational regulatory system achieved by such a tag sequence-fused protein and an mRNA will be described. Here, the case will be described, in which the tag sequence-fused protein is a fusion protein of L7Ae and a red fluorescent protein and the mRNA has a Box C/D sequence and encodes a green fluorescent protein, though the present invention is not limited thereto. Plasmid vectors expressing this mRNA are introduced into cells. As a result, the mRNA is translated in the absence of the tag sequencefused protein to express the green fluorescent protein. To introduce the tag sequence-fused protein into these cells, plasmid vectors having a nucleic acid sequence encoding the tag sequence-fused protein are introduced into the cells. This results in the intracellular expression of the tag sequencefused protein. Then, the expressed tag sequence-fused protein binds to the mRNA. More specifically, L7Ae constituting the tag sequence-fused protein specifically binds to the Box C/D sequence on the mRNA. Upon this binding, the mRNA translation is repressed to prevent the production of the green fluorescent protein. On the other hand, since the tag sequence-fused protein is continuously produced, the red fluorescent protein constituting the tag-fused protein increases in number. This is observed under a fluorescence microscope such that the green color and the red color become lighter and darker, respectively, with a lapse of time. In this way, the combined use of the tag sequence-fused protein and the mRNA can achieve a translational regulatory system that performs the translation of a target gene in response to the expression of a predetermined gene.

According to the sixth embodiment, a system that represses the translation of a target gene, for example, green fluorescent protein translation, in response to the expression of an arbitrary gene, for example, red fluorescent protein expression, can be constructed intracellularly by adding L7Ae as a tag sequence to the protein. Furthermore, the protein to be fused to the L7Ae tag sequence may be set to, for example, an apoptosis-repressing protein, and the target gene to be regu-
lated may be set to a gene encoding an apoptosis-inducing protein. In such a case, a signaling circuit can be rewired such that it can effectively induce the apoptosis of cells overexpressing apoptosis-repressing proteins, such as cancer cells. Such a translational regulatory system that performs the translation of a target gene in response to the expression of a predetermined gene is a promising tool constituting artificial genetic circuits.

EXAMPLES

A protein-responsive translational regulatory system using a protein-RNA interacting motif (RNP motif) according to the present invention is a technique of using a naturally extracted or artificially prepared RNP motif to regulate translation reaction in an ON-to-OFF or OFF-to-ON manner. Specifically, the ON-to-OFF regulation is established by inserting an RNA-protein complex interacting motif-derived nucleotide sequence into an mRNA. In this regulation, in the presence of a target protein, the protein competes with ribosome binding or entry through its binding to the mRNA to cause translational inhibition. The OFF-to-ON regulation is established by first inserting an antisense sequence of an RNA-protein complex interacting motif-derived nucleotide sequence, 5 ' region of the open reading frame of an mRNA. Next, an RNA comprising the RNA-protein complex interacting motif-derived nucleotide sequence is added to the reaction solution to form a complementary strand with the antisense strand inserted in the mRNA, resulting in translational inhibition. The addition of a substrate protein thereto inhibits the binding of the RNA comprising the protein-binding motif to the mRNA to activate translation. In Examples below, proteins generally called L7Ae and ThrRS are used. However, proteins that can be used in the reactions are not limited to only L7Ae or ThrRS. Hereinafter, specific examples of experiments or assays will be described.

Example 1

[Preparation of RNA-Protein Complex Interacting Motifs (RNAs and Proteins) Used in Translational Regulation] [Preparation of L7Ae-Binding RNA Box C/D]

L7Ae-binding RNA Box C/D (SEQ ID NO: 5) was prepared by preparing a DNA template containing a T7 promoter, followed by transcription reaction using T7 RNA polymerase. The details will be shown below. First, $100 \mu \mathrm{~L}$ of reaction solution was prepared for preparing DNA. The reaction solution contained a mixture of 1 ng of Box C/D template (5'-CTAATACGACTCACTATAGGCCA-
GAGTGGGCGTGATGCATGTCTAGGAAACTAGA CAT-GCTGACCCACTCTGGCC-3') (SEQ ID NO: 1), $5 \mu \mathrm{~L}$ each of $10 \mu \mathrm{M}$ Box C/D Fwd (5'-CTAATACGACTCACTATAG-GCCAG-3') (SEQ ID NO: 2) and Box C/D Rev (5^{\prime}-GGCCA-GAGTGGGTCAGCAT-3') (SEQ ID NO: 3), $8 \mu \mathrm{~L}$ of 2.5 mM dNTP (TAKARA BIO INC.), $10 \mu \mathrm{~L}$ of Ex taq $10 \times$ buffer (TAKARABIO INC.), and $0.5 \mu \mathrm{~L}$ of Ex taq DNA polymerase (TAKARABIO INC.). 25 cycles each involving $94^{\circ} \mathrm{C}$. for 30 seconds, $53^{\circ} \mathrm{C}$. for 30 seconds, and $72^{\circ} \mathrm{C}$. for 1 minute were performed for extension (SEQ ID NO: 4) using Gradient Master Cycler (Eppendorf). After the reaction, the extension product was subjected to phenol treatment, diethyl ether treatment, and ethanol precipitation and dissolved in $10 \mu \mathrm{~L}$ of ultrapure water. The solution was used as a template for transcription. Transcription reaction was performed under conditions involving, for ${ }^{32} \mathrm{P}$ radiolabeling, 40 mM Tris- Cl (pH 7.5), 5 mM DTT, 1 mM spermidine, $5 \mathrm{mM} \mathrm{MgCl}_{2}, 1.25$ mM ATP, 1.25 mM CTP, 1.25 mM UTP, 0.25 mM GTP,
$\left.{ }^{[32} \mathrm{P}-\alpha\right]$ GTP (PerkinElmer Inc.), 20 U RNase inhibitor (TOYOBO CO., LTD.), and $35 \mathrm{ng} / \mu \mathrm{L}$ T7 RNA polymerase. In $100 \mu \mathrm{~L}$ of the system, $5 \mu \mathrm{~L}$ of the template was used and reacted at $37^{\circ} \mathrm{C}$. for 3 hours to overnight. For non-labeling, transcription reaction was performed using MEGAshortscript (trademark) (Ambion, Inc.). The transcription reaction using MEGAshortscript was performed as follows. $1 \mu \mathrm{~g}$ of template DNA dissolved in ultrapure water, $2 \mu \mathrm{~L}$ of T7 10× Reaction Buffer, $2 \mu \mathrm{~L}$ of T7 ATP Solution (75 mM) (the same recipe for CTP, GTP, and UTP), and $2 \mu \mathrm{~L}$ of T7 Enzyme Mix were mixed and adjusted with ultrapure water to the whole amount of $20 \mu \mathrm{~L}$. This reaction solution was reacted at $37^{\circ} \mathrm{C}$. for 4 hours to overnight. Both the solutions, after the reaction, were supplemented with $1 \mu \mathrm{~L}$ of TURBO DNase (MEGAshortscript (trademark), Ambion, Inc.) and incubated at $37^{\circ} \mathrm{C}$. for 15 minutes to decompose the template DNA. Then, each transcript was subjected to phenol treatment and ethanol precipitation for purification. After the precipitation, the resulting product was dissolved in $20 \mu \mathrm{~L}$ of denaturing dye (80% formamide, $0.17 \% \mathrm{XC}, 0.27 \% \mathrm{BPB}$) and electrophoresed on a 12% polyacrylamide (29:1) denaturing gel. A gel having the size of interest was excised, and elution was performed overnight at $37^{\circ} \mathrm{C}$. by the addition of $500 \mu \mathrm{~L}$ of elution buffer (0.3 M sodium acetate (pH 7.0)). The eluted RNA was subjected again to phenol extraction, diethyl ether extraction, and ethanol precipitation for purification. [Preparation of Box C/D Mini and Box C/D Minimut]

L7Ae-binding RNA Box C/D mini (SEQ ID NO: 9) and Box C/D minimut (SEQ ID NO: 10) were separately prepared through transcription reaction using Box C/D mini primer (5'-GGGTCAGCTTTCGCATCACGCCCTAT-
AGTGAGTCGTATTAGC-3') (SEQ ID NO: 7) or Box C/D minimut primer (5 '-GGGGCAGCTTTCGCATGACGC-CCTATAGTGAGTCGTATTAGC-3') (SEQ ID NO: 8) as a template and T7 RNA polymerase. Reaction was performed under conditions involving, for ${ }^{32}$ P radiolabeling, $0.75 \mu \mathrm{M} \mathrm{T7}$ primer (5^{\prime}-GCTAATACGACTCACTATA-3') (SEQ ID NO: 6), $0.75 \mu \mathrm{M}$ template, 40 mM Tris- Cl (pH 7.5), 5 mM DTT, 1 mM spermidine, $5 \mathrm{mM} \mathrm{MgCl}_{2}, 1.25 \mathrm{mMATP}, 1.25 \mathrm{mM}$ CTP, 1.25 mM UTP, 0.25 mM GTP, $\left.{ }^{32} \mathrm{P}-\alpha\right]$ GTP (PerkinElmer Inc.), 20 U RNase inhibitor (TOYOBO CO., LTD.), and 35 $n g / \mu \mathrm{L}$ T7 RNA polymerase. In $100 \mu \mathrm{~L}$ of the system, the template was reacted at $37^{\circ} \mathrm{C}$. for 3 hours to overnight. For non-labeling, transcription reaction was performed using MEGAshortscript (trademark) (Ambion, Inc.). The transcription reaction using MEGAshortscript was performed as follows. $0.75 \mu \mathrm{~L}$ of $100 \mu \mathrm{M} \mathrm{T7}$ primer dissolved in ultrapure water, $0.75 \mu \mathrm{~L}$ of $100 \mu \mathrm{M}$ Box C/D mini, $2 \mu \mathrm{~L}$ of T7 $10 \times$ Reaction Buffer, $2 \mu \mathrm{~L}$ of T7 ATP Solution (75 mM) (the same recipe for CTP, GTP, and UTP), and $2 \mu \mathrm{~L}$ of T7 Enzyme Mix were mixed and adjusted with ultrapure water to the whole amount of $20 \mu \mathrm{~L}$. This reaction solution was reacted at $37^{\circ} \mathrm{C}$. for 4 hours to overnight. After the reaction, the resulting product was purified in the same way as above using electrophoresis on a 15% polyacrylamide (29:1) denaturing gel. [Preparation of ThrRS-Binding RNA Domain 234 and Domain 2]

ThrRS-binding RNA Domain 234 (SEQ ID NO: 15) and Domain 2 (SEQ ID NO: 19) were separately prepared in the same way as in Box C/D by preparing a DNA template containing a T 7 promoter, followed by transcription reaction using T7 RNA polymerase. First, $100 \mu \mathrm{~L}$ of reaction solution was prepared for preparing DNA. The reaction solution for Domain 234 contained a mixture of $1 \mu \mathrm{~L}$ of $10 \mathrm{ng} / \mu \mathrm{L}$ ThrRS Domain 234 template (5^{\prime}-GATTGCGAACCAATTTAG-CATTTGTTGGCTAAATGGTTTCGCAAT-
GAACTGTTAAT AAACAAATTTTTCTTTGTATGT-

GATCTTTCGTGTGGGTCACCA-3') (SEQ ID NO: 11), 5 $\mu \mathrm{L}$ each of $10 \mu \mathrm{M}$ ThrRS Domain 234 Fwd (5^{\prime}-CTAATAC-GACTCACTATAGGATTGCGAACCAATT-
TAGCATTTGTTGG-3') (SEQ ID NO: 12) and ThrRS Domain 234 Rev (5'-TTTGCAGTGGTGACCCACAC-GAAAGATCAC-3')(SEQ ID NO: 13), $8 \mu \mathrm{~L}$ of 2.5 mMdNTP (TAKARA BIO INC.), 10μ L of Ex taq $10 \times$ buffer (TAKARA BIO INC.) , and $0.5 \mu \mathrm{~L}$ of Ex taq DNA polymerase (TAKARA BIO INC.). 25 cycles each involving $94^{\circ} \mathrm{C}$. for 30 seconds, $55^{\circ} \mathrm{C}$. for 30 seconds, and $72^{\circ} \mathrm{C}$. for 1 minute were performed for extension (SEQ ID NO: 14) using Gradient Master Cycler (Eppendorf). The reaction solution for Domain 2 contained a mixture of $5 \mu \mathrm{~L}$ each of $10 \mu \mathrm{M}$ ThrRS Domain 2 Fwd (5'-CTAATACGACTCACTATAGGCGTATGT-
GATCTTTCGTGTGGGTCAC-3') (SEQ ID NO: 16) and ThrRS Domain 2 Rev (5^{\prime}-GGCGCAGTGGTGACCCACAC-GAAAGATCAC-3')(SEQ ID NO: 17), $8 \mu \mathrm{~L}$ of 2.5 mMdNTP (TAKARA BIO INC.), 10μ L of Ex taq $10 \times$ buffer (TAKARA BIO INC.), and $0.5 \mu \mathrm{~L}$ of Ex taq DNA polymerase (TAKARA BIO INC.). 10 cycles each involving $94^{\circ} \mathrm{C}$. for 30 seconds, $52^{\circ} \mathrm{C}$. for 30 seconds, and $72^{\circ} \mathrm{C}$. for 1 minute were performed for extension (SEQ ID NO: 18) using Gradient Master Cycler (Eppendorf). After the reaction, each extension product was subjected to phenol treatment, diethyl ether treatment, and ethanol precipitation and dissolved in $10 \mu \mathrm{~L}$ of ultrapure water. The solution was used as a template for transcription. Transcription reaction and purification were performed in the same way as in Box C/D using a 12% polyacrylamide (29:1) denaturing gel for Domain 234 and a 15% polyacrylamide (29:1) denaturing gel for Domain 2.

[Preparation of L7Ae]

The protein L7Ae used in the RNA-protein complex interacting motif was expressed (SEQ ID NO: 66) using plasmids kindly provided by Dr. Alexander Huttenhofer. The plasmids were prepared by amplifying an insert from A. fulgidus using primers L7Ae Fwd (5'-CTGACATATGTACGTGAGATTTGAGGTTC 3') (SEQ ID NO: 64) and L7Ae Rev (5'-CTGACTCGAGTTACTTCTGAAGGCCTTTAATC-3') (SEQ ID NO: 65) and incorporating the insert into a pET$28 b+$ vector (Novagen) cleaved with restriction enzymes NdeI and XhoI. Expression and purification methods will be shown below.

First, E. coli BL21(DE3)pLysS was transformed with the plasmids. The obtained colonies were inoculated to 5 mL of LB medium containing $25 \mu \mathrm{~g} / \mathrm{mL}$ kanamycin and $100 \mu \mathrm{~g} / \mathrm{mL}$ chloramphenicol and shake-cultured overnight at $37^{\circ} \mathrm{C}$. Subsequently, the whole amount of the culture solution was subcultured in 500 mL of LB medium containing $25 \mu \mathrm{~g} / \mathrm{mL}$ kanamycin and $100 \mu \mathrm{~g} / \mathrm{mL}$ chloramphenicol. The solution was shake-cultured at $37^{\circ} \mathrm{C}$. until O.D. ${ }_{600}$ of 0.6 to 0.7 and then shake-cultured overnight at $30^{\circ} \mathrm{C}$. after addition of 500 $\mu \mathrm{L}$ of 1 M IPTG (final concentration: 1 mM) for expression induction. The bacterial cells were collected by centrifugation ($4^{\circ} \mathrm{C}$., $6000 \mathrm{rpm}, 20 \mathrm{~min}$) and sonicated by the addition of 5 mL of a sonication buffer (50 mM Na phosphate, 0.3 M $\mathrm{NaCl}, \mathrm{pH} 8.0$) to disrupt the bacterial cells. The sonication was performed by repeating 6 times the procedure of cooling on ice, followed by ultrasonic application for 15 seconds. Then, impure proteins were denatured at $80^{\circ} \mathrm{C}$. for $15 \mathrm{~min}-$ utes. The supernatant was collected by centrifugation $\left(4^{\circ} \mathrm{C}\right.$., $6000 \mathrm{rpm}, 20 \mathrm{~min}$). Histidine-tagged proteins were purified by the batch method using an Ni-NTA column (QIAGEN GmbH). Specifically, the supernatant and 1 mL of Ni-NTA were first mixed and stirred at $4^{\circ} \mathrm{C}$. for 1 hour. Then, the mixture was charged into a column and washed twice with 4 mL of wash buffer (50 mM Na phosphate, $0.3 \mathrm{M} \mathrm{NaCl}, 20$ mM imidazole, pH 8.0). Stepwise elution was performed
using two runs of 1 mL each of $50 \mathrm{mM}, 100 \mathrm{mM}, 200 \mathrm{mM}$, and 300 mM imidazole elution buffers (prepared by adding imidazole to 50 mM Na phosphate, $0.3 \mathrm{M} \mathrm{NaCl}(\mathrm{pH} 8.0)$). 17% SDS-PAGE was used for confirmation. Subsequently, proteins were concentrated using Microcon YM-3 (Millipore Corp.), and the concentrate was replaced by a dialysis buffer (20 mM Hepes- $\mathrm{KOH}, 1.5 \mathrm{mM} \mathrm{MgCl} 2,150 \mathrm{mM} \mathrm{KCl}, 5 \%$ glycerol (pH 7.5)). Moreover, the protein concentration was determined by the Bradford method using Protein Assay (BIO-RAD LABORATORIES INC.).
[Preparation of ThrRS]
The protein ThrRS used in the RNA-protein complex interacting motif was expressed (SEQ ID NO: 67) using plasmids kindly provided by Dr. Yoshihiro Shimizu. The plasmids were prepared by extracting ThrRS from E. coli and incorporating it into pQE-30 vectors (QIAGEN GmbH). Expression and purification methods will be shown below.

First, E. coli M15(pREP4) was transformed with the plasmids. The obtained colonies were inoculated to 3 mL of LB medium containing $50 \mu \mathrm{~g} / \mathrm{mL}$ ampicillin and shake-cultured overnight at $37^{\circ} \mathrm{C}$. Subsequently, the whole amount of the culture solution was subcultured in 50 mL of LB medium containing $50 \mu \mathrm{~g} / \mathrm{mL}$ ampicillin. The solution was shakecultured at $37^{\circ} \mathrm{C}$. until O.D. ${ }^{600}$ of 0.4 to 0.6 and then shakecultured overnight at $37^{\circ} \mathrm{C}$. after addition of $25 \mu \mathrm{~L}$ of 1 M IPTG (final concentration: 0.5 mM) for expression induction. The bacterial cells were collected by centrifugation ($4^{\circ} \mathrm{C}$., $6000 \mathrm{rpm}, 20 \mathrm{~min}$) and sonicated by the addition of 5 mL of a sonication buffer (50 mM Na phosphate, $0.3 \mathrm{M} \mathrm{NaCl}, \mathrm{pH}$ 8.0) to disrupt the bacterial cells. The sonication was performed by repeating 6 times the procedure of cooling on ice, followed by ultrasonic application for 15 seconds. Then, impure proteins were denatured at $80^{\circ} \mathrm{C}$. for 15 minutes. The supernatant was collected by centrifugation $\left(4^{\circ} \mathrm{C} ., 6000 \mathrm{rpm}\right.$, 20 min). Histidine-tagged proteins were purified by the same batch method as above using an Ni-NTA column (QIAGEN GmbH). 8% SDS-PAGE was used for confirmation. Subsequently, proteins were concentrated using Microcon YM-30 (Millipore Corp.), and the concentrate was replaced by a dialysis buffer (25 mM Hepes- $\mathrm{KOH}, 5 \mathrm{mM} \mathrm{MgCl} 2,50 \mathrm{mM}$ $\mathrm{KCl}, 1 \mathrm{mM}$ DTT, 5% glycerol (pH 7.5)). Moreover, the protein concentration was determined by the Bradford method using Protein Assay (BIO-RAD LABORATORIES INC.).

Example 2

[Confirmation of RNP Complex Formation by EMSA (Electrophoretic Mobility Shift Assay)]
[EMSA on Box C/D, Box C/D Mini, and Box C/D Minimut]
The reaction of L7Ae with Box C/D, Box C/D mini, or Box C/D minimut was performed at a final concentration of 10 $\mathrm{nM}, 25 \mathrm{nM}$, or 25 nM RNA, respectively. The reaction was performed as follows under conditions involving 10 nM or 25 nM RNA, 20 mM Hepes-KOH, $150 \mathrm{mM} \mathrm{KCl}, 1.5 \mathrm{mM}$ $\mathrm{MgCl}_{2}, 2 \mathrm{mMDTT}, 0.001 \mathrm{U} / \mathrm{mL}$ tRNA, 3% glycerol, and 0 to 500 nM protein. First, $1 \mu \mathrm{~L}$ of ${ }^{32} \mathrm{P}$-labeled RNA was denatured at $80^{\circ} \mathrm{C}$. for 5 minutes and then supplemented with $4 \mu \mathrm{~L}$ of $5 \times$ binding buffer (100 mM Hepes-KOH (pH 7.5), 750 mM $\mathrm{KCl}, 7.5 \mathrm{mM} \mathrm{MgCl} 2,10 \mathrm{mM}$ DTT, $0.005 \mathrm{U} / \rho \mathrm{L}$ tRNA, 15% glycerol) and ultrapure water. Then, the solution was mixed with the protein to adjust the whole amount to $20 \mu \mathrm{~L}$. The reaction solution was left on ice for 60 minutes. $2 \mu \mathrm{~L}$ of dye ($0.25 \% \mathrm{BPB}, 0.25 \% \mathrm{XC}, 30 \%$ glycerol) was added thereto, and the mixture was electrophoresed on a 8% nondenaturing polyacrylamide gel at $4^{\circ} \mathrm{C}$. for 3 to 4 hours. Then, the gel was
dried for 1 hour using a gel drier and analyzed for its radiation dose intensity using Bio-Imaging Analyzer (BAS2500; FUJIFILM) (FIGS. 4 and 5).

As a result, both Box C/D and Box C/D mini were confirmed to increase the band in an L7Ae protein concentrationdependent manner. This indicates that Box C/D or Box C/D mini binds to L7Ae. On the contrary, no such increase in band was seen in the mutant Box C/D minimut, demonstrating that it does not bind to L7Ae at these protein concentrations.
[EMSA on Domain 234 and Domain 2]
The reaction of ThrRS with Domain 234 or Domain 2 was performed as follows under conditions involving final concentrations of 20 nM RNA, 25 mM Hepes-KOH, 50 mM KCl , $5 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM} \mathrm{DTT}, 5 \%$ glycerol, and 0 to $40 \mu \mathrm{M}$ protein. First, $4 \mu \mathrm{~L}$ of $200 \mathrm{nM}{ }^{32} \mathrm{P}$-labeled RNA was denatured at $80^{\circ} \mathrm{C}$. for 5 minutes and then supplemented with $4 \mu \mathrm{~L}$ of $5 \times$ binding buffer (75 mM Hepes-KOH, $250 \mathrm{mM} \mathrm{KCl}, 25$ $\mathrm{mM} \mathrm{MgCl} 2,5 \mathrm{mM}$ DTT, 25% glycerol) and ultrapure water. Then, the solution was mixed with the protein to adjust the whole amount to $20 \mu \mathrm{~L}$. The reaction solution was left on ice for 60 minutes. $2 \mu \mathrm{~L}$ of dye $(0.25 \% \mathrm{BPB}, 0.25 \% \mathrm{XC}, 30 \%$ glycerol) was added thereto, and the mixture was electrophoresed on a 12% nondenaturing polyacrylamide gel at $4^{\circ} \mathrm{C}$. for 3 to 4 hours. Then, the gel was dried for 1 hour using a gel drier and analyzed for its radiation dose intensity using BioImaging Analyzer (BAS2500; FUJIFILM) (FIGS. 6 and 7).

As a result, both ThrRS Domain 234 and ThrRS Domain 2 were confirmed to increase the band in a ThrRS protein con-centration-dependent manner. This indicates that ThrRS Domain 234 or Domain 2 binds to ThrRS. Particularly, a supershifted band was seen in the ThrRS Domain 2. This suggests that ThrRS bound to Domain 2 was dimerized. As is also evident from the degree of band smear, Domain 234 has stronger binding than only Domain 2.

Example 3

[Preparation of Original EGFP and Protein-Responsive Artificial RNA Switches]

Original EGFP and protein-responsive artificial RNAs were prepared by performing PCR twice or three times using pEGFP (Clontech).
[Preparation of Original EGFP]
pEGFP was used as a template to perform 1st PCR using EGFP $1^{\text {st }}$ Fwd (5'-AAGGAGATATACCAATGGTGAG-CAAGGGCGAG-3') (SEQ ID NO: 20) and EGFP Rev (5^{\prime} -TATTCATTACCCGGCGGCGGTCACGAA-3') (SEQ ID NO: 22) as primers. $50 \mu \mathrm{~L}$ of reaction solution contained a mixture of 1 ng of template, $1.5 \mu \mathrm{~L}$ of $10 \mu \mathrm{M}$ each DNA primers, $5 \mu \mathrm{~L}$ of 2 mM dNTPs, $5 \mu \mathrm{~L}$ of $10 \times$ KOD-PLUSbuffer ver. $2,2 \mu \mathrm{~L}$ of $25 \mathrm{mM} \mathrm{MgSO}_{4}$, and $1 \mu \mathrm{~L}$ of KOD-PLUS-DNA polymerase. Reaction was performed by initially performing incubation at $94^{\circ} \mathrm{C}$. for 2 minutes and then 20 cycles each involving $94^{\circ} \mathrm{C}$. for 15 seconds, $50^{\circ} \mathrm{C}$. for 30 seconds, and $68^{\circ} \mathrm{C}$. for 1 minute.

In the description below, only a template and primers will be shown because PCR was performed under the same conditions as above.
After the reaction, the reaction solution was subjected to phenol treatment and ethanol precipitation and dissolved in a nondenaturing dye (30% glycerin, 0.075% xylene cyanol, 0.075% bromophenol blue, 69.85% ultrapure water). The band of interest was separated and excised using low melting point agarose SEAPLAQUE GTG AGAROSE (FMC Corp.). The excised agarose fragment was supplemented with $200 \mu \mathrm{~L}$ of TE, then incubated at $65^{\circ} \mathrm{C}$. for 30 minutes, and then
subjected to 3 phenol treatments, diethyl ether treatment, and ethanol precipitation for DNA purification.

Next, the product was used as a template to perform 2nd PCR using Universal primer (5'-GAAATTAATACGACT-CACTATAGGGAGACCACAACGGTTTCCCTCTAGAAATAAT TTTGTTTAACTTTAAGAAG-GAGATATACCA-3') (SEQ ID NO: 21) and EGFP Rev as primers. After the reaction, separation and purification were performed in the same way as above, and the purification product was dissolved in ultrapure water. The solution was used as a template for transcription reaction (SEQ ID NO: 23). Transcription reaction was performed using MEGAscript (trademark) (Ambion, Inc.). The transcription reaction using MEGAscript was performed in the same way as in MEGAshortscript (trademark) (Ambion, Inc.). RNA (SEQ ID NO: 24) obtained through the transcription reaction was purified using RNeasy MinElute (trademark) Cleanup Kit (QIAGEN GmbH). The purification using RNeasy MinElute (trademark) Cleanup Kit was performed as follows.

The transcription reaction solution was adjusted to $100 \mu \mathrm{~L}$ by the addition of $80 \mu \mathrm{~L}$ of ultrapure water, further supplemented with $350 \mu \mathrm{~L}$ of Buffer RLT, and sufficiently mixed. 250μ L of ethanol was added thereto and completely mixed by pipetting. The sample was applied to RNeasy MinElute Spin Column loaded in a $2-\mathrm{mL}$ collection tube and centrifuged at $10,000 \mathrm{rpm}$ for 15 seconds using a high-speed refrigerated microcentrifuge MX-100 (TOMY SEIKO CO., LTD.), and the flow-through fraction was discarded. The spin column was transferred to a new $2-\mathrm{mL}$ collection tube, and $500 \mu \mathrm{~L}$ of Buffer RPE was added onto the spin column using a pipette. The sample was centrifuged at $10,000 \mathrm{rpm}$ for 15 seconds, and the flow-through fraction was discarded. After addition of $500 \mu \mathrm{~L}$ of 80% ethanol to the RNeasy MinEluteSpin Column, the sample was centrifuged at $10,000 \mathrm{rpm}$ for 2 minutes, and the flow-through fraction was discarded. The RNeasy MinElute Spin Column was transferred to a new 2-mL collection tube. The sample was centrifuged at $14,000 \mathrm{rpm}$ for 5 minutes with the spin column cap opened, and the flowthrough fraction was discarded. The spin column was transferred to a new $1.5-\mathrm{mL}$ collection tube, and $20 \mu \mathrm{~L}$ of ultrapure water was added to the center of the silica gel membrane. The sample was centrifuged at $14,000 \mathrm{rpm}$ for 5 minutes for elution. This eluate was used in concentration measurement using DU640 SPECTROPHOTOMETER. [Preparation of L7-UTR2]

The EGFP 1st PCR product was used as a template to perform 2nd PCR using L7-UTR2 $2^{\text {nd }}$ Fwd (5'-GGAGAC-CACAACGGTTTCCCTCGGGCGTGATGC-
GAAAGCTGACCCAGAAGGAGA TATACCAATGGT-GAGC-3') (SEQ ID NO: 25) and EGFP Rev as primers. Next, the resulting product was used as a template to perform 3rd PCR using stem-loop primer (5^{\prime}-GAAATTAATACGACT-CACTATAGGGAGACCACAACGGTTTCC-3') (SEQ ID NO: 26) and EGFP Rev as primers. After the reaction, separation and purification were performed, and the purification product was dissolved in ultrapure water. The solution was used as a template for transcription reaction (SEQ ID NO: 27). Transcription reaction was performed using MEGAscript (trademark) (Ambion, Inc.). RNA (SEQ ID NO: 28) obtained through the transcription reaction was purified using RNeasy MinElute (trademark) Cleanup Kit (QIAGEN GmbH), followed by concentration measurement. [Preparation of L7-UTR5]

The EGFP 1st PCR product was used as a template to perform 2nd PCR using L7-UTR5 $2^{\text {nd }}$ Fwd (5'-GGAGAC-CACAACGGTTTCCCTCGGGCGTGATGC-
GAAAGCTGACCCTTAAGAAGG AGATATACCAATG-

GTGAGC-3') (SEQ ID NO: 29) and EGFP Rev as primers. Next, the resulting product was used as a template to perform 3rd PCR using stem-loop primer and EGFP Rev as primers. After the reaction, separation and purification were performed, and the purification product was dissolved in ultrapure water. The solution was used as a template for transcription reaction (SEQ ID NO: 30). Transcription reaction was performed using MEGAscript (trademark) (Ambion, Inc.). RNA (SEQ ID NO: 31) obtained through the transcription reaction was purified in the same way as above, followed by concentration measurement.
[Preparation of L7-UTR9]
The EGFP 1st PCR product was used as a template to perform 2nd PCR using L7-UTR9 $2^{\text {nd }}$ Fwd (5^{\prime}-GGAGAC-CACAACGGTTTCCCTCGGGCGTGATGC-
GAAAGCTGACCCAACTTTAAGA AGGAGATATAC-CAATGGTGAGC-3') (SEQ ID NO: 32) and EGFP Rev as primers. Next, the resulting product was used as a template to perform 3rd PCR using stem-loop primer and EGFP Rev as primers. After the reaction, separation and purification were performed, and the purification product was dissolved in ultrapure water. The solution was used as a template for transcription reaction (SEQ ID NO: 33). Transcription reaction was performed using MEGAscript (trademark) (Ambion, Inc.). RNA (SEQ ID NO: 34) obtained through the transcription reaction was purified in the same way as above, followed by concentration measurement.
[Preparation of L7-UTR13]
The EGFP 1st PCR product was used as a template to perform 2nd PCR using L7-UTR13 $2^{\text {nd }}$ Fwd (5'-GGAGAC-CACAACGGTTTCCCTCGGGCGTGATGC-
GAAAGCTGACCCGTTTAACTTT AAGAAG-GAGATATACCAATGGTGAGC-3') (SEQ ID NO: 35) and EGFP Rev as primers. Next, the resulting product was used as a template to perform 3rd PCR using stem-loop primer and EGFP Rev as primers. After the reaction, separation and purification were performed, and the purification product was dissolved in ultrapure water. The solution was used as a template for transcription reaction (SEQ ID NO: 36). Transcription reaction was performed using MEGAscript (trademark) (Ambion, Inc.). RNA (SEQ ID NO: 37) obtained through the transcription reaction was purified in the same way as above, followed by concentration measurement.

[Preparation of L7-UTR2 Mut]

The EGFP 1st PCR product was used as a template to perform 2nd PCR using L7-UTR2 mut $2^{\text {nd }}$ Fwd (5'-GGAGACCACAACGGTTTCCCTCGGGCGTCATGCGAAAGCTGCCCCAGAAGGAGA TATAC-CAATGGTGAGC-3') (SEQ ID NO: 38) and EGFP Rev as primers. Next, the resulting product was used as a template to perform 3rd PCR using stem-loop primer and EGFP Rev as primers. After the reaction, separation and purification were performed, and the purification product was dissolved in ultrapure water. The solution was used as a template for transcription reaction (SEQ ID NO: 39). Transcription reaction was performed using MEGAscript (trademark) (Ambion, Inc.). RNA (SEQ ID NO: 40) obtained through the transcription reaction was purified in the same way as above, followed by concentration measurement.

[Preparation of L7-UTR2 Minimut]

The EGFP 1st PCR product was used as a template to perform 2nd PCR using L7-UTR2 minimut $2^{\text {nd }}$ Fwd (5'-GGAGACCACAACGGTTTCCCTCGGG-
GAAACCCAGAAGGAGATATACCAATGGTG AGC-3') (SEQ ID NO: 41) and EGFP Rev as primers. Next, the resulting product was used as a template to perform 3rd PCR using stem-loop primer and EGFP Rev as primers. After the reac-
tion, separation and purification were performed, and the purification product was dissolved in ultrapure water. The solution was used as a template for transcription reaction (SEQ ID NO: 42). Transcription reaction was performed using MEGAscript (trademark) (Ambion, Inc.). RNA (SEQ ID NO: 43) obtained through the transcription reaction was purified in the same way as above, followed by concentration measurement.
[Preparation of L7-ORF (Box C/D GFP)]
pEGFP was used as a template to perform 1st PCR using L7-ORF $1^{\text {st }}$ Fwd (5^{\prime}-AAGGAGATATACCAATGGGGCGTGATGCGAAAGCTGACCCTGTGAGCAAGGGCG AGGAG-3') (SEQ ID NO: 44) and EGFP Rev as primers. Next, the resulting product was used as a template to perform 2nd PCR using Universal primer and EGFP Rev as primers. After the reaction, separation and purification were performed, and the purification product was dissolved in ultrapure water. The solution was used as a template for transcription reaction (SEQ ID NO: 45). Transcription reaction was performed using MEGAscript (trademark) (Ambion, Inc.). RNA (SEQ ID NO: 46) obtained through the transcription reaction was purified in the same way as above, followed by concentration measurement.
[Preparation of L7-ORF Mut (Box C/D Mut GFP)]
pEGFP was used as a template to perform 1st PCR using L7-ORF mut $1^{\text {st }}$ Fwd (5'-AAGGAGATATACCAAT-GAGGGGAAACCCAGTGAGCAAGGGCGAGGAG-3') (SEQ ID NO: 47) and EGFP Rev as primers. Next, the resulting product was used as a template to perform 2nd PCR using Universal primer and EGFP Rev as primers. After the reaction, separation and purification were performed, and the purification product was dissolved in ultrapure water. The solution was used as a template for transcription reaction (SEQ ID NO: 48). Transcription reaction was performed using MEGAscript (trademark) (Ambion, Inc.). RNA (SEQ ID NO: 49) obtained through the transcription reaction was purified in the same way as above, followed by concentration measurement.
[Preparation of ThrRS-UTRW]
pEGFP was used as a template to perform 1st PCR using ThrRS-UTRW $1^{\text {st }}$ Fwd (5'-GTGATCTTTCGTGTGGGT-CACCACTGCAAATAAGGATATAAAATG-
GTGAGCAAGG GCGAG-3') (SEQ ID NO: 50) and EGFP Rev as primers. Next, the resulting product was used as a template to perform 2nd PCR using ThrRS Domain 234 template and EGFP Rev as primers. Next, the resulting product was used as a template to perform 3rd PCR using ThrRS Domain 234 Fwd and EGFP Rev as primers. After the reaction, separation and purification were performed, and the purification product was dissolved in ultrapure water. The solution was used as a template for transcription reaction (SEQ ID NO: 51). Transcription reaction was performed using MEGAscript (trademark) (Ambion, Inc.). RNA (SEQ ID NO: 52) obtained through the transcription reaction was purified in the same way as above, followed by concentration measurement.

[Preparation of ThrRS-UTR2]

The EGFP 1st PCR product was used as a template to perform 2nd PCR using ThrRS-UTR2 $2^{\text {nd }}$ Fwd (5'-GGAGACCACAACGGTTTCCCTCGGCG-
TATGTGATCTTTCGTGTGGGTCACCACTG CGCCA-GAAGGAGATATACCAATGGTG-3') (SEQ ID NO: 53) and EGFP Rev as primers. Next, the resulting product was used as a template to perform 3rd PCR using stem-loop primer and EGFP Rev as primers. After the reaction, separation and purification were performed, and the purification product was dissolved in ultrapure water. The solution was used as a
template for transcription reaction (SEQ ID NO: 54). Transcription reaction was performed using MEGAscript (trademark) (Ambion, Inc.). RNA (SEQ ID NO: 55) obtained through the transcription reaction was purified in the same way as above, followed by concentration measurement.

[Preparation of ThrRS-UTR2 Mut]

The EGFP 1st PCR product was used as a template to perform 2nd PCR using ThrRS-UTR2 mut $2^{\text {nd }}$ Fwd (5'-GGAGACCACAACGGTTTCCCTCGGCG-
TATGTGATCTTTCATGTGGGTCACCACTG CGCCA-GAAGGAGATATACCAATGGTG-3') (SEQ ID NO: 56) and EGFP Rev as primers. Next, the resulting product was used as a template to perform 3rd PCR using stem-loop primer and EGFP Rev as primers. After the reaction, separation and purification were performed, and the purification product was dissolved in ultrapure water. The solution was used as a template for transcription reaction (SEQ ID NO: 57). Transcription reaction was performed using MEGAscript (trademark) (Ambion, Inc.). RNA (SEQ ID NO: 58) obtained through the transcription reaction was purified in the same way as above, followed by concentration measurement.
[Preparation of ON Switch]
pEGFP was used as a template to perform 1st PCR using ON switch $1^{s t}$ Fwd (5'-AAGGAGATATACCAATG-CAGCTTTCGCATCACGTGAGCAAGGGCGAGGAG-3') (SEQ ID NO: 59) and EGFP Rev as primers. Next, the resulting product was used as a template to perform 2nd PCR using Universal primer and EGFP Rev as primers. After the reaction, separation and purification were performed, and the purification product was dissolved in ultrapure water. The solution was used as a template for transcription reaction (SEQ ID NO: 60). Transcription reaction was performed using MEGAscript (trademark) (Ambion, Inc.). RNA (SEQ ID NO: 61) obtained through the transcription reaction was purified in the same way as above, followed by concentration measurement. This RNA had, in the open reading frame (ORF), an insert of a sequence to be hybridized with antisence shown below.
[Preparation of Antisence]
Antisence was prepared using T7 primer and antisence primer (5 '-GGTGGGTCAGCTTTCGCATCACGCCCAC-CTATAGTGAGTCGTATTAGC-3') (SEQ ID NO: 62), and MEGAshortscript (trademark) (Ambion, Inc.). This antisence contains therein an L7Ae-binding site (Box C/D mini). After the reaction, the reaction product was purified (SEQ ID NO: 63) by electrophoresis on a 15% polyacrylamide (29:1) denaturing gel in the same way as in Box C/D mini.

Example 4

[Translational Regulation Assay on L7-UTR]
Translational regulation assay on L7-UTR was conducted using PURE system (Post Genome Institute Co., Ltd.). All ON-to-OFF translational regulations were assayed as follows. First, $5 \mu \mathrm{~L}$ of Solution $\mathrm{A}, 1 \mu \mathrm{~L}$ of $3.75 \mu \mathrm{M}$ RNA, and the protein were mixed and adjusted with ultrapure water to the whole amount of $8 \mu \mathrm{~L}$. The solution was left at $4^{\circ} \mathrm{C}$. for 1 hour. Then, $2 \mu \mathrm{~L}$ of Solution B was added thereto and reacted at $37^{\circ} \mathrm{C}$. for 75 minutes. After the reaction, the solution was adjusted with ultrapure water to $200 \mu \mathrm{~L}$ and measured at an excitation wavelength of 485 nm and an absorption wavelength of 535 nm using infinite F200 (TECAN Trading AG). The secondary structure of EGFP UTR used as a control is shown in FIG. 8A. The secondary structure of L7-UTR2 is shown in FIG. 8B; the secondary structure of L7-UTR 5 is shown in FIG. 8E; the secondary structure of L7-UTR9 is shown in FIG. 8F; and the secondary structure of L7-UTR13
is shown in FIG. 8G. In these diagrams, reference numeral 4 depicts an open reading frame; reference numeral $\mathbf{3}$ depicts a ribosome-binding site; reference numeral 2 depicts an RNAprotein complex interacting motif-derived nucleotide sequence; and reference numeral 7 depicts an enhancer. All the RNAs had an L7Ae-binding motif (Box C/D) nucleotide sequence inserted in EGFP 5'-UTR and were designed to have a distance of 2 bases, 5 bases, 9 bases, or 13 bases between the RBS and the motif.

As is evident from the assay results, the incorporation of the L7Ae motif inhibits translation in response to increase in protein concentration. As is also evident, translational inhibitory effect decreases depending on the distance between the motif and the RBS (FIG. 9). The secondary structure of L7-UTR2 mut of L7Ae is shown in FIG. 8C, and the secondary structure of L7-UTR2 minimut is shown in FIG. 8D. These had a mutation in the L7Ae-binding site of L7-UTR2. Although slight translational inhibition was also observed in these mutants, this translational inhibitory effect was shown to be smaller than that in L7-UTR2 (FIG. 10).

Competition assay using L7-UTR2 was conducted using Box C/D as a competitor. Specifically, $5 \mu \mathrm{~L}$ of Solution A, 1 $\mu \mathrm{L}$ of $3.75 \mu \mathrm{M}$ RNA, $1 \mu \mathrm{~L}$ of 10 to $100 \mu \mathrm{M}$ competitor, and 1 $\mu \mathrm{L}$ of $50 \mu \mathrm{M}$ protein were mixed and adjusted with ultrapure water to the whole amount of $8 \mu \mathrm{~L}$. The solution was left at 4° C. for 1 hour. Then, $2 \mu \mathrm{~L}$ of Solution B was added thereto and reacted at $37^{\circ} \mathrm{C}$. for 75 minutes. After the reaction, measurement was performed in the same way as above. As is evident from the results, the efficiency of translation decreased due to the addition of the protein shows recovery by the addition of the competitor Box C/D. This result suggests that this translational inhibition is influenced by L7Ae and the L7Ae-binding site (FIG. 11). These assay results indicated that ribosome binding to the mRNA can be regulated by the steric hindrance of the protein as designed.
[Translational Regulation Assay on ThrRS-UTR]
The same assay as in L7-UTR was conducted on ThrRSUTR. Assay conditions were the same as in L7-UTR. The secondary structures of ThrRS-UTRW, ThrRS-UTR2, and ThrRS-UTR2 mut are shown in FIG. 12. In these diagram, reference numeral 4 depicts an open reading frame; reference numeral 3 depicts a ribosome-binding site; and reference numeral 2 depicts an RNA-protein complex interacting motif-derived nucleotide sequence. As in L7-UTR, each pro-tein-binding RNA was inserted in 5^{\prime}-UTR: in ThrRS-UTRW (FIG. 12A), Domain 234 was inserted in 5^{\prime}-UTR; and in ThrRS-UTR2 (FIG. 12B), Domain 2 was inserted in 5'-UTR. ThrRS-UTR2 mut (FIG. 12C) had a mutation in the ThrRSbinding site (Domain 2) of ThrRS-UTR2 and was used as a mutant.

As is evident from the results, translation is inhibited depending on the concentration of the ThrRS protein. ThrRSUTRW had larger inhibitory effect than that of ThrRS-UTR2, owing to difference in binding affinity. Moreover, as in L7-UTR, smaller translational inhibitory effect was observed in the mutant (FIG. 13). These results indicated that for ON-to-OFF translational regulation, the input protein can be selected arbitrarily by exchanging the protein-binding motif on the mRNA.
[Translational Regulation Assay on L7-ORF (Box C/D GFP)]
The same assay as above was conducted on L7-ORF (Box C/D GFP). Assay conditions were the same as in L7-UTR. The secondary structures of L7-ORF (Box C/D GFP) and L7-ORF mut (Box C/D mut GFP) are shown in FIG. 14. In these diagram, reference numeral 4 depicts an open reading frame; reference numeral $\mathbf{3}$ depicts a ribosome-binding site; reference numeral 2 depicts an RNA-protein complex inter-
acting motif-derived nucleotide sequence; and reference numeral 7 depicts an enhancer. Unlike L7-UTR, each proteinbinding RNA motif was inserted in ORF: in L7-ORF (Box C/D GFP) (FIG. 14A), the L7Ae-binding site (Box C/D) was inserted in ORF immediately after the start codon; and in L7-ORF mut (Box C/D mut GFP) (FIG. 14B) used as a mutant, Stem-Loop was inserted in this site. As a result, translation is inhibited with increase in the concentration of the L7Ae protein. Moreover, as in L7-UTR and ThrRS-UTR, smaller translational inhibitory effect was shown in the mutant. These results indicated that the L7Ae protein bound to the mRNA open reading frame inhibits ribosome entry (FIG. 15).
[Translational Regulation Assay on ON Switch]
To assay OFF-to-ON translational regulation, $5 \mu \mathrm{~L}$ of Solution $\mathrm{A}, 1 \mu \mathrm{~L}$ of 500 nM RNA, $1 \mu \mathrm{~L}$ of $10 \mu \mathrm{M}$ antisence RNA, and the protein were mixed and adjusted with ultrapure water to the whole amount of $8 \mu \mathrm{~L}$. The solution was heat-treated at $60^{\circ} \mathrm{C}$. for 3 minutes and immediately cooled on ice. After the 15 -minute cooling on ice, $2 \mu \mathrm{~L}$ of Solution B was added thereto and reacted at $37^{\circ} \mathrm{C}$. for 75 minutes. After the reaction, measurement was performed in the same way as above. As a result, the translation inhibited due to the addition of antisence RNA showed a recovery by the addition of the protein (FIG. 16). This is probably because L7Ae binding to antisence RNA represses the translational inhibition.

Example 5

Next, to demonstrate that the output gene is arbitrarily changed, Example is shown, in which translational regulation was performed with a red fluorescent protein DsRed-Express (DsRed-Ex) as a target, while the translational regulation/ activation of two different genes was simultaneously promoted.
[Preparation of Control DsRed-Ex and Protein-Responsive Artificial RNA Switch]

Control DsRed-Ex and a protein-responsive artificial RNA were prepared by performing twice PCR using pDsRed-Ex vectors (Clontech).
[Preparation of Control DsRed-Ex]
pDsRed Ex was used as a template to perform 1st PCR using DsRed Ex 1st Fwd (5'-AAGGAGATATACCAATGGC-CTCCTCCGAGGAC-3') (SEQ ID NO: 68) and DsRed Ex Rev (5 '-TATTCATTACTACAGGAACAGGTGGTGGC-3') (SEQ ID NO: 69) as primers. $50 \mu \mathrm{~L}$ of reaction solution contained a mixture of 1 ng of template, $1.5 \mu \mathrm{~L}$ of $10 \mu \mathrm{M}$ each DNA primers, $5 \mu \mathrm{~L}$ of $2 \mathrm{mMdNTPs}, 5 \mu \mathrm{~L}$ of $10 \times$ KOD-PLUS buffer ver. $2,2 \mu \mathrm{~L}$ of 25 mM MgSO 4 , and $1 \mu \mathrm{~L}$ of KOD-PLUS-DNA polymerase. Reaction was performed by initially performing incubation at $94^{\circ} \mathrm{C}$. for 2 minutes and then 20 cycles each involving $94^{\circ} \mathrm{C}$. for 15 seconds, $50^{\circ} \mathrm{C}$. for 30 seconds, and $68^{\circ} \mathrm{C}$. for 1 minute.
In the description below, only a template and primers will be shown because PCR was performed under the same conditions as above. After the reaction, the reaction solution was subjected to phenol treatment and ethanol precipitation and dissolved in a nondenaturing dye (30% glycerin, 0.075% xylene cyanol, 0.075% bromophenol blue, 69.85% ultrapure water). The band of interest was separated and excised using low melting point agarose SEAPLAQUE GTG AGAROSE (FMC Corp.). The excised agarose fragment was supplemented with $200 \mu \mathrm{~L}$ of TE, then incubated at $65^{\circ} \mathrm{C}$. for 30 minutes, and then subjected to 3 phenol treatments, diethyl ether treatment, and ethanol precipitation for DNA purification.

Next, the product was used as a template to perform 2 nd PCR using Universal primer (5'-GAAATTAATACGACT-CACTATAGGGAGACCACAACGGTTTCCCTCTAGAAATAAT TTTGTTTAACTTTAAGAAG-GAGATATACCA-3') (SEQ ID NO: 21) and DsRed Ex Rev as primers. After the reaction, separation and purification were performed in the same way as above, and the purification product was dissolved in ultrapure water. The solution was used as a template for transcription reaction (SEQ ID NO: 70). Transcription reaction was performed using MEGAscript (trademark) (Ambion, Inc.). The transcription reaction using MEGAscript was performed in the same way as in MEGAshortscript (trademark) (Ambion, Inc.). RNA (SEQ ID NO: 71) obtained through the transcription reaction was purified using RNeasy MinElute (trademark) Cleanup Kit (QIAGEN GmbH). The purification using RNeasy MinElute (trademark) Cleanup Kit was performed as follows.

The transcription reaction solution was adjusted to $100 \mu 1$ by the addition of $80 \mu \mathrm{~L}$ of ultrapure water, further supplemented with $350 \mu \mathrm{~L}$ of Buffer RLT, and sufficiently mixed. $250 \mu \mathrm{~L}$ of ethanol was added thereto and completely mixed by pipetting. The sample was applied to RNeasy MinElute Spin Column loaded in a $2-\mathrm{mL}$ collection tube and centrifuged at $10,000 \mathrm{rpm}$ for 15 seconds using a high-speed refrigerated microcentrifuge MX-100 (TOMY SEIKO CO., LTD.), and the flow-through fraction was discarded. The spin column was transferred to a new $2-\mathrm{mL}$ collection tube, and $500 \mu \mathrm{~L}$ of Buffer RPE was added onto the spin column using a pipette. The sample was centrifuged at $10,000 \mathrm{rpm}$ for 15 seconds, and the flow-through fraction was discarded. After addition of $500 \mu \mathrm{~L}$ of 80% ethanol to the RNeasy MinElute Spin Column, the sample was centrifuged at $10,000 \mathrm{rpm}$ for 2 minutes, and the flow-through fraction was discarded. The RNeasy MinElute Spin Column was transferred to a new 2-mL collection tube. The sample was centrifuged at $14,000 \mathrm{rpm}$ for 5 minutes with the spin column cap opened, and the flowthrough fraction was discarded. The spin column was transferred to a new $1.5-\mathrm{mL}$ collection tube, and $20 \mu \mathrm{~L}$ of ultrapure water was added to the center of the silica gel membrane. The sample was centrifuged at $14,000 \mathrm{rpm}$ for 5 minutes for elution. This eluate was used in concentration measurement using DU640 SPECTROPHOTOMETER.

[Preparation of Box C/D-DsRed-Ex]

pDsRed Ex was used as a template to perform 1st PCR using Box C/D-DsRed-Ex 1st Fwd (5'-AAGGAGATATAC-CAATGGGGCGTGATGCGAAAGCTGAC-
CCTGCCTCCTCCGAGG ACGTC-3') (SEQ ID NO: 72) and DsRed Ex Rev as primers. Next, the resulting product was used as a template to perform 2nd PCR using Universal primer and DsRed Ex Rev as primers. After the reaction, separation and purification were performed, and the purification product was dissolved in ultrapure water. The solution was used as a template for transcription reaction (SEQ ID NO: 73). Transcription reaction was performed using MEGAscript (trademark) (Ambion, Inc.). RNA (SEQ ID NO: 74) obtained through the transcription reaction was purified in the same way as above, followed by concentration measurement.
[Preparation of Box C/D Mutant-DsRed-Ex]
pDsRed Ex was used as a template to perform 1st PCR using Box C/D mutant 1st Fwd (5'-AAGGAGATATAC-CAATGAGGGGAAACCCAGCCTCCTC-
CGAGGACGTC-3') (SEQ ID NO: 75) and DsRed Ex Rev as primers. Next, the resulting product was used as a template to perform 2nd PCR using Universal primer and DsRed Ex Rev as primers. After the reaction, separation and purification were performed, and the purification product was dissolved in
ultrapure water. The solution was used as a template for transcription reaction (SEQ ID NO: 76). Transcription reaction was performed using MEGAscript (trademark) (Ambion, Inc.). RNA (SEQ ID NO: 77) obtained through the transcription reaction was purified in the same way as above, followed by concentration measurement.
[Preparation of ON Switch]
pEGFP was used as a template to perform 1st PCR using ON switch 1st Fwd (5'-AAGGAGATATACCAATG-CAGCTTTCGCATCACGTGAGCAAGGGCGAGGAG-3') (SEQ ID NO: 59) and EGFP Rev as primers. Next, the resulting product was used as a template to perform 2nd PCR using Universal primer and EGFP Rev as primers. After the reaction, separation and purification were performed, and the purification product was dissolved in ultrapure water. The solution was used as a template for transcription reaction (SEQ ID NO: 60). Transcription reaction was performed using MEGAscript (trademark) (Ambion, Inc.). RNA (SEQ ID NO: 61) obtained through the transcription reaction was purified in the same way as above, followed by concentration measurement. This RNA had, in the open reading frame (ORF), an insert of a sequence to be hybridized with antisence shown below.
[Preparation of Antisence 25 Mer]
Antisence 25 mer was prepared using 77 primer and antisence 25 mer primer (5^{\prime}-GGGGTCAGCTTTCGCAT-CACGCCCCTATAGTGAGTCGTATTAGC-3') (SEQ ID NO: 78), and MEGAshortscript (trademark) (Ambion, Inc.). This antisence contains therein an L7Ae-binding site (Box C/D mini). After the reaction, the reaction product was purified by electrophoresis on a 15% polyacrylamide (29:1) denaturing gel in the same way as in Box C/D mini.
[Translational Regulation Assay on Box C/D-DsRed-Ex]
Translational regulation assay on Box C/D-DsRed-Ex was conducted using PURE system (Post Genome Institute Co., Ltd.). All ON-to-OFF translational regulations were assayed as follows. First, $5 \mu \mathrm{~L}$ of Solution $\mathrm{A}, 1 \mu \mathrm{~L}$ of $3.75 \mu \mathrm{M}$ RNA, and the protein were mixed and adjusted with ultrapure water to the whole amount of $8 \mu \mathrm{~L}$. The solution was left at $4^{\circ} \mathrm{C}$. for 1 hour. Then, $2 \mu \mathrm{~L}$ of Solution B was added thereto and reacted at $37^{\circ} \mathrm{C}$. for 75 minutes. After the reaction, the solution was adjusted with ultrapure water to $200 \mu \mathrm{~L}$ and measured at an excitation wavelength of 535 nm and an absorption wavelength of 595 nm using infinite F200 (TECAN Trading AG). The secondary structure of Box C/D-DsRed-Ex is shown in FIG. 17(a). Moreover, the secondary structure of DsRed-Ex used as a control is shown in FIG. 17(c). In these diagram, reference numeral 3 depicts a ribosome-binding site, and reference numeral $\mathbf{2}$ depicts an RNA-protein complex interacting motif-derived nucleotide sequence.

As is evident from the assay results, the incorporation of the L7Ae-binding Box C/D motif within the 5^{\prime} region of mRNA ORF inhibits translation in response to increase in protein concentration. The secondary structure of Box C/D mut-DsRed-Ex is shown in FIG. 17(b). This had a mutation in the L7Ae-binding site (Box C/D motif) of Box C/D-DsRedEx. FIG. 18 shows an added L7Ae concentration-dependent fluorescence intensity ratio to $0 \mu \mathrm{M}$ L7Ae-derived fluorescence intensity defined as 1 . Although slight translational inhibition was observed in the controls DsRed-Ex and Box C/D mut-DsRed-Ex using the high concentrations of L7Ae (5 to $10 \mu \mathrm{M}$), this translational inhibitory effect was shown to be significantly smaller than that in Box C/D-DsRed-Ex.
[Simultaneous Translational Regulation Assay on ON Switch and Box C/D-DsRed-Ex]

To assay the EGFP gene-targeting simultaneous translational regulation of ON switch and Box C/D-DsRed-Ex, $5 \mu \mathrm{~L}$
of Solution A, $0.5 \mu \mathrm{~L}$ of $1 \mu \mathrm{M}$ ON switch RNA (SEQ ID NO: 61), $1 \mu \mathrm{~L}$ of $3.75 \mu \mathrm{M}$ Box C/D-DsRed-Ex RNA (SEQ ID NO: 74), $0.5 \mu \mathrm{~L}$ of $20 \mu \mathrm{M}$ antisence 25 mer (SEQ ID NO: 63), and the L7Ae protein (SEQ ID NO: 66) were mixed and adjusted with ultrapure water to the whole amount of $8 \mu \mathrm{~L}$. The solution was heat-treated at $70^{\circ} \mathrm{C}$. for 3 minutes and immediately cooled on ice. After the 15 -minute cooling on ice, $2 \mu \mathrm{~L}$ of Solution B was added thereto and reacted at $37^{\circ} \mathrm{C}$. for 75 minutes. After the reaction, the solution was adjusted with ultrapure water to $200 \mu \mathrm{~L}$ and measured at an excitation wavelength of 485 nm and an absorption wavelength of 535 nm using infinite F200 (TECAN Trading AG). Further, the solution was measured at an excitation wavelength of 535 nm and an absorption wavelength of 595 nm using infinite F200 (TECAN Trading AG). The results are shown in FIG. 19. As a result, the translation of ON switch RNA inhibited due to the addition of antisence RNA (this inhibition was confirmed based on EGFP expression) showed a recovery by the addition of the L7Ae protein, whereas the translation of Box C/D-DsRed-Ex was repressed by the addition of the L7Ae protein. This indicates that the addition of the protein of one kind could simultaneously regulate the translations of two different mRNAs in opposite directions (translational repression/activation).
[Preparation of pcDNA-L7Ae by Restriction Enzyme Treatment]
pL7Ae was used as a template to perform PCR using Fwd (5'-CACCAAGCTTATGTACGTGAGATTTGAGGTTCC3^{\prime}) (SEQ ID NO: 79) and Rev (5^{\prime}-CCGCTCGAGCTTCT-GAAGGCCTTTAATTCTTC-3') (SEQ ID NO: 80) as primers. $50 \mu \mathrm{~L}$ of reaction solution contained a mixture of 5 ng of template, $1.5 \mu \mathrm{~L}$ of $10 \mu \mathrm{M}$ each DNA primers, $4 \mu \mathrm{~L}$ of 2.5 mM dNTPs, $5 \mu \mathrm{~L}$ of $10 \times$ KOD-PLUS-buffer ver. 2, $1.6 \mu \mathrm{~L}$ of 25 $\mathrm{mM} \mathrm{MgSO}_{4}$, and $1 \mu \mathrm{~L}$ of KOD-PLUS-DNA polymerase. Reaction was performed by initially performing incubation at $94^{\circ} \mathrm{C}$. for 2 minutes and then 25 cycles each involving $94^{\circ} \mathrm{C}$. for 15 seconds, $52^{\circ} \mathrm{C}$. for 30 seconds, and $68^{\circ} \mathrm{C}$. for 1 minute. The reaction product was subjected to phenol treatment, diethyl ether treatment, and ethanol precipitation for DNA purification. This purification product was dissolved in $15 \mu \mathrm{~L}$ of ultrapure water. The solution was used as a template for restriction enzyme treatment. A total of $20 \mu \mathrm{~L}$ of system involving $5 \mu \mathrm{~L}$ of template, $2 \mu \mathrm{~L}$ of buffer, $1 \mu \mathrm{~L}$ of HindIII, 1 $\mu \mathrm{L}$ of XhoI, $2 \mu \mathrm{~L}$ of $10 \times \mathrm{BSA}$, and $9 \mu \mathrm{~L}$ of ultrapure water was incubated at $37^{\circ} \mathrm{C}$. for 2 h . The band of interest was separated and excised using low melting point agarose SEAPLAQUE GTG AGAROSE (FMC Corp.). The excised agarose fragment was supplemented with $200 \mu \mathrm{~L}$ of TE, then incubated at $65^{\circ} \mathrm{C}$. for 30 minutes, and then subjected to 2 phenol treatments, diethyl ether treatment, and ethanol precipitation for DNA purification. The same restriction enzyme treatment as above was also performed on pcDNA vectors (Invitrogen Corp.). A total of $20 \mu \mathrm{~L}$ of system involving 2 ng of template, $2 \mu \mathrm{~L}$ of buffer, $1 \mu \mathrm{~L}$ of HindIII, $1 \mu \mathrm{~L}$ of XhoI, $2 \mu \mathrm{~L}$ of $10 \times \mathrm{BSA}$, and $13 \mu \mathrm{~L}$ of ultrapure water was incubated at $37^{\circ} \mathrm{C}$. for 2 h . The band of interest was separated and excised using low melting point agarose SEAPLAQUE GTG AGAROSE (FMC Corp.). The excised agarose fragment was supplemented with $200 \mu \mathrm{~L}$ of TE, then incubated at $65^{\circ} \mathrm{C}$. for 30 minutes, and then subjected to phenol treatment, diethyl ether treatment, and ethanol precipitation for DNA purification. This purification product was dissolved in $10 \mu \mathrm{~L}$ of ultrapure water and used in BAP treatment. A total of $50 \mu \mathrm{~L}$ of system involving $10 \mu \mathrm{~L}$ of template, $33 \mu \mathrm{~L}$ of ultrapure water, $2 \mu \mathrm{~L}$ of BAP, and $5 \mu \mathrm{~L}$ of buffer was incubated at $37^{\circ} \mathrm{C}$. for 2 h . The band of interest was separated and excised using low melting point agarose SEAPLAQUE GTG AGAROSE (FMC Corp.). The
excised agarose fragment was supplemented with $200 \mu \mathrm{~L}$ of TE, then incubated at $65^{\circ} \mathrm{C}$. for 30 minutes, and then subjected to 2 phenol treatments, diethyl ether treatment, and ethanol precipitation for DNA purification.

A total of $4 \mu \mathrm{~L}$ involving $1 \mu \mathrm{~L}$ of insert, $1 \mu \mathrm{~L}$ of vector, and $2 \mu \mathrm{~L}$ of Ligation High was incubated at $16^{\circ} \mathrm{C}$. for 2 h , and JM109 was transformed with the ligation product. pcDNAL7Ae was purified by miniprep.
[Preparation of Box C/D-GFP by Site-Directed Mutagenesis]
Full-length pEGFP-N1 (Clontech) plasmids were amplified as a template using phosphorylated primers and a highfidelity PCR enzyme KOD-PLUS- (TOYOBO CO., LTD.). The PCR product was self-ligated using Ligation High (TOYOBO CO., LTD.) to prepare Box C/D-GFP. Fwd Box C/D-EGFP primer (5^{\prime}-GGGCGTGATGCGAAAGCTGAC-CCTGTGAGCAAGGGCGAGGAGCTG-3') (SEQ ID NO: 81) and Rev Box C/D-EGFP primer (5'-CATGGTGGCGAC-CGGTGGATC-3') (SEQ ID NO: 82) were used. $50 \mu \mathrm{~L}$ of reaction solution contained a mixture of 5 ng of template, 1.5 $\mu \mathrm{L}$ of $10 \mu \mathrm{M}$ each DNA primers, $4 \mu \mathrm{~L}$ of $2.5 \mathrm{mM} \mathrm{dNTPs}, 5 \mu \mathrm{~L}$ of $10 \times$ KOD-PLUS- buffer, and $1 \mu \mathrm{~L}$ of KOD-PLUS-DNA polymerase. Reaction was performed by initially performing incubation at $94^{\circ} \mathrm{C}$. for 2 minutes and then 25 cycles each involving $98^{\circ} \mathrm{C}$. for 10 seconds and $68^{\circ} \mathrm{C}$. for 4 minutes. Next, the template plasmid was digested by the action of a restriction enzyme DpnI specifically decomposing methylated DNA. Further, the PCR product was self-circularized by self-ligation.
[Preparation of Box C/D Mut GFP by Site-Directed Mutagenesis]
Fwd Box C/D mut EGFP primer (5'-AGGGGAAAC-CCAGTGAGCAAGGGCGAGGAGCTG-3') (SEQ ID NO: 83) was prepared and used in gene amplification with PEGFP N1 (Clontech) plasmids as a template. The other procedures were performed in the same way as above to prepare Box C/D mut GFP.

Example 6

Western blotting was conducted for confirming L7Ae expression in cultured human cancer cells.

On the day before transfection, cervical cancer-derived HeLa cells were seeded at a concentration of 0.5×10^{6} cells/ well to a 6 -well plate and cultured in a $37^{\circ} \mathrm{C} . \mathrm{CO}_{2}$ incubator. Next day, the cells were transfected using Lipofectamine 2000 (trademark) (Invitrogen Corp.). The amount of pcDNA-A (FIG. 20) (SEQ ID NO: 84) or L7Ae expression vector pcDNA-L7Ae (SEQ ID NO: 85) (FIG. 21) added was set to $1 \mu \mathrm{~g}, 2 \mu \mathrm{~g}$, and $4 \mu \mathrm{~g}$. According to this amount, the amount of Lipofectamine 2000 was set to $2.5 \mu 1,5 \mu 1$, and 10 $\mu 1$. These DNA-lipid complexes were incubated at room temperature for 20 minutes and added dropwise to the cells. In this context, the L7Ae expression vector pcDNA-L7Ae is a plasmid vector in which the L7Ae gene is inserted downstream of the CMV promoter of a pcDNA3.1 vector (Invitrogen Corp.). After 4 hours, medium replacement was performed.

29 hours after the transfection, the wells were washed twice with PBS and then supplemented with $300 \mu 1$ of RIPA buffer ($1 \times$ PBS, 1% NP40, 0.5% Sodium deoxycholate, 0.1% SDS), and the cells were dissociated from the wells using a cell scraper. The lysates were disrupted using a syringe equipped with 21 G needle. After addition of $10 \mu 1$ of 10 $\mathrm{mg} / \mathrm{ml}$ PMSF, the mixture was left standing on ice for 30 minutes, and supernatants were collected by centrifugation ($4^{\circ} \mathrm{C} ., 15000 \mathrm{~g}, 20 \mathrm{~min}$) Likewise, 53 hours after the transfection, proteins were collected. The protein concentration
was determined by the Lowry method using DC-Protein Assay (BIO-RAD LABORATORIES INC.).

L7Ae was detected by western blotting. The proteins extracted from the cells were deployed by SDS-PAGE and subjected to western blotting. A primary antibody Anti-cMyc (Ab-1) (Calbiochem) (1/500) and a secondary antibody Goat Anti-Mouse IgG (H+L)-HRP conjugate (BIO-RAD LABORATORIES INC.) (1/2000) were used. A color was developed using ECL Plus (trademark) (GE Healthcare) and detected using LAS3000 (FUJIFILM). From these results, L7Ae expression caused by pcDNA-L7Ae introduction could be confirmed in the HeLa cells. Protein extraction from cells and L7Ae detection shown below were performed in the same way as above. FIG. 22 is a diagram showing intracellular L7Ae expression. In the diagram, the lane 1 was supplemented with $4 \mu \mathrm{~g}$ of $\mathrm{pcDNA}-\mathrm{A}: 10 \mu \mathrm{l}$ of Lipofectamine; the lane 2 was supplemented with $2 \mu \mathrm{~g}$ of pcDNA-A:5 $\mu \mathrm{l}$ of Lipofectamine; the lane 3 was supplemented with $1 \mu \mathrm{~g}$ of pcDNA-A: $2.5 \mu 1$ of Lipofectamine; the lane 4 was supplemented with $4 \mu \mathrm{~g}$ of pcDNA-L7Ae: $10 \mu 1$ of Lipofectamine; the lane 5 was supplemented with $2 \mu \mathrm{~g}$ of pcDNA-L7Ae: $5 \mu \mathrm{l}$ of Lipofectamine; and the lane 6 was supplemented with $1 \mu \mathrm{~g}$ of pcDNA-L7Ae: 2.5μ l of Lipofectamine. This diagram demonstrated that L7Ae is expressed within human cancer cells 29 hours after the transfection. Even 53 hours after the transfection, its expression was confirmed, though the expression level was decreased.

To evaluate the influence of L7Ae expression on cytotoxicity, WST1 assay was conducted. On the day before transfection, HeLa cells were seeded at a concentration of 1.0×10^{4} cells/well to a 96 -well plate and cultured in a $37^{\circ} \mathrm{C} . \mathrm{CO}_{2}$ incubator. Next day, the cells were transfected using Lipofectamine 2000 (trademark) (Invitrogen Corp.). The amount of pcDNA-A or pcDNA-L7Ae added was set to $0.05,0.10$, $0.15,0.20,0.25,0.30$, and $0.40 \mu \mathrm{~g}$, and $0.25 \mu \mathrm{l}$ of Lipofectamine 2000 was added to each sample. These DNA-lipid complexes were incubated at room temperature for 20 minutes and added dropwise to the cells. After 4 hours, medium replacement was performed. 24 hours after the transfection, the number of live cells was measured by WST1 assay using Cell Proliferation Reagent WST-1 (trademark) (Roche Diagnostics Corp.). It was shown that L7Ae expression has no cytotoxicity within this time. FIG. 23 is a diagram showing that L7Ae expression has no cytotoxicity 24 hours after the transfection.

The L7Ae-dependent repression of Box C/D-GFP protein expression was measured by western blotting.

On the day before transfection, HeLa cells were seeded at a concentration of 0.5×10^{6} cells/well to a 6 -well plate and cultured in a $37^{\circ} \mathrm{C} . \mathrm{CO}_{2}$ incubator. Next day, the cells were transfected using Lipofectamine 2000 (trademark) (Invitrogen Corp.). $0,0.5,1.0,1.5$, or $2.0 \mu \mathrm{~g}$ of pcDNA-L7Ae was added to $1.0 \mu \mathrm{~g}$ of Box C/D-GFP (FIG. 24) (SEQ ID NO: 86) or Box C/D mut GFP (FIG. 25) (SEQ ID NO: 87), and $5 \mu \mathrm{l}$ of Lipofectamine 2000 was added to each sample. These DNAlipid complexes were incubated at room temperature for 20 minutes and added dropwise to the cells. After 4 hours, medium replacement was performed. 24 hours after the transfection, proteins were extracted in the same way as above, and L7Ae (FIG. 26) and EGFP (FIG. 27) were detected by western blotting. A primary antibody GFP (B-2) SC9996 (Santa Cruz Biotechnology, Inc.) ($1 / 200$) and a secondary antibody Goat Anti-Mouse IgG (H+L)-HRP conjugate (BIO-RAD LABORATORIES INC.) $(1 / 2000)$ were used for EGFP. The L7Ae expression-dependent repression of EGFP expression specific for Box C/D-GFP could be confirmed. FIG. 26 is a diagram showing L7Ae expression. From this diagram, the
coexpression of L7Ae with Box C/D-GFP or Box C/D mut GFP could be confirmed by western blotting to exhibit no difference in L7Ae expression level therebetween. FIG. 27 is a diagram showing L7Ae-dependent translational repression of EGFP. As is evident from this diagram, the expression of pcDNA-L7Ae significantly represses Box C/D-GFP expression. On the other hand, these results demonstrated that expression repressive effect on Box C/D mut GFP is smaller than that on Box C/D-GFP.

Moreover, the bands obtained by western blotting were analyzed using LAS3000 (FUJIFILM) and Multi Gauge Ver 3.0 (FUJIFILM). The value of $1.0 \mu \mathrm{~g}$ of Box C/D-GFP or Box C/D mut GFP supplemented with $0.5 \mu \mathrm{~g}$ of pcDNA-L7Ae (+) was calculated with that free from pcDNA-L7Ae (-) defined as 1 . The results of this quantification by western blotting are shown in FIG. 28.

The L7Ae-dependent repression of protein expression was measured by FACS.

On the day before transfection, HeLa cells were seeded at a concentration of 0.5×10^{5} cells/well to a 24 -well plate and cultured in a $37^{\circ} \mathrm{C}$. CO_{2} incubator. Next day, the cells were transfected using Lipofectamine 2000 (trademark) (Invitrogen Corp.). $0,0.05,0.10,0.15,0.20,0.40,0.80$, or $1.60 \mu \mathrm{~g}$ of pcDNA-A or pcDNA-L7Ae was added to $0.2 \mu \mathrm{~g}$ of Box C/D-GFP or Box C/D mut GFP, and $1 \mu 1$ of Lipofectamine 2000 was added to each sample. These DNA-lipid complexes were incubated at room temperature for 20 minutes and added dropwise to the cells. After 4 hours, medium replacement was performed.
24 hours after the transfection, the medium was discarded, and the cells were dissociated from the wells using $200 \mu 1$ of Trypsin EDTA and supplemented with $200 \mu 1$ of DMEM/F12. The mixture was transferred to a FACS tube and analyzed using FACS Aria (BD). In this context, FACS is a method which involves irradiating free cells passing through a thin tube with laser beam and analyzing cell fractionation based on the intensity of fluorescence generated from the cells. Here, live cells were gated, and 10000 cells were measured by FITC. The results demonstrated that the repression of EGFP expression occurs in a manner specific for the cells transfected with pcDNA-L7Ae and Box C/D-GFP. More detailed analysis was achieved by comparison with the western blotting results. FIG. 29 is a graph showing the measurement results. In the diagram, Mock represents those transfected with only Lipofectamine 2000 (trademark) (Invitrogen Corp.) without the addition of DNA; and $0,0.10,0.20$, or 0.80 μ g of pcDNA-A (shown in the left columns) or pcDNA-L7Ae (shown in the right columns) was added to Box C/D-GFP (solid line) and Box C/D mut GFP (dotted line) fixed to 0.2 $\mu \mathrm{g}$. FIG. 30 shows results of quantifying L7Ae expressiondependent repression specific for Box C/D-GFP translation by analysis based on the FACS data of FIG. 29.

Next, change in mRNA level during the L7Ae-dependent repression of protein expression was measured by real-time PCR.

On the day before transfection, HeLa cells were seeded at a concentration of 0.5×10^{6} cells/well to a 6 -well plate and cultured in a $37^{\circ} \mathrm{C} . \mathrm{CO}_{2}$ incubator. $0,0.5,1.0$, or $2.0 \mu \mathrm{~g}$ of pcDNA-L7Ae was added to $1.0 \mu \mathrm{~g}$ of Box C/D-GFP or Box C/D mut GFP, and $5 \mu 1$ of Lipofectamine 2000 was added to each sample. Moreover, $0,0.5,1.0$, or $2.0 \mu \mathrm{~g}$ of pcDNA-L7Ae or pcDNA-A was added to $1.0 \mu \mathrm{~g}$ of Box C/D-GFP, and $5 \mu 1$ of Lipofectamine 2000 was added to each sample. These DNA-lipid complexes were incubated at room temperature for 20 minutes and added dropwise to the cells. After 4 hours, medium replacement was performed. 24 hours after the trans-
fection, RNA extraction and DNA removal were performed using RNAqueous 4PCR Kit (trademark) (Ambion, Inc.).
$1.5 \mu \mathrm{~g}$ (or $0.5 \mu \mathrm{~g}$) of the extracted RNA was used as a template to synthesize cDNA using High-Capacity cDNA Reverse Transcription Kits (trademark) (Applied Biosystems Inc.), random primers, and reverse transcriptase. Real-time PCR was performed by the intercalation method using 1/20000 diluted cDNA as a template and LightCycler 480 SYBR Green I Master (trademark) (Roche Diagnostics Corp.). PCR reaction and real-time fluorescence detection were performed using LightCycler 480 (trademark) (Roche Diagnostics Corp.). Reaction conditions involved an initial denaturation step set to $95^{\circ} \mathrm{C}$. for 5 minutes and an amplification step set to $95^{\circ} \mathrm{C}$. for 10 seconds in denaturation, $60^{\circ} \mathrm{C}$. for 10 seconds in annealing, and $72^{\circ} \mathrm{C}$. for 3 seconds in extension, and this cycle was performed 45 times. Melting curve analysis was conducted at $95^{\circ} \mathrm{C}$. for 5 seconds in denaturation, $65^{\circ} \mathrm{C}$. for 15 seconds in annealing, and target temperature set to $98^{\circ} \mathrm{C}$., and finally, the reaction solution was cooled at $50^{\circ} \mathrm{C}$. for 10 seconds to terminate the measurement. The Ct value was determined by the Second Derivative Maximum method. The target EGFP gene was amplified using 481P Fwd (5^{\prime}-CAAGGAGGACGGCAACA-3') (SEQ ID NO: 88) and Rev (5'-CCTTGATGCCGTTCTTCTGC-3') (SEQ ID NO: 89). A reference gene GAPDH was amplified using GAPDH Fwd (5'-AGCCACATCGCTCAGACAC-3') (SEQ ID NO: 90) and Rev (5'-GCCCAATACGAC-CAAATCC-3') (SEQ ID NO: 91). The amplification product was confirmed to be a single target product by melting curve analysis and electrophoresis. The results were evaluated by relative quantification. The amount of EGFP was normalized with GAPDH, and the normalized value was used in comparison among samples with a sample supplemented only with Box C/D-GFP (or Box C/D mut GFP) defined as 1. It was shown that the difference in expression level among the samples is within 2 times. From these results, no change in the mRNA level of L7Ae-specific Box C/D-GFP was confirmed, demonstrating that L7Ae does not regulate the transcription level of Box C/D-GFP mRNA.

FIG. 31 is a graph showing Box C/D-GFP mRNA level comparison among samples (samples derived from Box C/DGFP and pcDNA-L7Ae and samples derived from Box C/DGFP and $\mathrm{pcDNA}-\mathrm{A}$) with a sample derived from only Box C/D-GFP as $1.0,0.5,1.0$, or $2.0 \mu \mathrm{~g}$ of pcDNA-L7Ae or pcDNA-A was added to Box C/D-GFP fixed to $1.0 \mu \mathrm{~g}$. The left bars represent the results from pcDNA-L7Ae added to Box C/D-GFP, and the right bars represent the results from pcDNA-A added to Box C/D-GFP. The ordinate represents the expression levels of samples with the Box C/D-GFP mRNA level of a sample supplemented with $1.0 \mu \mathrm{~g}$ of Box C/D-GFP as 1 . The abscissa represents the amounts of pcDNA-L7Ae and pcDNA-A added. FIG. 32 is a graph showing mRNA level comparison among samples (samples derived from Box C/D-GFP and pcDNA-L7Ae and samples derived from Box C/D mut GFP and pcDNA-L7Ae) with a sample derived from only Box C/D as 1. (FIG. 8)
$0,0.5,1.0$, or $2.0 \mu \mathrm{~g}$ of pcDNA-L7Ae was added to Box C/D-GFP or Box C/D mut GFP fixed to $1.0 \mu \mathrm{~g}$. The left bars represent the results from pcDNA-L7Ae added to Box C/DGFP, and the right bars represent the results from pcDNAL7Ae added to Box C/D mut GFP. The ordinate represents the expression levels of samples with the Box C/D-GFP or Box C/D mut GFP mRNA level of a sample supplemented with $1.0 \mu \mathrm{~g}$ of Box C/D-GFP or Box C/D mut GFP as 1. The abscissa represents the amount of pcDNA-L7Ae added.

The L7Ae expression-dependent repression of Box C/DGFP expression was observed using fluorescence microscopic photographs.

On the day before transfection, HeLa cells were seeded at a concentration of 0.5×10^{5} cells/well to a 24 -well plate and cultured in a $37^{\circ} \mathrm{C} . \mathrm{CO}_{2}$ incubator. Next day, the cells were transfected using Lipofectamine 2000 (trademark) (Invitrogen Corp.). $0,0.05,0.10,0.15$, or $0.20 \mu \mathrm{~g}$ of $\mathrm{pcDNA}-\mathrm{A}$ or pcDNA-L7Ae was added to $0.2 \mu \mathrm{~g}$ of Box C/D-GFP or Box C/D mut GFP, and $1 \mu 1$ of Lipofectamine 2000 was added to each sample. These DNA-lipid complexes were incubated at room temperature for 20 minutes and added dropwise to the cells. After 4 hours, medium replacement was performed. 24 hours after the transfection, photographs were taken under a fluorescence microscope. FIG. 33 is a fluorescence microscopic photograph showing the expression repressive effect of L7Ae on Box C/D-GFP. This drawing revealed that the fluorescence intensity of Box C/D-GFP is significantly reduced in the boxed region. This demonstrated that L7Ae expression specifically represses Box C/D-GFP translation.
Next, an experiment will be described which demonstrated that L7Ae can be used as a tag sequence for a target protein. pcDNA-L7Ae could be replaced by pcDNA3.1-L7Ae DsRed.
On the day before transfection, HeLa cells were seeded at a concentration of 0.5×10^{5} cells/well to a 24 -well plate and cultured in a $37^{\circ} \mathrm{C} . \mathrm{CO}_{2}$ incubator. Next day, the cells were transfected using Lipofectamine 2000 (trademark) (Invitrogen Corp.). $0,0.2,0.4,0.8$, or $1.6 \mu \mathrm{~g}$ of pcDNA3.1-DsRed or pcDNA3.1-L7Ae DsRed was added to $0.2 \mu \mathrm{~g}$ of Box C/DGFP or Box C/D mut GFP, and $1 \mu 1$ of Lipofectamine 2000 was added to each sample. These DNA-lipid complexes were incubated at room temperature for 20 minutes and added dropwise to the cells. After 4 hours, medium replacement was performed. 24 hours after the transfection, photographs were taken under a fluorescence microscope. FIG. 34 is a fluorescence microscopic photograph. This drawing revealed that the fluorescence intensity of Box C/D-GFP is significantly reduced along with the expression of pcDNA3.1-L7AeDsRed in the boxed region. As the red fluorescent proteins are expressed by the cells, the expression of the green fluorescent proteins is repressed. This demonstrated that a system that represses the translation of a target gene, for example, green fluorescent protein translation, in response to the expression of an arbitrary gene, for example, red fluorescent protein expression, can be constructed intracellularly by adding L7Ae as a tag sequence to the protein.

Example 7

To examine the binding property of L7Ae to the RNA complexes used in Examples above, reaction rate constants were calculated using inter-biomolecular interaction analyzer "BIACORE3000".
[Preparation of L7Ae-Binding RNA Box C/D Mini Bia and Box C/D Mini Mutant Bia]

L7Ae-binding RNAs used in BIACORE were prepared by preparing a DNA template containing, at the 3' end of Box C/D mini or Box C/D mini mutant, a complementary strand of a DNA sequence (5'-CCGGGGATCCTCTAGAGTC-3') (SEQ ID NO: 92) immobilized on the BIACORE sensor chip, and a T7 promoter, followed by transcription reaction using T7 RNA polymerase. A reaction solution contained a mixture of $0.1 \mu \mathrm{M}$ Box C/D mini bia template (5^{\prime}-CCGGGGATC-CTCTAGAGTCGGGTCAGCTTTCGCAT-
CACGCCCTATAGTGAGTCGT ATTAGC-3') (SEQ ID NO: 93), $5 \mu \mathrm{~L}$ each of $10 \mu \mathrm{MT} 7$ promoter (5^{\prime}-GCTAATACGACT-

CACTATAGG-3') (SEQ ID NO: 94) and $10 \mu \mathrm{M}$ Biacore Rev (5^{\prime}-CCGGGGATCCTCTAGAGT-3') (SEQ ID NO: 95), $8 \mu 1$ of 2.5 mM dNTP (TAKARA BIO INC.), $10 \mu \mathrm{~L}$ of Ex Taq $10 \times$ buffer (TAKARA BIO INC.), and $0.5 \mu \mathrm{~L}$ of Ex Taq DNA polymerase (TAKARA BIO INC.). 25 cycles each involving $94^{\circ} \mathrm{C}$. for 30 seconds, $60^{\circ} \mathrm{C}$. for 30 seconds, and $72^{\circ} \mathrm{C}$. for 30 seconds were performed for extension using DNA Engine PCT-200 (BIO-RAD LABORATORIES INC.). After the reaction, the extension product was subjected to phenol treatment, diethyl ether treatment, and ethanol precipitation and dissolved in $10 \mu \mathrm{~L}$ of ultrapure water. The solution was used as a template for transcription. For Box C/D mini mutant bia, the same procedures as above were performed using $0.1 \mu \mathrm{M}$ Box C/D minimut template (5^{\prime}-CCGGGGATCCTCTA-GAGTCGGGGCAGCTTTCGCATGACGC-
CCTATAGTGAGTCGT ATTAGC-3') (SEQ ID NO: 96) as a template in a reaction solution.

For transcription reaction, $10 \mu \mathrm{~L}$ of template $\mathrm{DNA}, 70 \mu \mathrm{~L}$ of $10 \times$ T7 RNA polymerase buffer (400 mM Tris- $\mathrm{HCl}(\mathrm{pH}$ 7.5), 50 mM DTT, 10 mM Spermidine, 150 mM MgCl$)_{2}$, 70 $\mu \mathrm{L}$ of $10 \times \mathrm{rNTPs}(12.5 \mathrm{mM}$ rATP, 12.5 mM rCTP, 12.5 mM rUTP, 12.5 mM rGTP), and $14 \mu \mathrm{~L}$ of T7 RNA polymerase were mixed and reacted at $37^{\circ} \mathrm{C}$. for 3 hours. The reaction solution was supplemented with $5 \mu \mathrm{~L}$ of TURBO DNase (Ambion, Inc.) and incubated at $37^{\circ} \mathrm{C}$. for 1 hour to decompose the template DNA. Then, the transcript was subjected to phenol treatment and ethanol precipitation for purification. After the precipitation, the resulting product was dissolved in $20 \mu \mathrm{~L}$ of denaturing dye (80% formamide, $0.17 \% \mathrm{XC}, 0.27 \%$ BPB) and electrophoresed on a 12% polyacrylamide (29:1) denaturing gel. A gel having the size of interest was excised, and elution was performed overnight at $37^{\circ} \mathrm{C}$. by the addition of $500 \mu \mathrm{~L}$ of elution buffer (0.3 M sodium acetate (pH 7.0), 0.1% SDS). The eluted RNA was subjected again to phenol extraction, diethyl ether extraction, and ethanol precipitation for purification.
[Immobilization of Ligand (Biotin DNA) onto BIACORE Sensor Chip]

Onto a streptavidin-immobilized sensor chip (SA chip) (GE Healthcare), $80 \mu \mathrm{~L}$ of $1 \mu \mathrm{M}$ N-terminally biotinylated DNAs (5^{\prime}-CCGGGGATCCTCTAGAGTC-3') (SEQ ID NO: 97) was added at a flow rate of $10 \mu \mathrm{~L} / \mathrm{min}$ and immobilized using Amine Coupling Kit (GE Healthcare).
[Immobilization of Ligand RNA onto SA Chip]
RNAs were adjusted to $1 \mu \mathrm{M}$ with HBS-EP buffer (10 mM HEPES (pH 7.4), $150 \mathrm{mM} \mathrm{NaCl}, 3 \mathrm{mM}$ EDTA, 0.005% Surfactant P20) (GE Healthcare), then refolded through reaction at $80^{\circ} \mathrm{C}$. for 10 min and at room temperature for 10 min , and then diluted $1 / 100$ with $1 \mathrm{M} \mathrm{KCl} .300 \mu \mathrm{~L}$ of the dilution was added to the chip at a flow rate of $10 \mu \mathrm{~L} / \mathrm{min}$ to immobilize the RNAs corresponding to 52 RU (resonance unit) through the hybridization to the DNAs immobilized on the SA chip.
[L7Ae Association and Dissociation]
L7Ae was adjusted to $0 \mathrm{nM}, 2.5 \mathrm{nM}, 5 \mathrm{nM}, 7.5 \mathrm{nM}, 10 \mathrm{nM}$, $15 \mathrm{nM}, 20 \mathrm{nM}$, and 25 nM with a running buffer $(10 \mathrm{mM}$ Tris- $\mathrm{HCl}(\mathrm{pH} 8.0$), $150 \mathrm{mM} \mathrm{NaCl}, 5 \%$ glycerol, $125 \mu \mathrm{~g} / \mathrm{ml}$ tRNA, $62.5 \mu \mathrm{~g} / \mathrm{ml}$ BSA, 1 mM DTT, 0.05% Tween 20). Each $50 \mu \mathrm{~L}$ aliquot was added at a flow rate of $50 \mu \mathrm{~L} / \mathrm{min}$ for association with the RNA. Dissociation was performed for 5 minutes at the same flow rate as above. After association and dissociation measurements, the addition of $10 \mu \mathrm{~L}$ of 2 M KCl was repeated several times at a flow rate of $20 \mu \mathrm{~L} / \mathrm{min}$ to forcedly dissociate, from the RNA, L7Ae undissociated for the 5 minutes. Three measurements were performed for each concentration.
[Calculation of Reaction Rate Constants]
The sensorgram of the flow cell bound with the Box C/D mini mutant bia RNA was subtracted from that of the flow cell bound with the Box C/D mini bia RNA. Based thereon, reaction rate constants (association rate constant (ka), dissociation rate constant (kd), association constant (KD), and dissociation constant (KA)) were calculated by Global fitting using the 1:1 (Langmuir) binding model of BIAevaluation analysis software. The results are shown in Table 4 and FIG. 35. This diagram demonstrated that the RNP motif that can be used in intracellular translational regulation has strong binding affinity ($\mathrm{KD}=$ up to 1 nM) and has a slow dissociation rate ($\mathrm{Kd}=\mathrm{up}$ to 1×10^{-4}), i.e., has the feature that the RNA and the protein hardly dissociates from each other once forming an RNP complex.

TABLE 4

$\mathrm{ka}(1 / \mathrm{Ms})$	$\mathrm{kd}(1 / \mathrm{s})$	$\mathrm{KA}(1 / \mathrm{M})$	$\mathrm{KD}(\mathrm{M})$
$1.46 \mathrm{E}+05$	$1.02 \mathrm{E}-04$	$1.43 \mathrm{E}+09$	$7.01 \mathrm{E}-10$

In Examples above, two expressions GFP and EGFP are used in gene and RNA nomenclatures and both mean a gene and an RNA, respectively, derived from the EGFP (Enhanced Green Fluorescent Protein) gene.

INDUSTRIAL APPLICABILITY

In in vitro applications, the present invention can function as biosensors or artificial genetic circuits that respond to downstream signal proteins (e.g., fluorescent or luminescent proteins) in response to the expression of an arbitrary protein. Alternatively, by intracellular introduction, the present invention can function as systems that detect cells expressing a particular gene without destroying the cells, or as devices for artificial genetic circuits, which convert the expression of an arbitrary protein in an ON-to-OFF or OFF-to-ON manner in response to the expression of an arbitrary protein. Thus, the present invention can be developed into techniques of regulating the fate of cells.

```
<160> NUMBER OF SEQ ID NOS: 113
<210> SEQ ID NO 1
<211> LENGTH: 75
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 1
```

```
ctaatacgac tcactatagg ccagagtggg cgtgatgcat gtctaggaaa ctagacatgc 60
tgacccactc tggcc 75
<210> SEQ ID NO 2
<21l> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 2
ctaatacgac tcactatagg ccag 24
```

```
<210> SEQ ID NO 3
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 3
```

ggccagagtg ggtcagcat 19
<210> SEQ ID NO 4
<211> LENGTH: 75
<212> TYPE: DNA.
$<213>$ ORGANISM: Artificial
<220> FEATURE:
<223 > OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 4
ctaatacgac tcactatagg ccagagtggg cgtgatgcat gtctaggaaa ctagacatgc $\quad 60$
tgacccactc tggcc 75

```
<210> SEQ ID NO 5
<211> LENGTH: 57
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 5
```

ggccagagug ggcgugaugc augucuagga aacuagacau gcugacccac ucuggce

```
<210> SEQ ID NO 6
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 6
```

gctaatacga ctcactata

```
<210> SEQ ID NO 7
<211> LENGTH: 42
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 7
```

```
<210> SEQ ID NO 8
<211> LENGTH: 42
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 8
```

ggggcagctt tcgcatgacg cectatagtg agtcgtatta gc
<210> SEQ ID NO 9
$<211>$ LENGTH: 23
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223 OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 9
gggcgugaug cgaaagcuga ccc

```
<210> SEQ ID NO 10
<211> LENGTH: 23
<212> TYPE: RNA.
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 10
```

gggcgucaug cgaaagcugc cec

```
<210> SEQ ID NO 11
<211> LENGTH: 99
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 11
```

gattgcgaac caatttagca tttgttggct aaatggtttc gcaatgaact gttaataaac 60
aattttct ttgtatgtga tctttcgtgt gggtcacca 99

```
<210> SEQ ID NO 12
<211> LENGTH: 47
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: }1
```

ctaatacgac tcactatagg attgcgaacc aatttagcat ttgttgg

```
<210> SEQ ID NO 13
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 13
```

tttgcagtgg tgacccacac gaaagatcac 30

```
<210> SEQ ID NO 14
<211> LENGTH: 127
<212> TYPE: DNA
<213> ORGANISM: Artificial
```

```
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 14
ctaatacgac tcactatagg attgcgaacc aatttagcat ttgttggctg caaatggttt 60
cgcaatgaac tgttaataaa caaatttttc tttgtatgtg atctttcgtg tgggtcacca 120
ctgcaaa 127
```

<210> SEQ ID NO 15
<211> LENGTH: 109
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 15
ggauugcgaa ccaauuuagc auuuguugge ugcaaauggu uucgcaauga acugunaaua 60
aacaaauuuu ucuunguaug ugaucuuvcg ugugggucac cacugcaaa 109

```
<210> SEQ ID NO 16
<211> LENGTH: 46
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 16
```

ctaatacgac tcactatagg cgtatgtgat ctttcgtgtg ggtcac

```
<210> SEQ ID NO 17
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 17
```

ggcgcagtgg tgacccacac gaaagatcac
$<210>$ SEQ ID NO 18
$<211>$ LENGTH: 55
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Construct
$<400>$ SEQUENCE: 18
ctaatacgac tcactatagg egtatgtgat ctttcgtgtg ggtcaccact gcgcc

```
<210> SEQ ID NO 19
<211> LENGTH: 37
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 19
```

```
<210> SEQ ID NO 20
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
```

$<223>$ OTHER INFORMATION: Synthetic Construct
$<400>$ SEQUENCE $: 20$
aaggagatat accaatggtg agcaagggcg ag
$<210\rangle$ SEQ ID NO 21
<211> LENGTH: 85
<212> TYPE: DNA
$<213>$ ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 21
gaaattaata cgactcacta tagggagacc acaacggttt cectctagaa ataatttgt 60
ttaactttaa gaaggagata tacca 85
$<210>$ SEQ ID NO 22
$<211>$ LENGTH: 27
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Construct
$<400>$ SEQUENCE: 22
tattcattac ccggcggcgg tcacgaa 27
<210> SEQ ID NO 23

<211> LENGTH: 781

<212> TYPE: DNA

<213> ORGANISM: Artificial

<220> FEATURE :

<223> OTHER INFORMATION: Synthetic Construct

<400> SEQUENCE: 23
gaaattaata cgactcacta tagggagacc acaacggttt ccctctagaa ataattttgt 60
ttaactttaa gaaggagata taccaatggt gagcaaggge gaggagctgt tcaccggggt 120
ggtgcccatc ctggtcgagc tggacggcga cgtaaacggc cacaagttca gcgtgtccgg 180
cgagggcgag ggcgatgcca cctacggcaa gctgaccctg aagttcatct gcaccaccgg 240
caagctgccc gtgccctggc ccaccctcgt gaccaccctg acctacggcg tgcagtgctt 300
cagcegctac cccgaccaca tgaagcagca cgacttcttc aagtccgcca tgcccgaagg 360
ctacgtccag gagegcacca tcttcttcaa ggacgacggc aactacaaga cecgcgcega 420
ggtgaagttc gagggcgaca cectggtgaa ccgcatcgag ctgaagggca tcgacttcaa 480
ggaggacggc aacatcctgg ggcacaagct ggagtacaac tacaacagce acaacgtcta 540
tatcatggcc gacaagcaga agaacggcat caaggtgaac ttcaagatcc gccacaacat 600
cgaggacggc agcgtgcage tcgccgacca ctaccagcag aacaccccca tcgccgacgg 660
ccccgtgctg ctgcccgaca accactacct gagcacccag tccgccotga gcaaagaccc 720
caacgagaag cgcgatcaca tggtcctgct ggagttcgtg accgccgccg ggtaatgaat 780
a
781

```
<210> SEQ ID NO 24
<211> LENGTH: 759
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 24
```

gggagaccac	aacgguuucc cucuagaaau	aauuuuguuu aacuuuaaga	aggagauaua	60
ccaaugguga	gcaagggega ggagcuguuc	accggggugg ugcecauccu	ggucgagcug	120
gacggcgacg	uaaacggcea caaguucagc	guguccggcg agggcgaggg	cgaugccacc	180
uacggcaagc	ugacccugaa guucaucugc	accaccggca agcugcecgu	gcceuggecc	240
acccucguga	ccacccugac cuacggegug	cagugcuuca gcegcuacce	cgaccacaug	300
aagcagcacg	acuucuucaa guccgccaug	cccgaaggcu acguccagga	gcgeaccauc	360
uucuucaagg	acgacggcaa cuacaagacc	cgcgcegagg ugaaguucga	gggcgacacc	420
cuggugaacc	gcaucgagcu gaagggcauc	gacuucaagg aggacggcaa	cauccugggg	480
cacaagcugg	aguacaacua caacagccac	aacgucuaua ucauggccga	caagcagaag	540
aacggcauca	aggugaacuu caagauccge	cacaacaucg aggacggcag	cgugcagcuc	600
gccgaccacu	accagcagaa caccoccauc	gccgacggec cogugcugcu	gccegacaac	660
cacuaccuga	gcacceaguc cgcceugage	aaagacccca acgagaagcg	cgaucacaug	720
guccugcugg	aguucgugac cgcegccggg	uaaugaaua		759

$<210>$ SEQ ID NO 25
$<211>$ LENGTH: 70
$<212>$ TYPE: DNA.
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Construct
$<400>$ SEQUENCE: 25
ggagaccaca acggtttcce tcgggcgtga tgcgaaagct gacccagaag gagatatacc 60
aatggtgagc 70
$<210>$ SEQ ID NO 26
$<211>$ LENGTH: 42
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Construct
$<400>$ SEQUENCE: 26
gaaattaata cgactcacta tagggagacc acaacggttt cc

$<210>$ SEQ ID NO 27	
<211> LENGTH: 780	
<212> TYPE: DNA	
<213> ORGANISM: Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic Construct	
$<400\rangle$ SEQUENCE : 27	
gaaattaata cgactcacta tagggagacc acaacggttt coctcgggcg tgatgcgaaa 60	
gctgacccag aaggagatat accaatggtg agcaagggcg aggagctgtt caccggggtg 120	
gtgcecatcc tggtcgagct ggacggcgac gtaaacggce acaagttcag cgtgtccggc 180	
gagggcgagg gcgatgccac ctacggcaag ctgaccotga agttcatctg caccaccggc 240	
aagctgcecg tgcectggec caccetcgtg accaccetga cetacggcgt gcagtgettc 300	
agccgctacc ccgaccacat gaagcagcac gacttcttca agtccgccat gcccgaaggc 360	
tacgtccagg agcgcaccat cttcttcaag gacgacggca actacaagac cegcgcegag	420
gtgaagttcg agggcgacac cetggtgaac cgcatcgagc tgaagggcat cgacttcaag	480

gaggacggca acatcctggg gcacaagctg gagtacaact acaacagcca caacgtctat	540
atcatggceg acaagcagaa gaacggcatc aaggtgaact tcaagatccg ccacaacatc	600
gaggacggca gcgtgcagct cgccgaccac taccagcaga acacccccat cgccgacggc	660
cccgtgctgc tgccegacaa ccactacctg agcaccoagt cegccotgag caaagaccec	720
aacgagaagc gcgatcacat ggtcctgctg gagttcgtga ccgccgcogg gtaatgaata	780
<210> SEQ ID NO 28	
<211> LENGTH: 758	
<212> TYPE: RNA	
<213> ORGANISM: Artificial	
<220> FEATURE:	
<223 OTHER INFORMATION: Synthetic Construct	
<400> SEQUENCE: 28	
gggagaccac aacgguuucc cucgggegug augcgaaagc ugacccagaa ggagauauac	60
caauggugag caagggegag gagcuguuca ccgggguggu gcceauccug gucgagcugg	120
acggcgacgu aaacggceac aaguucagcg uguccggcga gggcgaggge gaugceaccu	180
acggcaagcu gacccugaag uncaucugca ccaccggcaa gcugccogug cecuggceca	240
cccucgugac cacccugace uacggcguge agugcuucag cegcuaccec gaccacauga	300
agcagcacga cuucuucaag uccgccaugc ccgaaggcua cguccaggag cgcaccaucu	360
ucuucaagga cgacggcaac uacaagacce gcgecgaggu gaaguucgag ggcgacaccc	420
uggugaaccg caucgagcug aagggcaucg acuucaagga ggacggcaac auccuggggc	480
acaagcugga guacaacuac aacagccaca acgucuauau cauggccgac aagcagaaga	540
acggcaucaa ggugaacuuc aagauccgec acaacaucga ggacggcage gugcagcucg	600
ccgaccacua ccagcagaac acceccaucg cegacggece cgugcugcug cecgacaacc	660
acuaccugag cacccaguce geccugagea aagaccecaa cgagaagege gaucacaugg	720
uccugcugga guucgugace gcegcegggu aaugaaua	758

$<210>$ SEQ ID NO 29
$<211>$ LENGTH: 73
$<212>$ TYPE $:$ DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Construct
$<400>$ SEQUENCE: 29
く年
ggagaccaca acggtttccc tcgggcgtga tgcgaaagct gacccttaag aaggagatat 60
accaatggtg agc 73
$<210>$ SEQ ID NO 30
$<211>$ LENGTH: 783
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: SYnthetic Construct
$<400>$ SEQUENCE: 30
gaaattaata cgactcacta tagggagacc acaacggttt ccetcgggcg tgatgcgaaa 60
gctgaccctt aagaaggaga tataccaatg gtgagcaagg gcgaggagct gttcaccggg 120
gtggtgccca tcctggtcga gctggacggc gacgtaaacg gccacaagtt cagcgtgtcc 180
ggcgagggeg agggegatgc cacctacggc aagctgacce tgaagttcat ctgcaccacc 240
ggcaagctgc cogtgccetg gcccaccetc gtgaccacce tgacctacgg egtgcagtgc 300

<210> SEQ ID NO 32
<211> LENGTH: 77
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223 OTHER INFORMATION: Synthetic Construct
$<400>$ SEQUENCE: 32
ggagaccaca acggtttccc tcgggcgtga tgcgaaagct gacccaactt taagaaggag 60
atataccaat ggtgagc 77
$<210>$ SEQ ID NO 33
$<211>$ LENGTH: 787
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: SYnthetic Construct
$<400>$ SEQUENCE : 33
gaaattaata cgactcacta tagggagacc acaacggttt ccctcgggcg tgatgcgaaa 60
gctgacccaa ctttaagaag gagatatacc aatggtgagc aagggcgagg agctgttcac 120
cggggtggtg cccatcctgg tcgagctgga cggcgacgta acggccaca agttcagcgt 180
gtccggcgag ggcgagggcg atgccaccta cggcaagctg accctgaagt tcatctgcac 240
caccggcaag ctgccegtgc cetggcccac cetcgtgacc accetgacct acggcgtgca 300
gtgcttcagc cgctaccecg accacatgaa gcagcacgac ttcttcaagt ccgccatgec 360
cgaaggctac gtccaggagc gcaccatctt cttcaaggac gacggcaact acaagacccg 420
cgccgaggtg aagttcgagg gcgacaccet ggtgaaccgc atcgagctga agggcatcga 480
cttcaaggag gacggcaaca tcctggggca caagctggag tacaactaca acagccacaa 540
cgtctatatc atggcegaca agcagaagaa cggcatcaag gtgaacttca agatccgcca 600
caacatcgag gacggcagcg tgcagctcgc cgaccactac cagcagaaca cccccatcgc 660
cgacggcccc gtgctgctgc cegacaacca ctacctgagc acccagtccg ccctgagcaa 720
agaccccaac gagaagcgcg atcacatggt cetgctggag ttcgtgaccg cogccgggta 780
atgaata 787
<210> SEQ ID NO 34

<211> LENGTH: 765

<212> TYPE: RNA.

<213> ORGANISM: Artificial

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Construct

<400> SEQUENCE: 34
gggagaccac aacgguuucc cucgggegug augcgaaage ugacccaacu uuaagaagga 60
gauauaccaa uggugagcaa gggcgaggag cuguucaccg ggguggugcc cauccugguc 120
gagcuggacg gcgacguaaa cggccacaag uncagcgugu ceggegaggg egagggcgau 180
gccaccuacg gcaagcugac ccugaaguuc aucugcacca ceggeaagcu geccgugcce 240
uggcecacce ucgugaccac cougaccuac ggcgugcagu gcuucagceg cuaccecgac 300
cacaugaagc agcacgacuu cuucaagucc gccaugcceg aaggcuacgu ccaggagcgc 360
accaucuucu ucaaggacga cggcaacuac aagaccogcg cogaggugaa guucgagggc 420
gacacccugg ugaaccgcau cgagcugaag ggcaucgacu ucaaggagga cggcaacauc 480
cuggggcaca agcuggagua caacuacaac agccacaacg ucuauaucau ggccgacaag 540
cagaagaacg gcaucaaggu gaacuucaag auccgccaca acaucgagga cggcagcgug 600
cagcucgceg accacuacca gcagaacacc cccaucgecg acggccccgu gcugcugcce $\quad 660$
gacaaccacu accugagcac ccaguccgcc cugagcaaag accccaacga gaagcgcgau 720
cacauggucc ugcuggaguu cgugaccgcc gccggguaau gaaua 765
$<210>$ SEQ ID NO 35
$<211>$ LENGTH: 81
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Construct
$<400>$ SEQUENCE : 35
<400> SEQUENCE: 35
ggagaccaca acggtttcce tcgggcgtga tgcgaaagct gacccgttta actttaagaa 60
$\begin{array}{ll}\text { ggagatatac caatggtgag } c & 81\end{array}$
$<210>$ SEQ ID NO 36
$<211>$ LENGTH: 791
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic construct
$<400>$ SEQUENCE: 36
gaaattaata cgactcacta tagggagacc acaacggttt ccctcgggcg tgatgcgaaa 60
gctgacccgt ttaactttaa gaaggagata taccaatggt gagcaagggc gaggagctgt 120
tcaccggggt ggtgcccatc ctggtcgagc tggacggcga cgtaaacgge cacaagttca 180
gcgtgtccgg cgagggcgag ggcgatgcca cctacggcaa gctgaccctg aagttcatct 240
gcaccaccgg caagctgcce gtgccctggc ccaccctcgt gaccaccctg acctacggcg 300
tgcagtgctt cagccgctac cecgaccaca tgaagcagca cgacttcttc aagtccgeca 360
tgcccgaagg ctacgtccag gagcgcacca tcttcttcaa ggacgacggc aactacaaga 420
cccgcgecga ggtgaagttc gagggcgaca ccetggtgaa ccgcatcgag ctgaagggca 480
tcgacttcaa ggaggacggc aacatcctgg ggcacaagct ggagtacaac tacaacagcc 540
acaacgtcta tatcatggce gacaagcaga agaacggcat caaggtgaac ttcaagatcc 600
gccacaacat cgaggacggc agcgtgcagc tcgecgacca ctaccagcag aacaccecca 660
tcgecgacgg ceccgtgctg ctgcccgaca accactacct gagcacccag tecgccetga 720
gcaaagaccc caacgagaag cgcgatcaca tggtcctgct ggagttcgtg accgccgccg 780
ggtaatgaat a 791
$<210\rangle$ SEQ ID NO 37

<211> LENGTH: 769

<212> TYPE: RNA

<213> ORGANISM: Artificial

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Construct

<400> SEQUENCE: 37
gggagaccac aacgguuucc cucgggcgug augcgaaage ugacccguuu aacuunaaga 60
aggagauaua ccaaugguga gcaagggcga ggagcuguuc accggggugg ugcccauccu 120
ggucgagcug gacggegacg uaaacggcca caaguucage guguccggcg agggcgaggg 180
cgaugccacc uacggcaage ugacccugaa guucaucugc accaccggca agcugccegu 240
gcccuggcec acccucguga ccacccugac cuacggcgug cagugcuuca gccgcuaccc 300
cgaccacaug aagcagcacg acuucuucaa guccgccaug cecgaaggcu acguccagga 360
gcgcaccauc unculucaagg acgacggcaa cuacaagace cgcgecgagg ugaaguucga 420
gggcgacacc cuggugaacc gcaucgagcu gaagggcauc gacuucaagg aggacggcaa 480
cauccugggg cacaagcugg aguacaacua caacagccac aacgucuaua ucauggcega 540
caagcagaag aacggcauca aggugaacuu caagauccge cacaacaucg aggacggcag 600
cgugcagcuc gccgaccacu accagcagaa cacccccauc gecgacggce cogugcugcu 660
gccegacaac cacuaccuga geacceaguc cgccougage aaagacccca acgagaageg 720
cgaucacaug guccugcugg aguucgugac cgccgccggg uaaugaaua 769

```
<210> SEQ ID NO 38
<211> LENGTH: 70
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
```

<223> OTHER INFORMATION: Synthetic Construct	
<400> SEQUENCE: 38	
ggagaccaca acggtttccc tcgggcgtca tgcgaaagct gccecagaag gagatatacc	60
aatggtgagc	70
<210> SEQ ID NO 39	
<211> LENGTH: 780	
<212> TYPE: DNA	
<213> ORGANISM: Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic Construct	
<400> SEQUENCE: 39	
gaaattaata cgactcacta tagggagacc acaacggttt ccctcgggeg tcatgcgaaa 60	
gctgceccag aaggagatat accaatggtg agcaagggcg aggagctgtt caccggggtg 120	
gtgcecatce tggtcgagct ggacggegac gtaaacggec acaagttcag cgtgtccggc 180	
gagggcgagg gcgatgccac ctacggcaag ctgaccetga agttcatctg caccaccggc 240	
aagctgcecg tgcectggce caccctegtg accaccctga cctacggcgt gcagtgcttc 300	
agccgctacc ccgaccacat gaagcagcac gacttcttca agtccgccat gccegaaggc 360	
tacgtccagg agcgcaccat cttcttcaag gacgacggca actacaagac cogcgccgag 420	
gtgaagttcg agggcgacac cetggtgaac cgcatcgage tgaagggcat cgacttcaag 480	
gaggacggca acatcctggg gcacaagctg gagtacaact acaacagcca caacgtctat 540	
atcatggccg acaagcagaa gaacggcatc aaggtgaact tcaagatccg ccacaacatc 600	
gaggacggca gcgtgcagct cgcegaccac taccagcaga acaccoccat cgcogacggc 660	
cccgtgetge tgcecgacaa ccactacctg agcacccagt cogccotgag caaagacccc 720	
aacgagaagc gcgatcacat ggtcotgctg gagttcgtga cogcogcogg gtaatgaata 780	
<210> SEQ ID NO 40	
<211> LENGTH: 758	
<212> TYPE: RNA	
<213> ORGANISM: Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic Construct	
<400> SEQUENCE: 40	
gggagaccac aacgguuucc cucgggcguc augcgaaage ugceccagaa ggagauauac 60	
caauggugag caagggcgag gagcuguuca cogggguggu gcceauccug gucgagcugg 120	
acggegacgu aaacggceac aaguucageg uguccggcga gggcgaggge gaugccaccu 180	
acggcaagcu gacccugaag uncaucugca ccaccggcaa gcugccegug cecuggceca 240	
cccucgugac caccougace uacggcguge agugcuucag cogcuaccec gaccacauga 300	
agcagcacga cuucuucaag uccgccaugc ccgaaggcua cguccaggag cgcaccaucu 360	
ucuucaagga cgacggcaac uacaagacec gcgccgaggu gaaguucgag ggcgacaccc 420	
uggugaaccg caucgagcug aagggcaucg acuucaagga ggacggcaac auccuggggc 480	
acaagcugga guacaacuac aacagccaca acgucuauau cauggccgac aagcagaaga 540	
acggcaucaa ggugaacuuc aagauccgce acaacaucga ggacggcagc gugcagcucg 600	
ccgaccacua ccagcagaac acccocaucg cogacggcec cgugcugcug cecgacaacc 660	
acuaccugag cacccagucc gcceugagca aagaccecaa cgagaagcge gaucacaugg 720	
uccugcugga guucgugace gccgecgggu aaugaaua	758

```
<210> SEQ ID NO 41
<211> LENGTH: 57
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 41
```

ggagaccaca acggtttcce tcggggaaac ccagaaggag atataccaat ggtgagc

```
<210> SEQ ID NO 42
<211> LENGTH: 767
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 42
```

gaaattaata cgactcacta tagggagacc acaacggttt ccctcgggga aacccagaag
gagatatacc aatggtgagc aagggcgagg agctgttcac cggggtggtg cccatcctgg120
tcgagctgga cggcgacgta aacggccaca agttcagcgt gtccggcgag ggcgagggcg 180
atgccaccta cggcaagetg accetgaagt tcatctgcac caccggcaag ctgcecgtgc 240
cctggcecac cetcgtgacc accetgacct acggcgtgca gtgcttcagc cgctaccecg 300
accacatgaa gcagcacgac ttcttcaagt ccgccatgce cgaaggctac gtccaggagc 360
gcaccatctt cttcaaggac gacggcaact acaagacccg cgccgaggtg aagttcgagg 420
gcgacaccet ggtgaaccgc atcgagctga agggcatcga cttcaaggag gacggcaaca 480
tcctggggca caagctggag tacaactaca acagccacaa cgtctatatc atggccgaca 540
agcagaagaa cggcatcaag gtgaacttca agatccgcca caacatcgag gacggcagcg 600
tgcagctcgc cgaccactac cagcagaaca cccccatcge cgacggcece gtgctgctgc 660
ccgacaacca ctacctgagc acccagtccg ccctgagcaa agaccccaac gagaagcgcg 720
atcacatggt cctgctggag ttcgtgaccg ccgccgggta atgaata 767
<210 > SEQ ID NO 43
<211> LENGTH: 745
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
(223> OTHER INFORMA
<400> SEQUENCE: 43
gggagaccac aacgguuucc cucggggaaa cccagaagga gauauaccaa uggugagcaa 60
gggcgaggag cuguucaceg ggguggugec cauccugguc gagcuggacg gegacguaaa 120
cggccacaag uucagcgugu ceggcgaggg cgagggcgau gccaccuacg gcaagcugac 180
ccugaaguuc aucugcacca ceggcaagcu gcccgugcec uggcccacce ucgugaccac 240
ccugaccuac ggcgugcagu gcuucagceg cuaccecgac cacaugaagc agcacgacuu 300
cuucaagucc gccaugcecg aaggcuacgu ccaggagcge accaucuucu ucaaggacga 360
cggcaacuac aagaccegcg cegaggugaa guucgaggge gacacccugg ugaaccgcau 420
cgagcugaag ggcaucgacu ucaaggagga cggcaacauc cuggggcaca agcuggagua 480
caacuacaac agccacaacg ucuauaucau ggccgacaag cagaagaacg gcaucaaggu 540
gaacuucaag auccgccaca acaucgagga cggcagcgug cagcucgccg accacuacca 600

gcagaacacc cccaucgceg acggcoccgu gcugcugcce gacaaccacu accugagcac	660
ccaguccgce cugagcaaag accccaacga gaagcgcgau cacauggucc ugcuggaguu	720
cgugaccgcc gccggguaau gaaua	745
$<210\rangle$ SEQ ID NO 44	
<211> LENGTH: 59	
<212> TYPE: DNA	
<213> ORGANISM: Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic Construct	
<400> SEQUENCE : 44	
aaggagatat accaatgggg cgtgatgcga aagctgacce tgtgagcaag ggcgaggag	59
<210> SEQ ID NO 45	
<211> LENGTH: 805	
<212> TYPE: DNA	
<213> ORGANISM: Artificial	
<220> FEATURE:	
<223) OTHER INFORMATION: Synthetic Construct	
<400> SEQUENCE: 45	
gaaattaata cgactcacta tagggagacc acaacggttt ccctctagaa ataattttgt	60
ttaactttaa gaaggagata taccaatggg gcgtgatgcg aaagctgacc ctgtgagcaa	120
gggcgaggag ctgttcaccg gggtggtgce catcctggtc gagctggacg gcgacgtaaa	180
cggccacaag ttcagcgtgt ceggcgaggg cgagggcgat gccacctacg gcaagctgac	240
cctgaagttc atctgcacca ccggcaaget gccegtgcec tggcceacce tcgtgaccac	300
cctgacctac ggcgtgcagt gcttcagceg ctaccccgac cacatgaage agcacgactt	360
cttcaagtce gccatgcecg aaggctacgt ccaggagcge accatcttct tcaaggacga	420
cggcaactac aagacccgeg cogaggtgaa gttcgaggge gacaccctgg tgaaccgcat	480
cgagctgaag ggcatcgact tcaaggagga cggcaacatc ctggggcaca agctggagta	540
caactacaac agccacaacg tctatatcat ggccgacaag cagaagaacg gcatcaaggt	600
gaacttcaag atccgccaca acatcgagga cggcagcgtg cagctcgceg accactacca	660
gcagaacacc cccatcgecg acggceccgt gctgctgcec gacaaccact acctgagcac	720
ccagtccgcc ctgagcaaag accccaacga gaagcgcgat cacatggtcc tgctggagtt	780
cgtgaccgec gccgggtaat gaata	805
<210> SEQ ID NO 46	
<211> LENGTH: 783	
<212> TYPE: RNA	
<213> ORGANISM: Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic Construct	
<400> SEQUENCE: 46	
gggagaccac aacgguuucc cucuagaaau aauuuuguuu aacuunaaga aggagauaua	60
ccaaugggge gugaugcgaa agcugacceu gugagcaagg gcgaggagcu guucaccggg	120
guggugceca uccuggucga gcuggacgge gacguaaacg gccacaaguu cagcgugucc	180
ggcgagggcy agggcgaugc caccuacgge aagcugacce ugaaguucau cugcaccacc	240
ggcaagcugc ccgugcecug gcccacceuc gugaccacce ugaccuacgg egugcagugc	300
uncagcegcu accecgacea caugaagcag cacgacuucu ucaaguccge caugcecgaa	360
ggcuacguce aggagcgcac caucuucuuc aaggacgacg gcaacuacaa gaccogcgec	420

gaggugaagu ucgagggcga cacccuggug aaccgcaucg agcugaaggg caucgacuuc 480
aaggaggacg gcaacauccu ggggcacaag cuggaguaca acuacaacag ccacaacguc 540
uauaucaugg cogacaagca gaagaacggc aucaagguga acuucaagau ccgccacaac 600
aucgaggacg gcagegugca gcucgcegac cacuaccagc agaacaccec caucgecgac 660
ggceccgugc ugcugcecga caaccacuac cugagcacec aguccgcceu gagcaaagac 720
cccaacgaga agcgcgauca caugguccug cuggaguucg ugaccgcegc cggguaauga 780
aua 783
<210> SEQ ID NO 47

<211> LENGTH: 47

$<212>$ TYPE: DNA

<213> ORGANISM: Artificial

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Construct

<400> SEQUENCE: 47
aaggagatat accaatgagg ggaaacccag tgagcaaggg cgaggag
$<210>$ SEQ ID NO 48
$<211>$ LENGTH: 793
$<212>$ TYPE: DNA.
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Construct
$<400>$ SEQUENCE: 48
gaaattaata cgactcacta tagggagacc acaacggttt ccctctagaa ataattttgt 60
ttaactttaa gaaggagata taccaatgag gggaaaccca gtgagcaagg gcgaggagct 120
gttcaccggg gtggtgccca tcctggtcga gctggacggc gacgtaaacg gccacaagtt 180
cagcgtgtcc ggcgagggeg agggcgatgc cacctacggc aagctgacce tgaagttcat 240
ctgcaccacc ggcaagctgc cogtgccetg gcccaccctc gtgaccacce tgacctacgg 300
cgtgcagtgc ttcagccgct accccgacca catgaagcag cacgacttct tcaagtccgc 360
catgcccgaa ggctacgtcc aggagcgcac catcttcttc aaggacgacg gcaactacaa 420
gaccogcgcc gaggtgaagt tcgagggcga caccctggtg aaccgcatcg agctgaaggg 480
catcgacttc aaggaggacg gcaacatcct ggggcacaag ctggagtaca actacaacag 540
ccacaacgtc tatatcatgg cegacaagca gaagaacggc atcaaggtga acttcaagat 600
ccgccacaac atcgaggacg gcagcgtgca getcgccgac cactaccagc agaacaccco 660
catcgccgac ggcccegtgc tgctgccoga caaccactac ctgagcaccc agtccgccct 720
gagcaaagac cccaacgaga agcgcgatca catggtcctg ctggagttcg tgaccgccgc 780
cgggtaatga ata 793
<210> SEQ ID NO 49

<211> LENGTH: 771

$<212\rangle$ TYPE: RNA

<213> ORGANISM: Artificial

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Construct

<400> SEQUENCE: 49
gggagaccac aacgguuucc cucuagaaau aauuuuguuu aacuuuaaga aggagauaua

$<210>$ SEQ ID NO 50
$<211>$ LENGTH: 60
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Construct
$<400>$ SEQUENCE: 50
gtgatctttc gtgtgggtca ccactgcaaa taaggatata aatggtgag caagggcgag 60
$<210>$ SEQ ID NO 51
$<211>$ LENGTH: 833
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Construct
$<400>$ SEQUENCE: 51
ctatacgac tcactatagg attgcgaacc aatttagcat ttgttggcta aatggtttcg $\quad 60$
caatgaactg ttaataaca aatttttctt tgtatgtgat ctttcgtgtg ggtcaccact 120
gcaataagg atataaaatg gtgagcaagg gcgaggaget gttcaccggg gtggtgccca 180
tcctggtcga gctggacggc gacgtaaacg gccacaagtt cagcgtgtcc ggcgagggcg 240
agggcgatgc cacctacggc aagctgacce tgaagttcat ctgcaccacc ggcaagctgc 300
cogtgecctg gcccaccetc gtgaccacce tgacctacgg egtgcagtge ttcagccgct 360
accccgacca catgaagcag cacgacttct tcaagtccgc catgcccgaa ggctacgtcc 420
aggagcgcac catcttcttc aaggacgacg gcaactacaa gacccgcgcc gaggtgaagt 480
tcgagggcga caccctggtg aaccgcatcg agctgaaggg catcgacttc aaggaggacg 540
gcaacatcct ggggcacaag ctggagtaca actacaacag ccacaacgtc tatatcatgg 600
ccgacaagca gaagaacggc atcaaggtga acttcaagat ccgccacaac atcgaggacg 660
gcagcgtgca gctcgcegac cactaccagc agaacaccec catcgccgac ggcccegtgc 720
tgctgcccga caaccactac ctgagcaccc agtccgccct gagcaaagac cccaacgaga 780
agcgcgatca catggtcctg etggagttcg tgaccgccge cgggtaatga ata 833
$<210>$ SEQ ID NO 52
$<211>$ LENGTH: 815
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 52
ggauugcgaa ccaauuuagc auuugunggc uaaaugguuu cgcaaugaac uguuaauaaa 60
caaauuuuuc uunguaugug aucuuncgug ugggucacca cugcaaanaa ggauauaaaa 120
uggugagcaa gggcgaggag cuguucaccg ggguggugec cauccugguc gagcuggacg 180
gcgacguaaa cggccacaag uucagcgugu ceggcgaggg cgagggcgau gccaccuacg 240
gcaagcugac ccugaaguuc aucugcacca ceggcaagcu geccgugcec uggcccacce 300
ucgugaccac ccugaccuac ggcgugcagu gcuucagceg cuaccocgac cacaugaagc 360
agcacgacuu cuucaagucc gccaugcecg aaggcuacgu ccaggagcge accaucuucu 420
ucaaggacga cggcaacuac aagacccgcg ccgaggugaa guucgagggc gacacccugg 480
ugaaccgcau cgagcugaag ggcaucgacu ucaaggagga cggcaacauc cuggggcaca 540
agcuggagua caacuacaac agccacaacg ucuauaucau ggccgacaag cagaagaacg 600
gcaucaaggu gaacuucaag auccgccaca acaucgagga cggcagcgug cagcucgccg 660
accacuacca gcagaacacc cecaucgecg acggccccgu gcugcugcce gacaaccacu 720
accugagcac ccaguccgcc cugagcaaag accccaacga gaagcgcgau cacauggucc 780
ugcuggaguu cgugaccgec gccggguaau gaaua 815
<210> SEQ ID NO 53

$<211>$ LENGTH: 81

<212> TYPE: DNA

<213> ORGANISM: Artificial

<220> FEATURE:

<223) OTHER INFORMATION: Synthetic Construct

<400> SEQUENCE: 53

ggagaccaca acggtttcce tcggcgtatg tgatctttcg tgtgggtcac cactgcgcca

gaaggagata taccaatggt g
<210> SEQ ID NO 54
<211> LENGTH: 795
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial
$<220>$ FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 54
gaaattaata cgactcacta taggggagac cacaacggtt tccetcggcg tatgtgatct60
ttcgtgtggg tcaccactgc gccagaagga gatataccaa tggtgagcaa gggcgaggag 120
ctgttcaccg gggtggtgcc catcctggtc gagctggacg gcgacgtaaa cggccacaag 180
ttcagcgtgt coggcgaggg cgagggcgat gccacctacg gcaagctgac cetgaagttc 240
atctgcacca ccggcaagct gcccgtgcce tggcccacce tcgtgaccac cctgacctac 300
ggcgtgcagt gcttcagccg ctaccccgac cacatgaagc agcacgactt cttcaagtcc 360
gccatgcccg aaggctacgt ccaggagcgc accatcttct tcaaggacga cggcaactac 420
aagacccgcg cogaggtgaa gttcgagggc gacaccctgg tgaaccgcat cgagctgaag 480
ggcatcgact tcaaggagga cggcaacatc ctggggcaca agctggagta caactacaac 540
agccacaacg tctatatcat ggccgacaag cagaagaacg gcatcaaggt gaacttcaag 600
atccgccaca acatcgagga cggcagcgtg cagctegceg accactacca gcagaacacc 660
cccatcgceg acggceccgt gctgctgccc gacaaccact acctgagcac ccagtccgcc 720
ctgagcaaag accccaacga gaagcgcgat cacatggtcc tgctggagtt cgtgaccgcc 780
gccgggtaat gaata 795
<210> SEQ ID NO 55

<211> LENGTH: 772

$<212>$ TYPE: RNA

<213> ORGANISM: Artificial

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Construct

<400> SEQUENCE: 55
gggagaccac aacgguuucc cucggeguau gugaucuuuc guguggguca ceacugcgec $\quad 60$
agaaggagau auaccaaugg ugagcaaggg cgaggagcug uucaccgggg uggugcccau 120
ccuggucgag cuggacggeg acguaaacgg ccacaaguuc agcguguccg gegagggega 180
gggegaugce accuacggca agcugacceu gaaguucauc ugcaccaccg gcaagcugcc 240
cgugcceugg cecacccucg ugaccacceu gaccuacgge gugcagugcu ucagcegcua 300
ccccgaccac augaagcagc acgacuucuu caaguccgec augccegaag gcuacgucca 360
ggagcgcacc aucuucuuca aggacgacgg caacuacaag acccgcgccg aggugaaguu 420
cgagggcgac acccugguga accgcaucga gcugaaggge aucgacuuca aggaggacgg 480
caacauccug gggcacaagc uggaguacaa cuacaacagc cacaacgucu auaucauggc 540
cgacaagcag aagaacggca ucaaggugaa cuucaagauc cgccacaaca ucgaggacgg 600
cagcgugcag cucgcegacc acuaccagca gaacaccccc aucgccgacg gcccegugcu 660
gcugccegac aaccacuacc ugagcaccca guccgcccug agcaaagacc ccaacgagaa 720
gegcgaucac augguccugc uggaguucgu gaccgccgec ggguaaugaa ua 772
<210> SEQ ID NO 56
<211> LENGTH: 81
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223 OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 56
ggagaccaca acggtttcce tcggcgtatg tgatctttca tgtgggtcac cactgcgcca $\quad 60$
gaaggagata taccaatggt $g \quad 81$
$<210>$ SEQ ID NO 57
$<211>$ LENGTH: 795
$<212>$ TYPE: DNA.
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Construct
$<400>$ SEQUENCE : 57
gaaattaata cgactcacta taggggagac cacaacggtt tccctcggcg tatgtgatct 60
ttcatgtggg tcaccactgc gccagaagga gatataccaa tggtgagcaa gggcgaggag 120
ctgttcaccg gggtggtgcc catcctggtc gagctggacg gcgacgtaaa cggccacaag 180
ttcagcgtgt ccggcgaggg cgagggcgat gccacctacg gcaagctgac cetgaagttc 240
atctgcacca ccggcaagct gcccgtgcce tggcccacce tegtgaccac cotgacctac 300
ggcgtgcagt gcttcagceg ctaccccgac cacatgaage agcacgactt ettcaagtcc 360
gccatgcceg aaggetacgt ceaggagcge accatcttct tcaaggacga cggcaactac 420
aagaccegcg cogaggtgaa gttcgaggge gacaccctgg tgaaccgcat cgagctgaag 480
ggcatcgact tcaaggagga cggcaacatc ctggggcaca agctggagta caactacaac 540
agccacaacg tctatatcat ggcegacaag cagaagaacg gcatcaaggt gaacttcaag 600
atccgccaca acatcgagga cggcagcgtg cagctcgccg accactacca gcagaacacc 660
cccatcgccg acggceccgt getgctgcec gacaaccact acctgagcac ccagtccgce 720
ctgagcaaag accccaacga gaagcgcgat cacatggtce tgctggagtt cgtgaccgcc 780
gccgggtaat gaata 795
<210> SEQ ID NO 58
<211> LENGTH: 772
<212> TYPE: RNA
<213> ORGANISM: Artificial
$<220>$ FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 58
gggagaccac aacgguuuce cucggcguau gugaucuunc auguggguca ccacugcgcc 60
agaaggagau auaccaaugg ugagcaaggg cgaggagcug uucaccgggg uggugcceau 120
ccuggucgag cuggacggeg acguaaacgg ccacaaguuc agcguguceg gegagggega 180
gggcgaugce accuacggca agcugacceu gaaguucauc ugcaccaccg gcaagcugce 240
cgugcccugg cecacccucg ugaccacccu gaccuacgge gugcagugcu ucagcegcua 300
ccccgaccac augaagcagc acgacuucuu caaguccgec augcecgaag gcuacgucca 360
ggagcgcacc aucuucuuca aggacgacgg caacuacaag acccgcgccg aggugaaguu 420
cgagggcgac acccugguga accgcaucga gcugaagggc aucgacuuca aggaggacgg 480
caacauccug gggcacaagc uggaguacaa cuacaacagc cacaacgucu auaucauggc 540
cgacaagcag aagaacggca ucaaggugaa cuucaagauc cgccacaaca ucgaggacgg 600
cagcgugcag cucgecgace acuaccagca gaacacccce aucgccgacg gccecgugcu 660
gcugcccgac aaccacuacc ugagcaccca guccgcccug agcaaagacc ccaacgagaa 720
gcgcgaucac augguccugc uggaguucgu gaccgccgcc ggguaaugaa ua 772
<210> SEQ ID NO 59
<211> LENGTH: 50
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
-
<400> SEQUENCE: 59
aaggagatat accaatgcag ctttcgcatc acgtgagcaa gggcgaggag 50
<210> SEQ ID NO 60

<211> LENGTH: 796

<212> TYPE: DNA

<213> ORGANISM: Artificial

<220> FEATURE:

<223 > OTHER INFORMATION: Synthetic Construct

<400> SEQUENCE: 60
gaaattaata cgactcacta tagggagacc acaacggttt cectctagaa ataatttgt 60
ttaactttaa gaaggagata taccaatgca gctttcgcat cacgtgagca agggcgagga 120
gctgttcacc ggggtggtgc ccatcctggt cgagctggac ggcgacgtaa acggccacaa 180
gttcagcgtg tccggcgagg gcgagggcga tgccacctac ggcaagctga ccctgaagtt 240

$<210>$ SEQ ID NO 62
$<211>$ LENGTH: 48
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Construct
$<400>$ SEQUENCE: 62
ggtgggtcag ctttcgcatc acgcccacct atagtgagtc gtattagc

```
<210> SEQ ID NO 63
<211> LENGTH. 20
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 63
```

ggugggegug augcgaaagc ugacccacc

```
<210> SEQ ID NO 64
<211> LENGTH: 29
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: SYnthetic Construct
<400> SEQUENCE: 64
```

ctgacatatg tacgtgagat ttgaggttc
$<210>$ SEQ ID NO 65
$<211>$ LENGTH: 32
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Construct
$<400>$ SEQUENCE: 65
<400> SEQUENCE: 65
ctgactcgag ttacttctga aggcctttaa tc
<210> SEQ ID NO 66
<211> LENGTH: 139
<212> TYPE: PRT
$<213>$ ORGANISM: Artificial
<220> FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Construct
<400 > SEQUENCE: 66


```
<210> SEQ ID NO 67
<211> LENGTH: 654
<212> TYPE: PRT
<213> ORGANISM: Escherichia coli
<400> SEQUENCE: 67
```

Met Arg Gly Ser His His His His His His Gly Ser Met Pro Val Ile	
1	5

Thr Leu Pro Asp	
20	Gly Ser Gln Arg His Tyr Asp His Ala Val Ser Pro
25	30

Met Asp Val Ala Leu Asp Ile Gly Pro Gly Leu Ala Lys Ala Cys Ile
35
40
45

$<210>$ SEQ ID NO 68
$<211>$ LENGTH: 32
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Construct
$<400>$ SEQUENCE: 68
aaggagatat accaatggcc tcctccgagg ac

```
<210> SEQ ID NO 69
<211> LENGTH: 29
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 69
```

tattcattac tacaggaaca ggtggtggc
$<210>$ SEQ ID NO 70
$<211>$ LENGTH: 772
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Construct
$<400>$ SEQUENCE: 70gaaattaata cgactcacta tagggagacc acaacggttt ccctctagaa ataattttgt60
ttaactttaa gaaggagata taccaatgge ctcctccgag gacgtcatca aggagttcat 120
gcgettcaag gtgcgcatgg agggctccgt gaacggccac gagttcgaga tcgagggcga 180
gggegagggc cgcccctacg agggcaccca gaccgccaag ctgaaggtga ccaagggegg 240
ccccctgccc ttcgcctggg acatcctgtc cccccagttc cagtacggct ccaaggtgta 300

<210> SEQ ID NO 71
<211> LENGTH: 750
<212> TYPE: RNA
$<213>$ ORGANISM: Artificial
<220> FEATURE:
<223 > OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 71
gggagaccac aacgguuucc cucuagaaau aauuuuguuu aacuuuaaga aggagauaua 60
ccaauggceu ccuccgagga cgucaucaag gaguucauge gcuucaaggu gcgcauggag 120
ggcuccguga acggccacga guucgagauc gagggcgagg gcgagggccg ccccuacgag 180
ggcacccaga ccgccaagcu gaaggugacc aagggcggce cccugcccuu cgccugggac 240
auccugucec cecaguucea guacggcucc aagguguacg ugaagcacce cgecgacauc 300
cccgacuaca agaagcuguc cuuccccgag ggcuucaagu gggagcgegu gaugaacuuc 360
gaggacggeg geguggugac cgugacceag gacuccucce ugcaggacgg cuccuucauc 420
uacaagguga aguucaucgg cgugaacuuc cccuccgacg gccecguaau gcagaagaag 480
acuaugggcu gggaggccuc caccgagegc cuguacccce gegacggegu gcugaaggge 540
gagauccaca aggcccugaa gcugaaggac ggcggccacu accuggugga guucaagucc 600
aucuacaugg ccaagaagec cgugcagcug cecggcuacu acuacgugga cuccaagcug 660
gacaucaccu cecacaacga ggacuacacc aucguggagc aguacgageg cgcegagggc 720

cgccaccacc uguuccugua guaaugaaua	750

$<210>$ SEQ ID NO 72
$<211>$ LENGTH: 59
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Construct
$<400>$ SEQUENCE: 72
aaggagatat accaatgggg cgtgatgcga aagctgaccc tgcctcctcc gaggacgtc
$<210>$ SEQ ID NO 73
$<211>$ LENGTH: 796
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Construct
$<400>$ SEQUENCE : 73
ccacgagttc gagatcgagg gcgagggega gggccgccec tacgagggca cccagaccgc 240
caagetgaag gtgaccaagg geggeccect gccettcgec tgggacatec tgtcecceca 300
gttccagtac ggctccaagg tgtacgtgaa gcacccogcc gacatccocg actacaagaa 360
getgtcettc cccgaggget tcaagtggga gcgegtgatg aacttcgagg acggcggegt 420
ggtgaccgtg acccaggact cctccctgca ggacggctcc ttcatctaca aggtgaagtt 480
catcggcgtg aacttccect ccgacggcec cgtaatgcag aagaagacta tgggctggga 540
ggcctccacc gagcgcetgt acccccgega cggcgtgctg aagggcgaga tccacaaggc 600
cctgaagctg aaggacggcg gccactacct ggtggagttc aagtccatct acatggccaa 660
gaagccegtg cagctgcceg gctactacta cgtggactcc aagctggaca tcacctccca 720
caacgaggac tacaccatcg tggagcagta cgagcgcgce gagggccgcc accacctgtt 780
cctgtagtaa tgaata 796
<210> SEQ ID NO 74
<211> LENGTH: 774
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Construct
$<400>$ SEQUENCE: 74
gggagaccac aacgguuucc cucuagaaau aauuuuguuu aacuunaaga aggagauaua 60
ccaauggggc gugaugcgaa agcugacccu gccuccuccg aggacgucau caaggaguuc 120
augcgcuuca aggugcgcau ggagggcucc gugaacggce acgaguucga gaucgagggc 180
gagggcgagg gccgccccua cgagggcacc cagaccgcca agcugaaggu gaccaagggc 240
ggcceccugc ccuucgccug ggacauccug uccccccagu uccaguacgg cuccaaggug 300
uacgugaage accccgcega cauccccgac uacaagaage uguccuucce egagggcuuc 360
aagugggage gcgugaugaa cuucgaggac ggcggcgugg ugaccgugac ccaggacucc 420
ucccugcagg acggcuccuu caucuacaag gugaaguuca ucggcgugaa cuuccccucc 480
gacggccccg uaaugcagaa gaagacuaug ggcugggagg ccuccaccga gcgccuguac 540
ccccgegacg gcgugcugaa gggcgagauc cacaaggcec ugaagcugaa ggacggcggc 600
cacuaccugg uggaguucaa guccaucuac auggceaaga agcecgugca gcugcecggc 660
uacuacuacg uggacuccaa gcuggacauc accucccaca acgaggacua caccaucgug 720
gagcaguacg agcgcgcega gggccgccac caccuguuce uguaguaang aaua 774
<210> SEQ ID NO 75

$<211>$ LENGTH: 47

<212> TYPE: DNA

<213> ORGANISM: Artificial

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Construct

<400> SEQUENCE: 75
aaggagatat accaatgagg ggaaacccag cetcctcoga ggacgtc

```
<210> SEQ ID NO 76
<211> LENGTH: 784
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
```


<210> SEQ ID NO 78
<211> LENGTH: 44
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 78

```
<210> SEQ ID NO 79
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 79
```

caccaagctt atgtacgtga gatttgaggt tcc

```
<210> SEQ ID NO 80
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 80
```

ccgctcgagc ttctgaagge ctttaattct tc
$<210>$ SEQ ID NO 81
$<211>$ LENGTH: 45
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Construct
$<400>$ SEQUENCE: 81
gggcgtgatg cgaaagctga ccctgtgagc aagggcgagg agctg
$<210>$ SEQ ID NO 82
$<211>$ LENGTH: 21
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: SYnthetic Construct
$<400>$ SEQUENCE: 82
catggtggcg accggtggat $\mathrm{c} \quad 21$
$<210>$ SEQ ID NO 83
$<211>$ LENGTH: 33
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Construct
$<400>$ SEQUENCE: 83
aggggaaacc cagtgagcaa gggcgaggag ctg
$<210>$ SEQ ID NO 84
$<211>$ LENGTH: 5493
$<212>$ TYPE: DNA.
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE :
$<223>$ OTHER INFORMATION: Synthetic Construct
$<400>$ SEQUENCE: 84
gacggatcgg gagatctcce gatccectat ggtgcactct cagtacaatc tgetctgatg 60
ccgcatagtt aagccagtat ctgctccetg cttgtgtgtt ggaggtcgct gagtagtgcg 120
cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 180
ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg egttgacatt 240
gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata 300

029 I	จee6eee66s	66e6707706	67 ¢フロロ666	766ロ67e666	$67067 e 0660$	р6едеede6e
09ST	e66．67 9668	66666eeobe	จe66eo6666	7666676666	667077 ¢7ロ7	7セอ76766ед
00st．	6 6 6707677e	2607e．567e	ee66e67eee	еาеยวロอ777	007670e000	70 ¢0． 7666
OももT	e6670．0e67	7007700676	000007000	6777677670	7e006e0っ67	7ธе70770จ6
08\＆L	7670e60700	6eっาe67o6o	จorer7776e			766ооедеっ6
0 乙ยT	วセ7ee6707	66ebeebest	จายจวจeeee	eจee6จコ700	จ666を6セ7จ7	6ebっาจ6eeb
097t	セอ77ロか66ex	еาวย6еe6e6	67677006ee	667706e66e	еебеб7ロ6е6	e666eboees
00ZT	qеeqе606es	6607706：57	ع006766e67	7806667670	666er66770	deborebeed
OETT	6evee7760e	777セอย7600	676дее6ееб	e66e6o6707	0070000670	7e：7067760
080 T	7 7 ¢e670．060	จoe67767e6	6e6ep6ozes	ع7776：706e	еe：6670e66	66e6e66767
0 ZOT	っ66eepor6s	e6eboeepoe	766eee6eee	766 era 6606	е6セ666ャ7า6	Бее6е66до6
096	$7076 \cup 67070$	6eeboeebep	6ュe．e66e67	จงュ766セ677	ұебе6ュ6จед	
006	ว6еวจ66аจ6	еยวっขe6eb6	6eaeqoepas	eboeaeezae	セeถจュeวコロ6	67ロセวาจ6วロ
078	ยวจっขe6e6e	q－eยาจ6670	70706e6eo6	セセายวยาจุ6	6e666a66pe	7676066 ¢ 76
084	6．6．667eees	6จe6a eoso	จ6จっาวeepe	セาธจา6ายeย	セงッフาวจe6．6	Бovesaeeee
OZL	จっeっ667777	6ュココ6e6667		セอロロロセロロ70	76セeจロコフコе	6666pepape
099	баコา6606e7	e667606667	eepzepez6e	¢667ココ7660	бュебаб6дер	จセวาセวロ6๐7
009	еロ76е77e76	จе7จาере76	еャ66д7อе70	จ7770e6667		еาберорбде
0¢5	ココеっ6670っ6	рор667еет7	660 ебдеер7	6оебдコедор	рор6оед6er	จобұеาерาе
087	7676еео7ео	ع76e066770	e000670eee	7660 т77е7	$6 \times 6676667 e$	セоา6๐セбาวย
OZも	จ๑777อย666	едеedoboee	76еұеロロロ77	67е76จе67е	еұеャอา6จe6	77×0006000
09ε	จoย6oeeod	600e670667	206000667e	еยา66๐e770	еャาе๐еา76๐	600776 E 667
00ε	еาетероо6е	ュеจวา6ет7е	จ76666．¢า7	еeодекд6eq	еャ77セ7า6е7	จセ677е7วย6
	วายอย6776๐	6oeqeqe6es	จ6660e767e	6060770670	6067777606	6e77666e77
081	－6707ee6er	67eo677ees	セ60．e67706	Geeo66eede	eorqo6erq7	7ееееобе6о
OZT	$6 \bigcirc 676$ ¢ 6 ¢ 6	$7060766 ¢ 66$	7767676770	6700070670	7eq6epo6ee	
09	67е6707067	sqeepeq6es	7070อจ6766	7セ70จ：จวย6	จ0っ707e6e6	

H
TETDTまTコオ甘 ：WSINZDさO＜とIて＞
ZNG ：تुdXL＜ZTZ＞ Z8LS ：HLDNHT＜TTZ＞ s8 ON GI ÖHS＜OtZ＞

pənuṭ コuロッ－

 98 ：GDNA

ZNG ：島dス山＜ZTて＞
LGLも ：HLSNGT＜TIZ＞ 98 ON aI ÖS＜OIZ＞

D7 6ov6дopeos 6абevev6os

 де6．6．еечาб จердจееееб จее6．

 pənuț дuoŋ－

 6e66777777 จ66e66e676 е76ee6e．07 7e706e6707 006607006っ จ66e60066e 6eっ67е777е 77777777ее 70e670667е จ000600707 7е00060077 6e00060070

 จっっБจยาеยр จ666．

 дาеердрдер бдербееерб ұедбееберб берберород оббероррдб еееббдбдб6

ataagcagag ctggtttagt gaaccgtcag atccgctagc gctaccggac tcagatctcg 4680
agctcaagct tcgaattctg cagtcgacgg taccgcgggc cogggatcca coggtcgeca 4740
ccatg
ccatg 4745 4745
<210> SEQ ID NO 88

<211> LENGTH: 17

<212> TYPE: DNA

<213> ORGANISM: Artificial

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Construct

<400> SEQUENCE: 88
caaggaggac ggcaaca

```
<210> SEQ ID NO }8
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: }8
```

cettgatgcc gttcttctgc
<210> SEQ ID NO 90
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223 ○ OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 90
agccacatcg ctcagacac
<210> SEQ ID NO 91
<211> LENGTH: 19
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 91
gcceaatacg accaaatcc

```
<210> SEQ ID NO 92
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: }9
```

ccggggatcc tctagagtc

```
<210> SEQ ID NO 93
<211> LENGTH: 61
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 93
```

```
<210> SEQ ID NO 94
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: }9
gctaatacga ctcactatag g
<210> SEQ ID NO 95
<211> LENGTH: 18
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 95
```

coggggatcc tetagagt
$<210\rangle$ SEQ ID NO 96
<211> LENGTH: 61
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 96
ccggggatcc tctagagtcg gggcagcttt cgcatgacge cetatagtga gtcgtattag 60
C

```
<210> SEQ ID NO 97
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 97
```

ccggggatcc tctagagtc
$<210>$ SEQ ID NO 98
$<211>$ LENGTH: 92
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Construct
$<400>$ SEQUENCE: 98
gggagaccac aacgguuucc cucuagaaau aauuuuguuu aacuuuaaga aggagauaua 60
ccaaugguga gcaagggcga ggagcuguuc ac 92
$<210>$ SEQ ID NO 99
$<211>$ LENGTH: 91
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Construct
$<400>$ SEQUENCE : 99

```
<210> SEQ ID NO 100
<211> LENGTH: 91
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 100
```

gggagaccac aacgguuucc cucgggeguc augcgaaage ugccccagaa ggagauauac 60
caauggugag caagggegag gagcuguuca c 91
<210> SEQ ID NO 101
<211> LENGTH: 78
$<212>$ TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 101
gggagaccac aacgguuucc cucggggaaa cecagaagga gauauaccaa uggugagcaa 60
gggcgaggag cuguucac 78
<210> SEQ ID NO 102
$<211>$ LENGTH: 94
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE.
<223 > OTHER INFORMATION: Synthetic Construct
$<400>$ SEQUENCE: 102
gggagaccac aacgguuuce cucgggcgug augcgaaagc ugacccuuaa gaaggagaua 60
uaccaauggu gagcaagggc gaggagcugu ucac 94

```
<210> SEQ ID NO 103
<211> LENGTH: 98
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 103
```

gggagaccac aacgguuucc cucgggcgug augcgaaage ugacccaacu uuaagaagga 60
gauauaccaa uggugagcaa gggcgaggag cuguucac 98

```
<210> SEQ ID NO 104
<211> LENGTH: 102
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 104
```

gggagaccac aacgguuucc cucgggcgug augcgaaage ugacccguuu aacuunaaga $\quad 60$
aggagauaua ccaaugguga gcaagggega ggagcuguuc ac 102

```
<210> SEQ ID NO 105
<211> LENGTH: 122
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
```

$<400>S E Q U E N C E: 105$	
ggauugcgaa ccaauuuagc auuuguuggc uaaaugguuu cgcaaugaac uguuaauaaa	60
caaauuuuuc uunguaugug aucuuncgug ugggucacca cugcaaauaa ggauauaaaa	120
ug	122

<210> SEQ ID NO 106
<211> LENGTH: 79
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
$<223>$ OTHER INFORMATION: SYnthetic Construct
$<400>$ SEQUENCE: 106
gggagaccac aacgguuuce cucggcguau gugaucuuuc guguggguca ccacugcgec 60
$\begin{array}{ll}\text { agaaggagau auaccaaug } & 79\end{array}$
<210> SEQ ID NO 107
<211> LENGTH: 79
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 107
gggagaccac aacgguuucc cucggcguau gugaucuunc auguggguca ccacugcgcc 60
agaaggagau auaccaaug 79

```
<210> SEQ ID NO 108
<211> LENGTH: 116
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 108
```

gggagaccac aacgguuucc cucuagaaau aauuuuguuu aacuuuaaga aggagauaua 60
ccaauggggc gugaugcgaa agcugacccu gugagcaagg gcgaggagcu guucac 116
<210> SEQ ID NO 109
<211> LENGTH: 104
<212> TYPE: RNA
$<213>$ ORGANISM: Artificial
<220> FEATURE:
<223 > OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 109
gggagaccac aacgguuucc cucuagaaau aauuuuguuu aacuuuaaga aggagauaua 60
ccaaugaggg gaaacccagu gagcaagggc gaggagcugu ucac 104
$<210>$ SEQ ID NO 110
$<211>$ LENGTH: 122
$<212>$ TYPE: RNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic Construct
$<400>$ SEQUENCE : 110gggagaccac aacgguuucc cucuagaaau aauuuuguuu aacuuuaaga aggagauaua60
ccaaugggge gugaugcgaa agcugacccu gccuccuccg aggacgucau caaggaguuc 120
au 122

```
<210> SEQ ID NO 111
<211> LENGTH: 110
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 111
gggagaccac aacgguuucc cucuagaaau aauuuuguuu aacuunaaga aggagauaua 60
ccaaugaggg gaaacccagc cuccuccgag gacgucauca aggaguucau 110
<210> SEQ ID NO 112
<211> LENGTH: }9
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 112
gggagaccac aacgguuucc cucuagaaau aauuuuguuu aacuunaaga aggagauaua }6
ccaauggccu ccuccgagga cgucaucaag gaguucau 98
<210> SEQ ID NO 113
<211> LENGTH: 50
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 113
gggugcuucg agcguaggaa gaaagccggg ggcugcagau aauguauagc

The invention claimed is:
1. An isolated non-naturally occurring mRNA encoding a protein comprising an RNA-protein complex interacting motif nucleotide sequence incorporated \(5^{\prime}\) to a ribosomebinding site in a position 2 to 10 bases distant from the ribosome-binding site or within the 5 ' region of an open reading frame, wherein the interacting motif comprises nucleic acid sequence SEQ ID NO:9, wherein an RNA-protein complex of the interacting motif and L7Ae protein has a dissociation constant Kd of approximately 0.1 nM to approximately \(1 \mu \mathrm{M}\) between the motif and L7Ae and the interacting motif interacts with L7Ae protein.
2. An RNA-protein complex comprising an mRNA according to claim 1 and a protein specifically binding to the nucleotide sequence.
3. A translational regulatory kit comprising an mRNA according to claim 1 and a protein specifically binding to the nucleotide sequence.
4. A method for translational regulation of mRNA, com- 55 prising contacting the mRNA according to claim 1 with a protein specifically binding to the RNA-protein complex interacting motif nucleotide sequence.
5. An artificial information conversion method which converts input information of an arbitrary substrate protein to output information of an arbitrary target protein using an

55
mRNA according to claim 1, comprising steps of
preparing the mRNA of claim 1 having an open reading frame encoding the arbitrary target protein; and
contacting the mRNA with the substrate protein that specifically binds to the RNA-protein complex interacting motif nucleotide sequence.
6. A plasmid vector comprising a nucleic acid sequence encoding an mRNA according to claim 1.
7. An intracellular translational regulatory kit comprising
a first plasmid vector comprising a nucleic acid sequence encoding an mRNA according to claim 1, and
a second plasmid vector comprising a nucleic acid sequence encoding a protein specifically binding to the RNA-protein complex interacting motif nucleotide sequence.
8. The kit according to claim 7, for regulating protein translation in a human cancer cell.```


[^0]:    * cited by examiner

