

US012338443B2

(12) **United States Patent**
Imayoshi et al.

(10) **Patent No.:** US 12,338,443 B2
(45) **Date of Patent:** Jun. 24, 2025

(54) **PHOTOACTIVATABLE TET EXPRESSION CONTROL SYSTEM**

(71) **Applicant:** JAPAN SCIENCE AND TECHNOLOGY AGENCY, Saitama (JP)

(72) **Inventors:** Itaru Imayoshi, Kyoto (JP); Mayumi Yamada, Kyoto (JP); Yusuke Suzuki, Kyoto (JP); Shinji Nagasaki, Kyoto (JP)

(73) **Assignee:** JAPAN SCIENCE AND TECHNOLOGY AGENCY, Saitama (JP)

(*) **Notice:** Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 1099 days.

(21) **Appl. No.:** 17/271,037

(22) **PCT Filed:** Aug. 30, 2019

(86) **PCT No.:** PCT/JP2019/034217

§ 371 (c)(1),
(2) Date: Feb. 24, 2021

(87) **PCT Pub. No.:** WO2020/045651

PCT Pub. Date: Mar. 5, 2020

(65) **Prior Publication Data**

US 2021/0340548 A1 Nov. 4, 2021

(30) **Foreign Application Priority Data**

Aug. 31, 2018 (JP) 2018-163617

(51) **Int. Cl.**

C12N 15/62 (2006.01)
C07K 14/47 (2006.01)
C12N 15/63 (2006.01)

(52) **U.S. Cl.**

CPC C12N 15/62 (2013.01); C07K 14/4702 (2013.01); C12N 15/63 (2013.01)

(58) **Field of Classification Search**

CPC C12N 15/62; C12N 15/63; C12N 15/66; C12N 15/635; C07K 14/4702

See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

2015/0291966 A1* 10/2015 Zhang C12N 15/63
2018/0245097 A1* 8/2018 Vogel C12Q 1/6897

FOREIGN PATENT DOCUMENTS

WO 2015/041219 A1 3/2015

OTHER PUBLICATIONS

Urlinger, S. et al. "The p65 domain from NF- κ B is an efficient human activator in the tetracycline-regulatable gene expression system." Gene, vol. 247 (Feb. 21, 2000), pp. 103-110 (Year: 2000).*

Konermann, S. et al. "Optical control of mammalian endogenous transcription and epigenetic states." Nature, vol. 500, No. 7463 (2013), pp. 472-476. (Year: 2013).*

Scholz, O. et al. "Activity reversal of Tet repressor caused by single amino acid exchanges". Molecular Microbiology, vol. 53, No. 3 (2004), pp. 777-789 (Year: 2004).*

Henßler, E-M. et al. "Tet repressor mutants with altered effector binding and allostery". The FEBS Journal, vol. 272 (2005), pp. 4487-4496 (Year: 2005).*

Chan, Y-B. et al. "Optogenetic control of gene expression in *Drosophila*". PLOS One, vol. 10, No. 9 (2015), p. e0138181. (Year: 2015).*

Kaberniuk, A.A. et al. "A bacterial phytochrome-based optogenetic system controllable with near-infrared light" Nature Methods, vol. 13, No. 7 (Jul. 2016), pp. 591-597. (Year: 2016).*

Spangler, S.M. et al. "Optogenetic approaches for dissecting neuromodulation and GPCR signaling in neural circuits". Current Opinion in Pharmacology, vol. 32 (2017), pp. 56-70. (Year: 2017).*

Mansouri, M. et al. "Light-controlled mammalian cells and their therapeutic applications in Synthetic Biology". Advanced Science, vol. 6 (2019), p. 1800952. (Year: 2019).*

Hughes, R. "A compendium of chemical and genetic approaches to light-regulated gene transcription". Critical Reviews in Biochemistry and Molecular Biology, vol. 53, No. 5 (Jul. 2018), pp. 453-474. (Year: 2018).*

Japan Patent Office, "International Search Report for PCT Application No. PCT/JP2019/034217", Japan, Dec. 3, 2019.

Das, Atze T. et al., "Tet-On Systems for Doxycycline-inducible Gene Expression", Current Gene Therapy, 2016, 16, pp. 156-167.

Imayoshi, Itaru et al., "Oscillatory Control of Factors Determining Multipotency and Fate in Mouse Neural Progenitors", Science, vol. 342, 2013, pp. 1203-1208.

Imayoshi, Itaru et al., "bHLH Factors in Self-Renewal, Multipotency, and Fate Choice of Neural Progenitor Cells", Neuron 82, 2014, pp. 9-23.

(Continued)

Primary Examiner — Neil P Hammell

Assistant Examiner — Alexandra Geraldine Dace Denito

(74) **Attorney, Agent, or Firm** — Troutman Pepper Locke LLP; Tim Tingkang Xia, Esq.

(57) **ABSTRACT**

The present invention provides a photoactivatable Tet-OFF/ON system that can precisely control temporal and spatial gene expression. The present invention is a PA-Tet-OFF/ON system that includes a target gene expression cassette including a TRE having a TetO sequence, a promoter which is controlled by the TRE, and a target gene whose expression is controlled by the promoter; a first fusion protein expression cassette containing a gene which encodes a first fusion protein containing TetR or rTetR and a first protein; and a second fusion protein expression cassette containing a gene which encodes a second fusion protein containing p65AD and a second protein, in which the first protein and the second protein bind to each other to form a heterodimer only in a state of being irradiated with light at a specific wavelength.

12 Claims, 16 Drawing Sheets

Specification includes a Sequence Listing.

(56)

References Cited

OTHER PUBLICATIONS

Duan, Liting et al., "Understanding CRY2 interactions for optical control of intracellular signaling", *Nature Communications*, 8: 547, 2017.

Jeong Rae-Dong et al., "Cryptochrome 2 and phototropin 2 regulate resistance protein-mediated viral defense by negatively regulating an E3 ubiquitin ligase", *PNAS*, Jul. 27, 2010, vol. 107, No. 30, 13538-13543.

Keller, Mercedes M. et al., "Cryptochrome 1 and phytochrome B control shadeavoidance responses in *Arabidopsis* via partially independent hormonal cascades", *The Plant Journal* (2011) 67, 195-207.

Wu, Liang et al., "Cryptochrome 1 is Implicated in Promoting R Protein-Mediated Plant Resistance to *Pseudomonas syringae* in *Arabidopsis*", *Molecular Plant*, vol. 3, No. 3, pp. 539-548, 2010.

Yu, Xuhong et al., "The Cryptochrome Blue Light Receptors", *The Arabidopsis Book*, 2010, vol. 8, Article No. e0135.

Kennedy, Matthew J. et al., "Rapid blue-light-mediated induction of protein interactions in living cells, *nature methods*", vol. 7, No. 12, 2010, pp. 973-975.

Liu, Xu et al., "Optogenetic stimulation of a hippocampal engram activates fear memory recall", *Nature*, vol. 484, 2012, pp. 381-385.

Taslimi, Amir et al., "Optimized second-generation CRY2-CIB dimerizers and photoactivatable Cre recombinase", *Nature Chemical Biology*, vol. 12, 2016, pp. 425-430.

Szulc, Jolanta et al., "A versatile tool for conditional gene expression and knockdown", *Nature Methods*, vol. 3, No. 2, 2006, pp. 109-116.

Wang, Xue et al., "Spatiotemporal control of gene expression by a light-switchable transgene system", *Nature Methods*, vol. 9, No. 3, 2012, pp. 266-269.

Hallett, Ryan A. et al., "Correlating in Vitro and in Vivo Activities of Light-Inducible Dimers: A Cellular Optogenetics Guide", *ACS Synth. Biol.* 2016, 5, pp. 53-64.

Mizushima, Seiichi et al., "pEF-BOS, a powerful mammalian expression vector", *Nucleic Acids Research*, vol. 18, No. 17, 1990, p. 5322.

Masamizu, Yoshito et al., "Real-time imaging of the somite segmentation clock: Revelation of unstable oscillators in the individual presomitic mesoderm cells", *PNAS*, 2006, vol. 103, No. 5, pp. 1313-1318.

Miyoshi, Hiroyuki, "Chapter 28 Gene Delivery to Hematopoietic Stem Cells Using Lentiviral Vectors, Gene Delivery to Mammalian Cells, vol. 2: Viral Gene Transfer Techniques", *Methods in Molecular Biology*, 2004, vol. 246, pp. 429-438.

Kawashima, Takashi et al., "Functional labeling of neurons and their projections using the synthetic activity-dependent promoter E-SARE", *Nature Methods*, vol. 10, No. 9, 2013, pp. 889-895.

Pédelacq, Jean-Denis et al., "Engineering and characterization of a superfolder green fluorescent protein", *Nature Biotechnology*, vol. 24, No. 1, Jan. 2006, pp. 79-88.

Nonaka, Mio et al., "Region-Specific Activation of CRTC1-CREB Signaling Mediates Long-Term Fear Memory", *Neuron* 84, 2014, pp. 92-106.

Okuno, Hiroyuki et al., "Inverse Synaptic Tagging of Inactive Synapses via Dynamic Interaction of Arc/Arg3.1 with CaMKII β ", *Cell*, 149, 886-898, 2012.

Isomura, Akihiro et al., "Optogenetic perturbation and bioluminescence imaging to analyze cell-to-cell transfer of oscillatory information", *Genes & Development*, 31:524-535.

Hand, Randal et al., "Phosphorylation of Neurogenin2 Specifies the Migration Properties and the Dendritic Morphology of Pyramidal Neurons in the Neocortex", *Neuron*, vol. 48, 45-62.

Peters, Andrew J. et al., "Emergence of reproducible spatiotemporal activity during motor learning", *Nature*, vol. 510, 2014, pp. 263-267.

Pathak, Gopal P. et al., "Benchmarking of Optical Dimerizer Systems", *ACS Synth. Biol.* 2014, 3, pp. 832-838.

Sano, Hiromi et al., "Striatal Medium Spiny Neurons Terminate in a Distinct Region in the Lateral Hypothalamic Area and Do Not Directly Innervate Orexin/Hypocretin- or Melanin-Concentrating Hormone-Containing Neurons", *The Journal of Neuroscience*, 2007, 27(26):6948-6955.

Kabernuik, Andrii A et al., "A bacterial phytochrome-based optogenetic system controllable with near-infrared light", *Nature Methods*, vol. 13, No. 7, Jul. 2016, pp. 591-597.

Redchuk, Taras A et al., "Near-infrared optogenetic pair for protein regulation and spectral multiplexing", *Nat Chem Biol*, 2017, 13(6): 633-639.

Redchuk, Taras A et al., "Near-infrared light controlled systems for gene transcription regulation, protein targeting and spectral multiplexing", *Nat Protoc*, 2018, 13(5): 1121-1136.

Müller, Konrad et al., "An Optogenetic Upgrade for the Tet-OFF System", *Biotechnology and Bioengineering*, Jul. 2015, vol. 112, No. 7, pp. 1483-1487.

Konermann, Silvana et al., "Optical control of mammalian endogenous transcription and epigenetic states", *Nature*, Aug. 2013, 500 (7463), pp. 472-476.

Imayoshi, Itaru et al., "Latest technologies and models for studying the brain development and reorganization structure, 4. Light control technology of gene expression and application to neural stem cell research", Aug. 2018, vol. 36, No. 12, pp. 2127-2132.

Yamada, Mayumi et al., "Light Control of the Tet Gene Expression System in Mammalian Cells", *Cell Reports*, Oct. 2018, vol. 25, No. 2, pp. 487-500.

* cited by examiner

FIG. 1

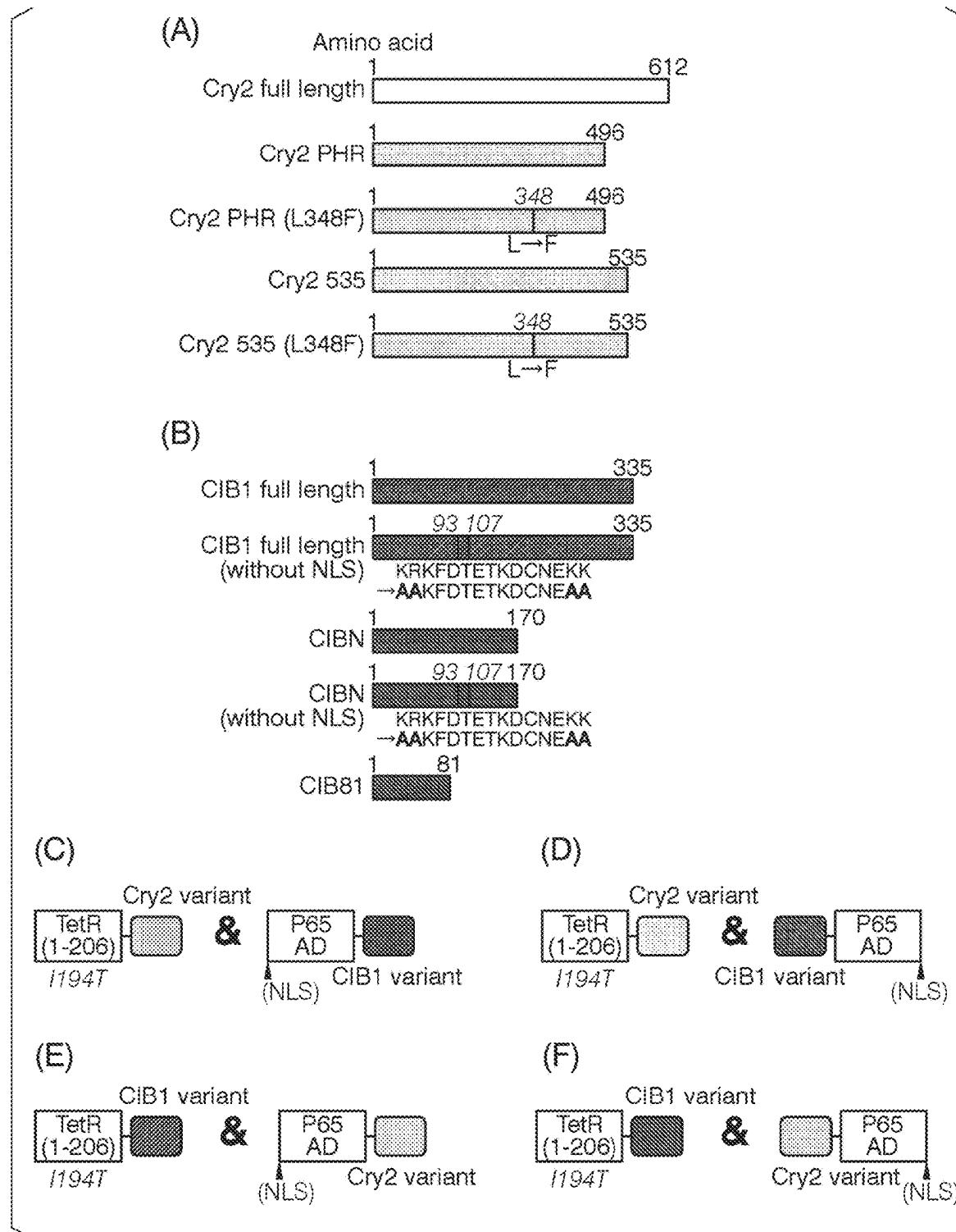


FIG. 2

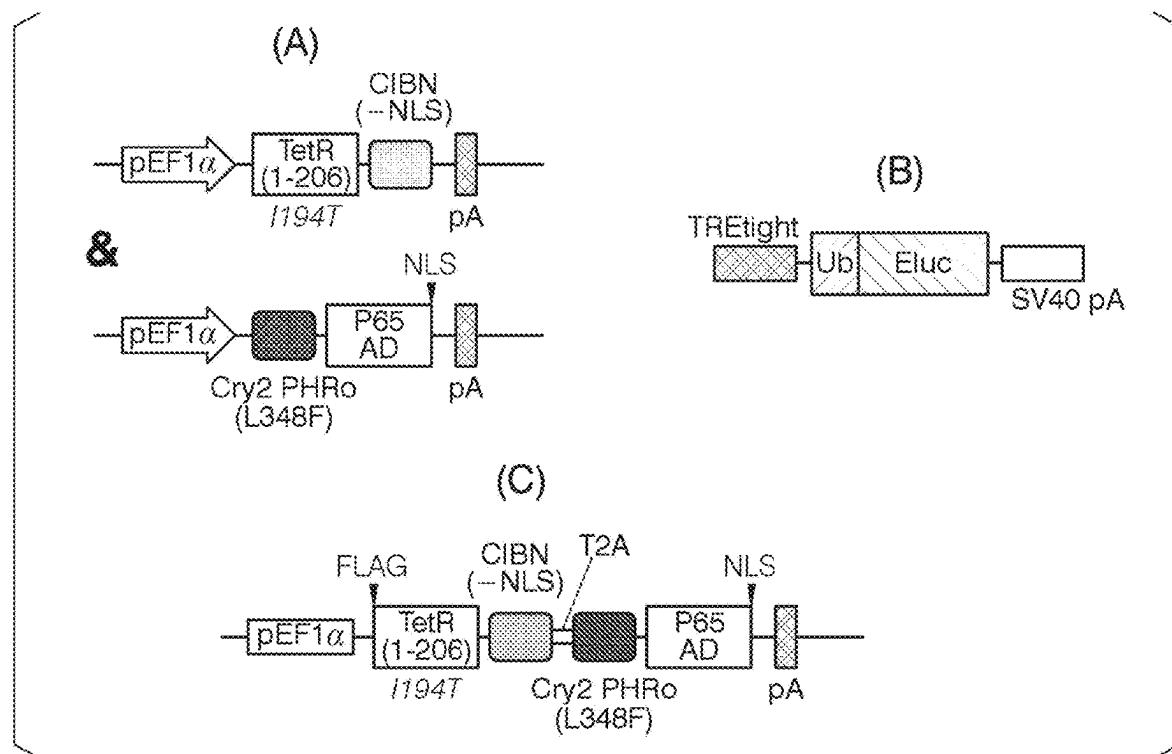


FIG. 3

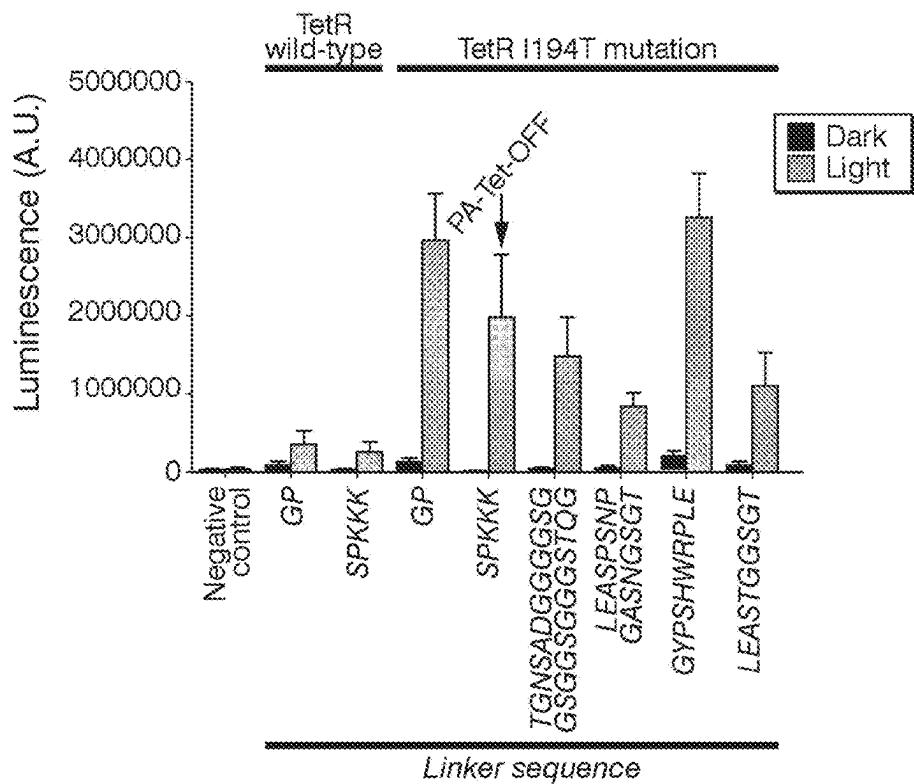


FIG. 4

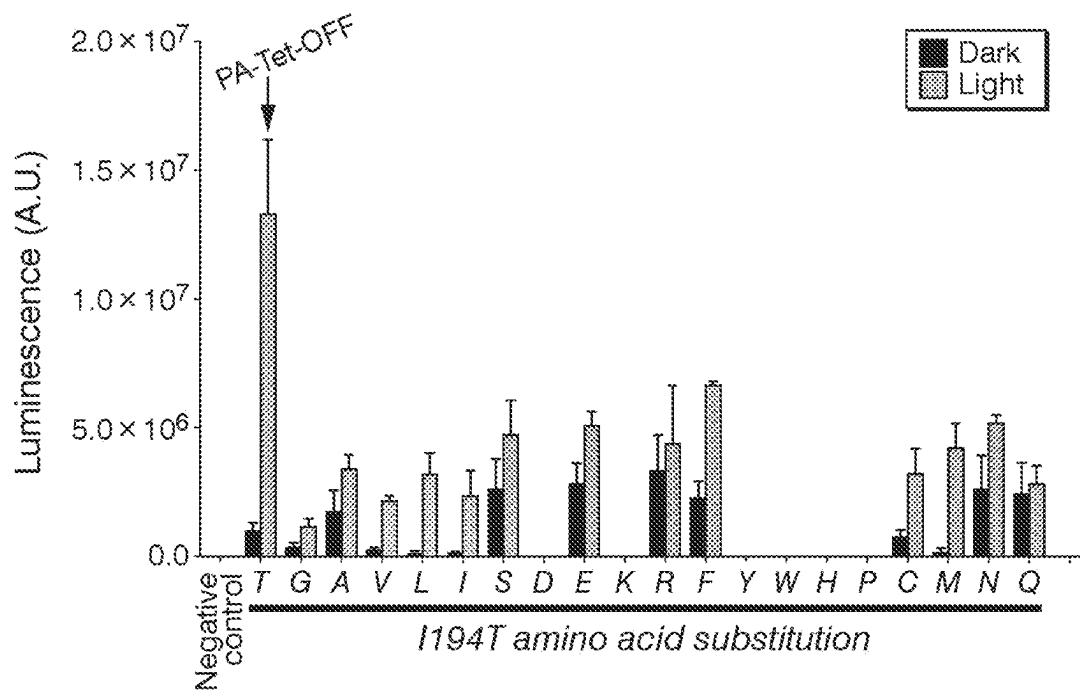


FIG. 5

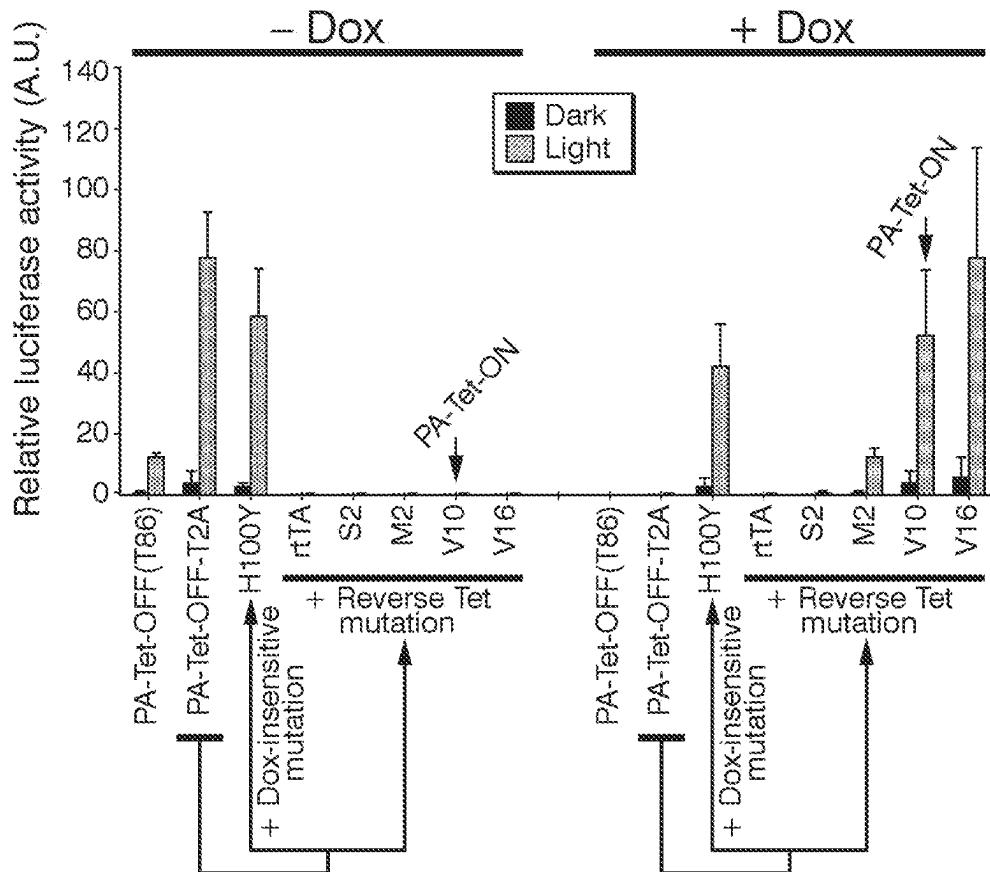


FIG. 6

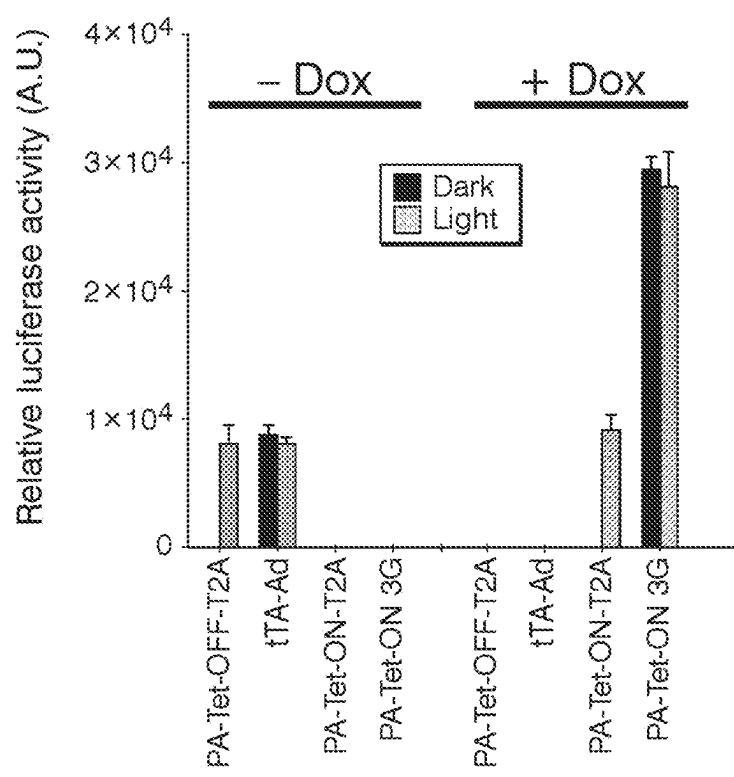


FIG. 7

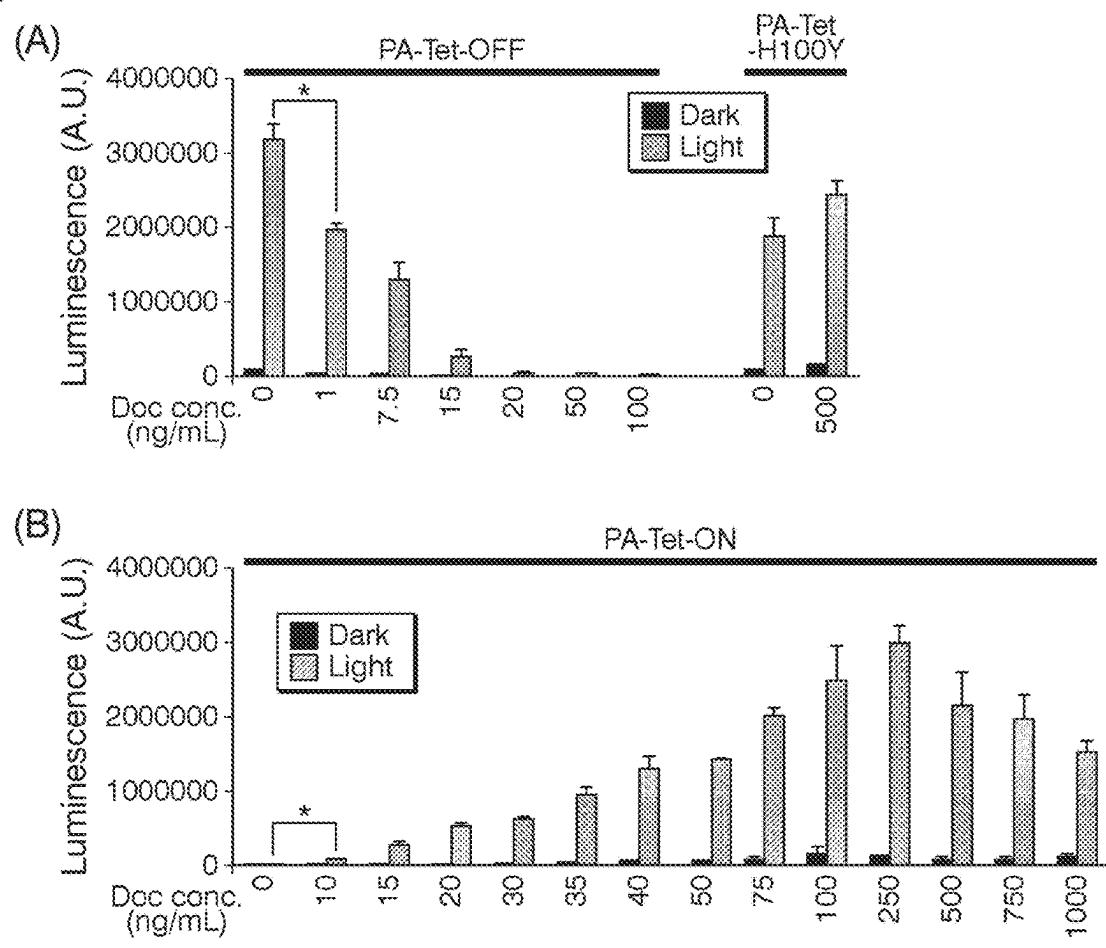


FIG. 8

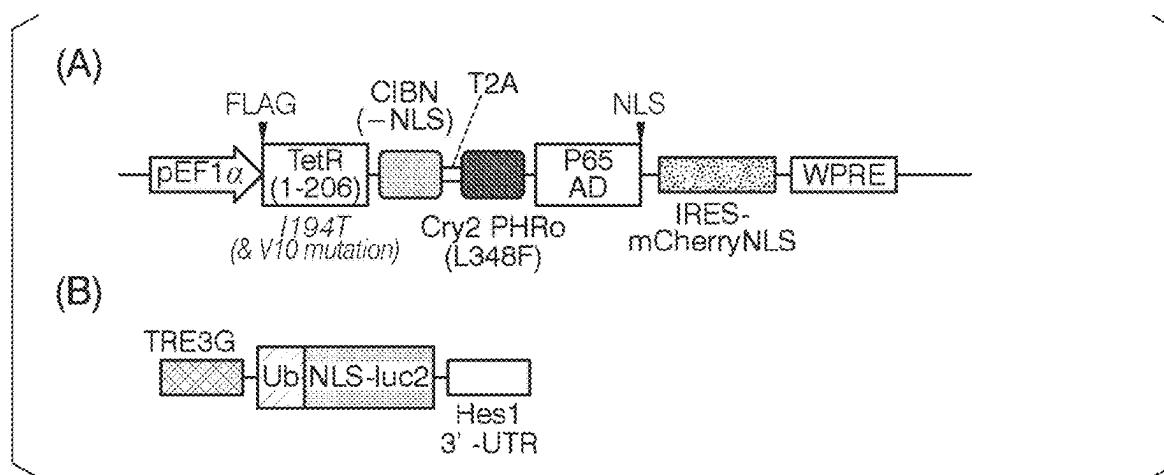


FIG. 9

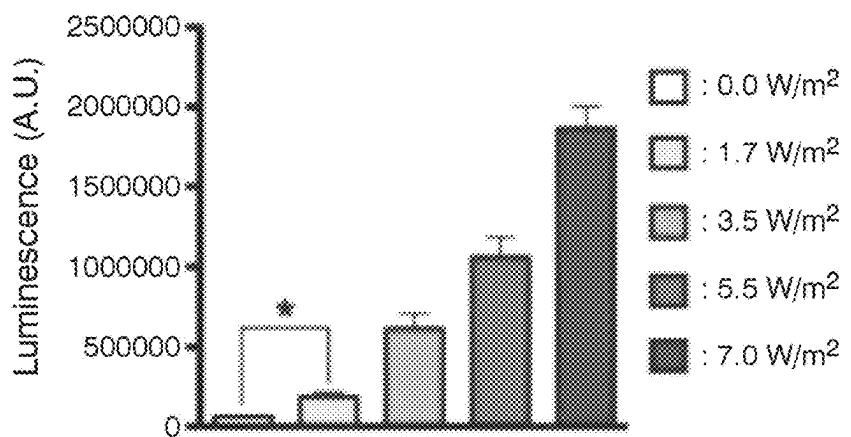


FIG. 10

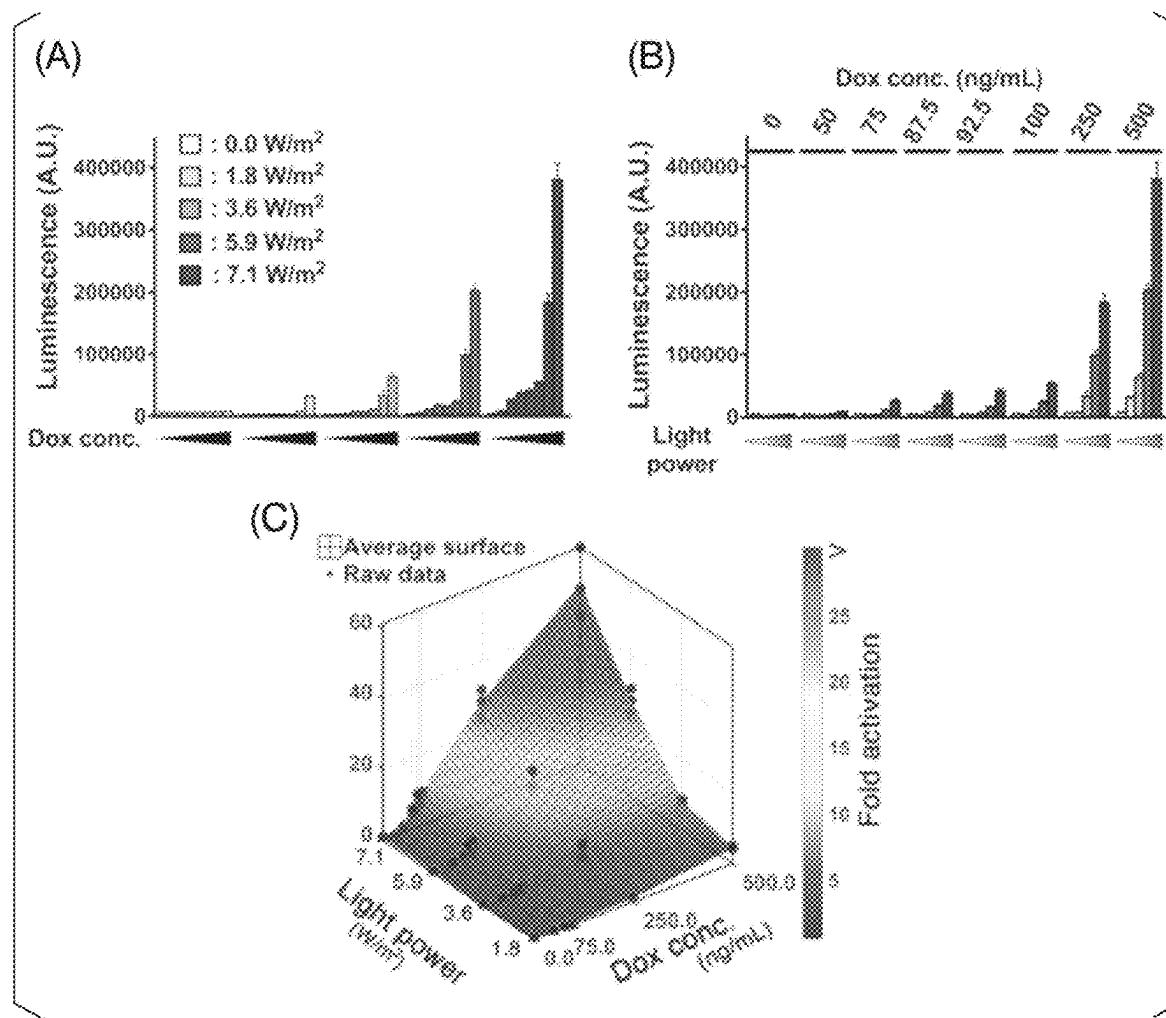


FIG. 11

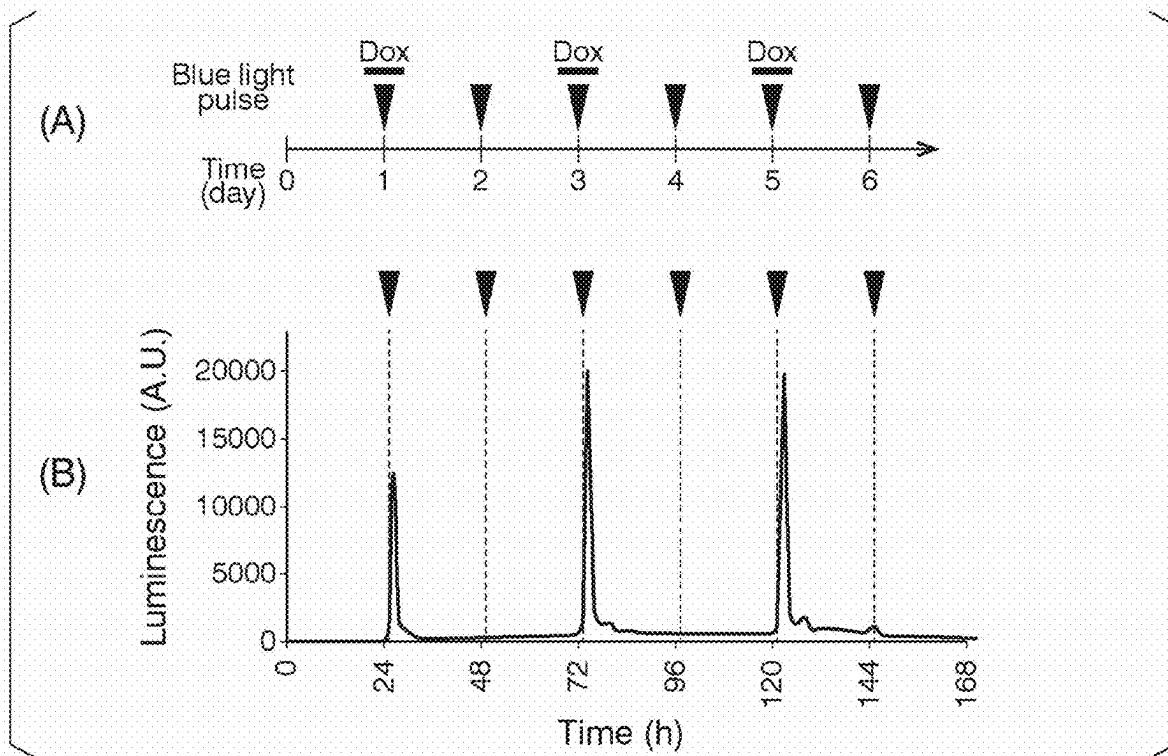


FIG. 12

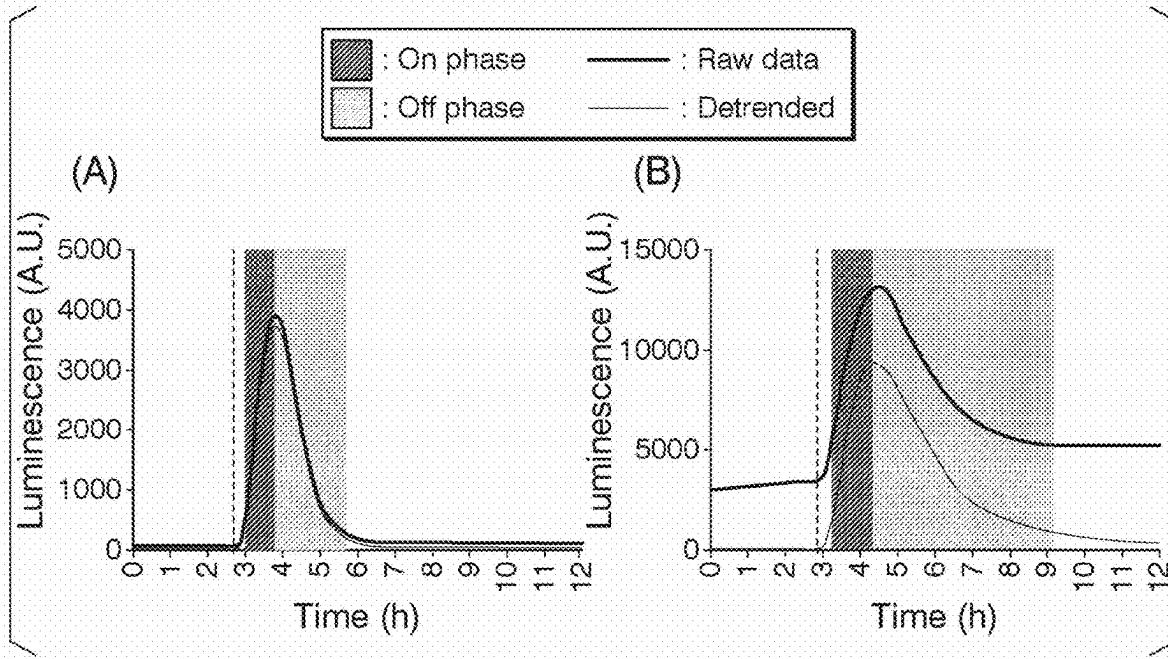


FIG. 13

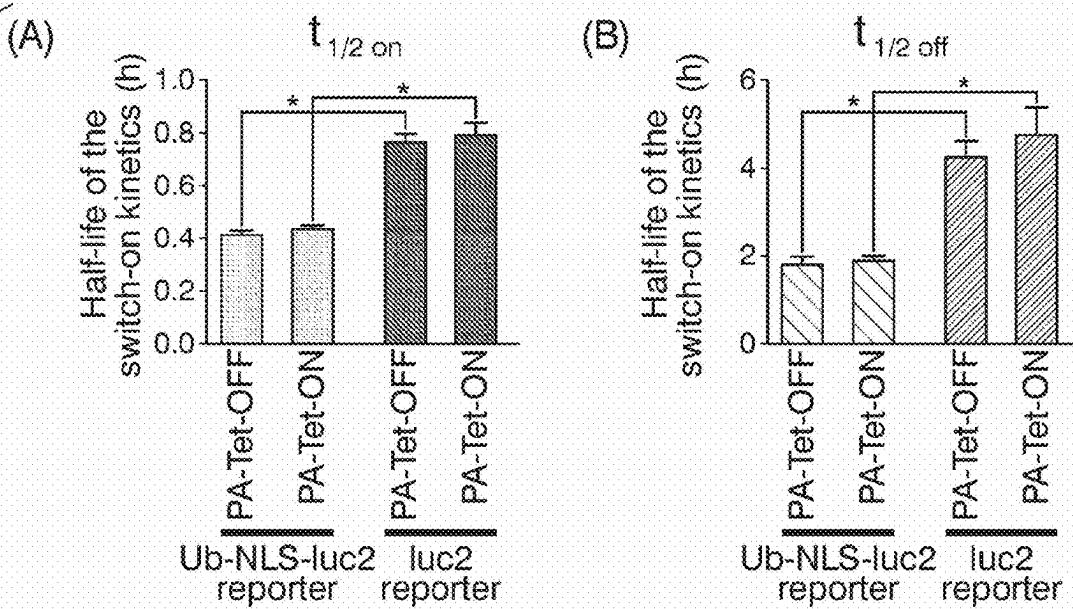


FIG. 14

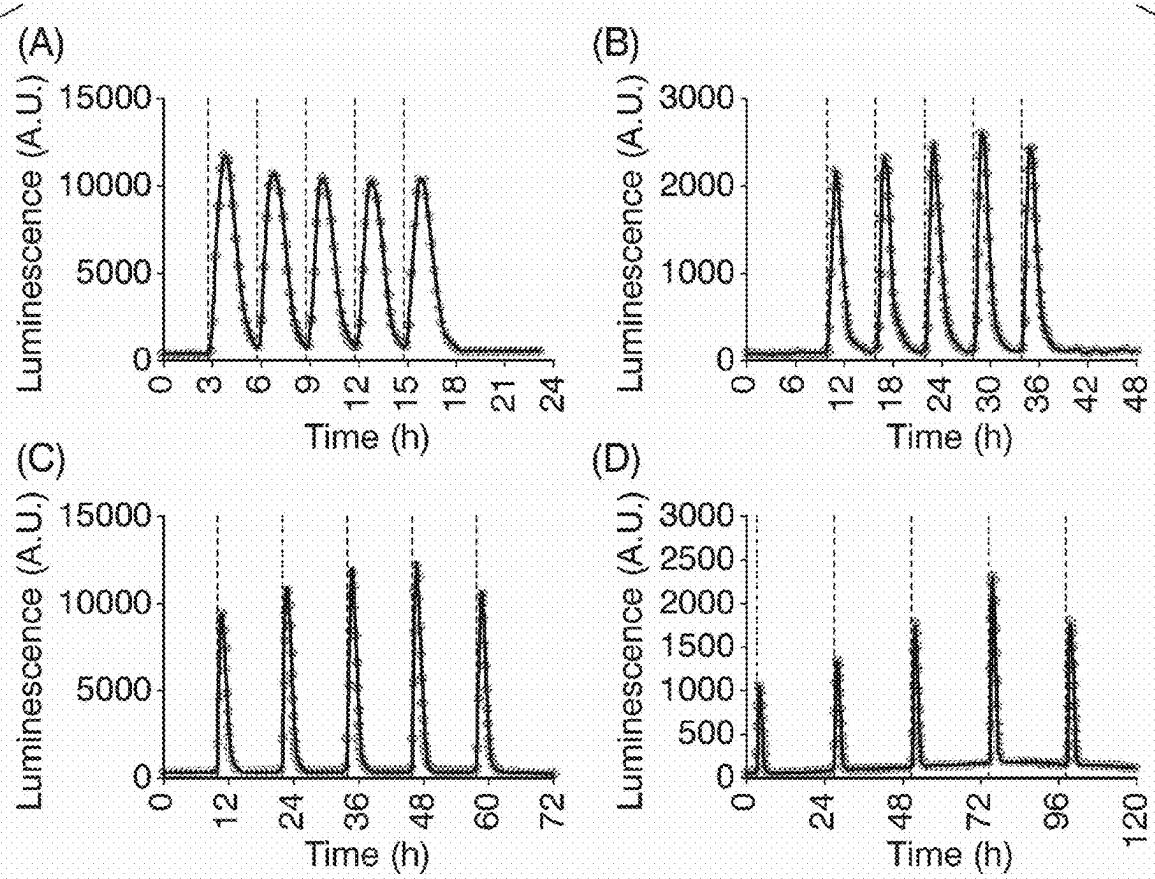


FIG. 15

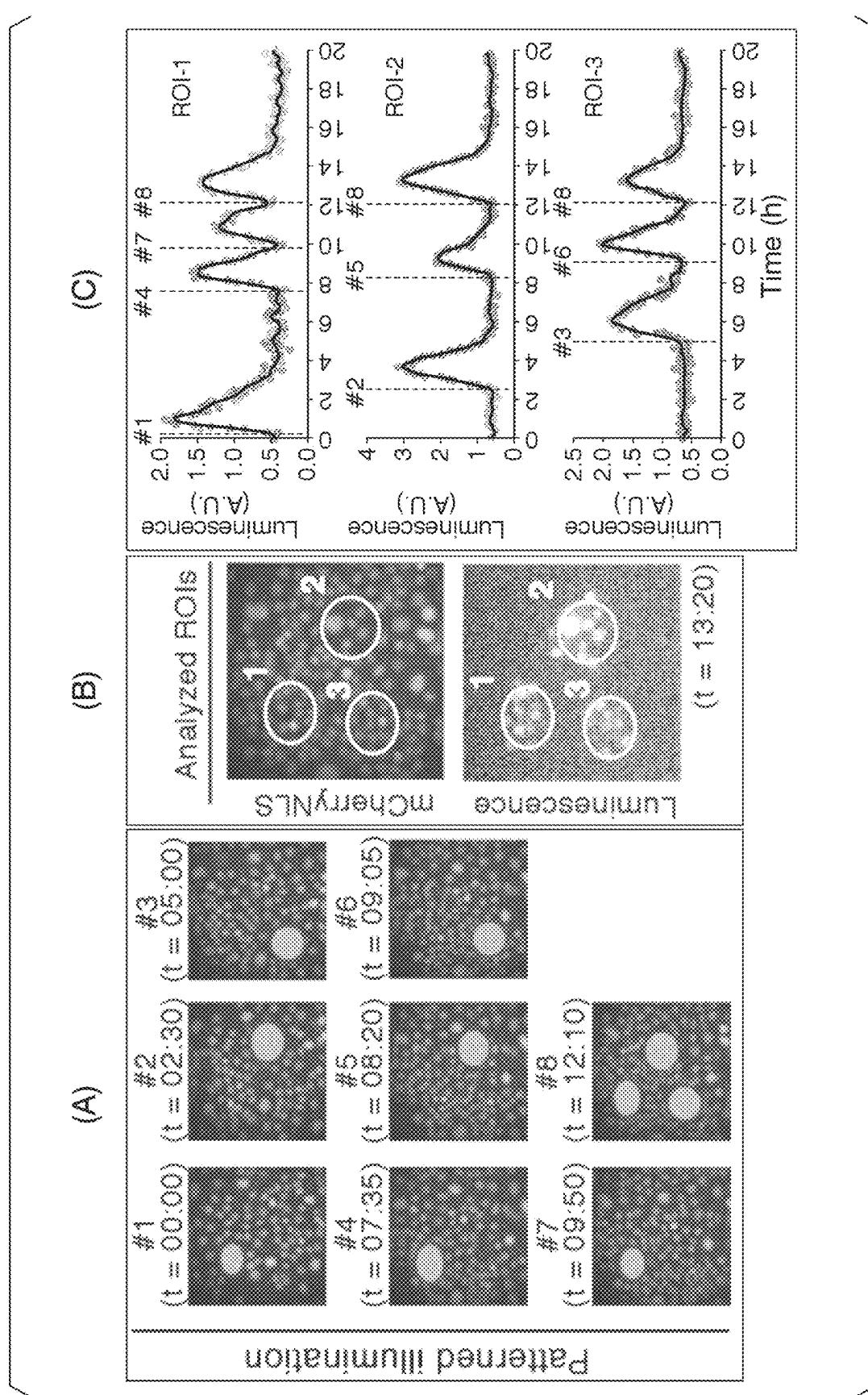


FIG. 16

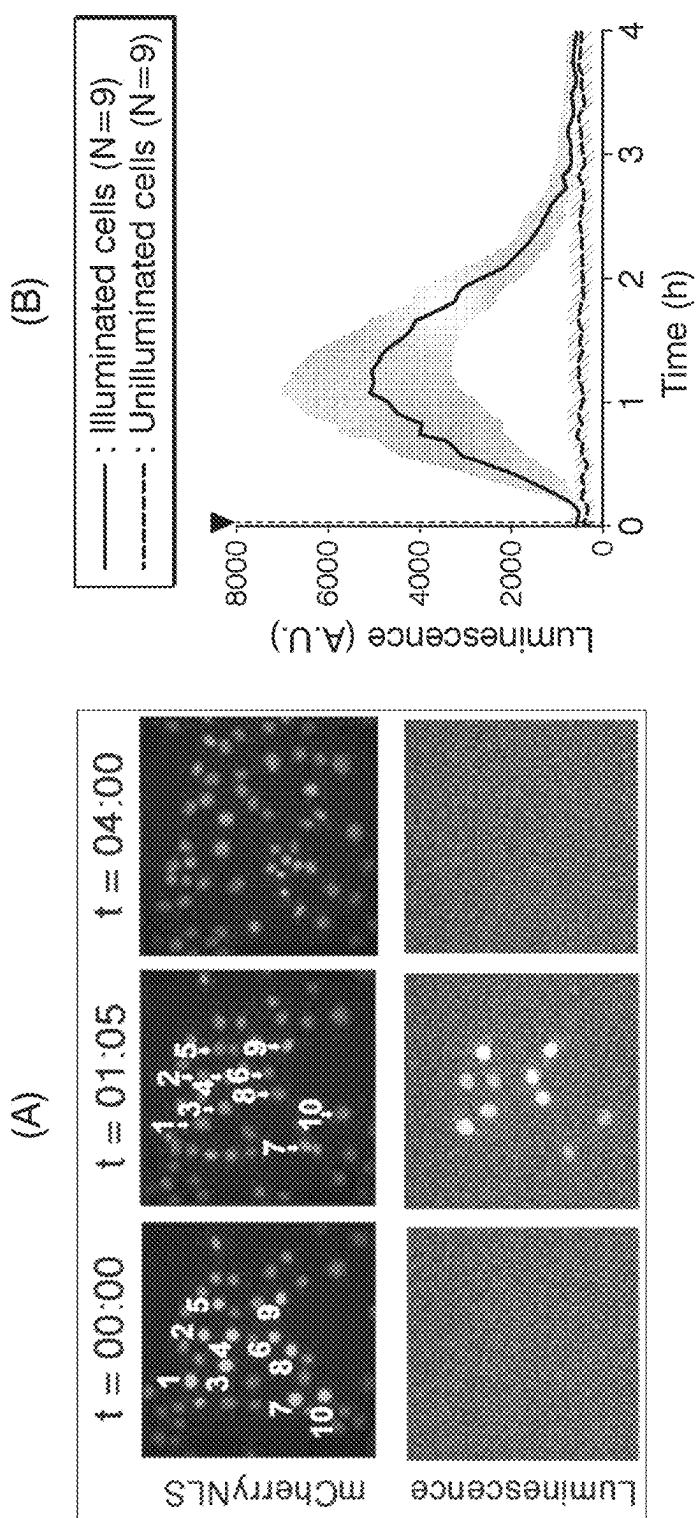


FIG. 17

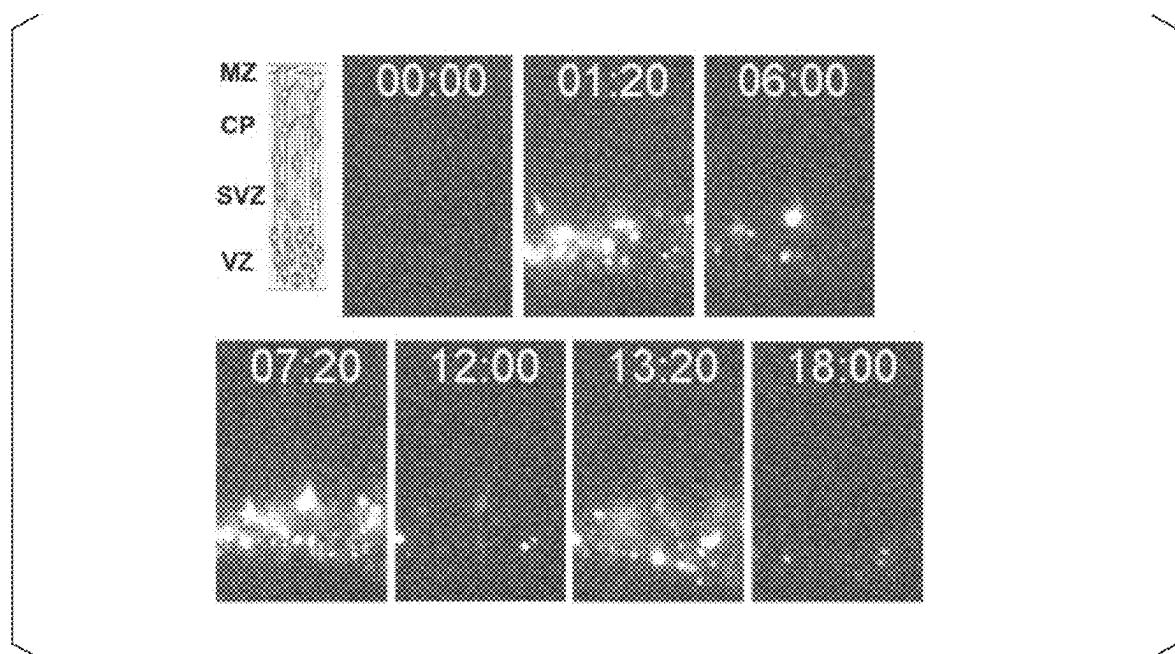


FIG. 18

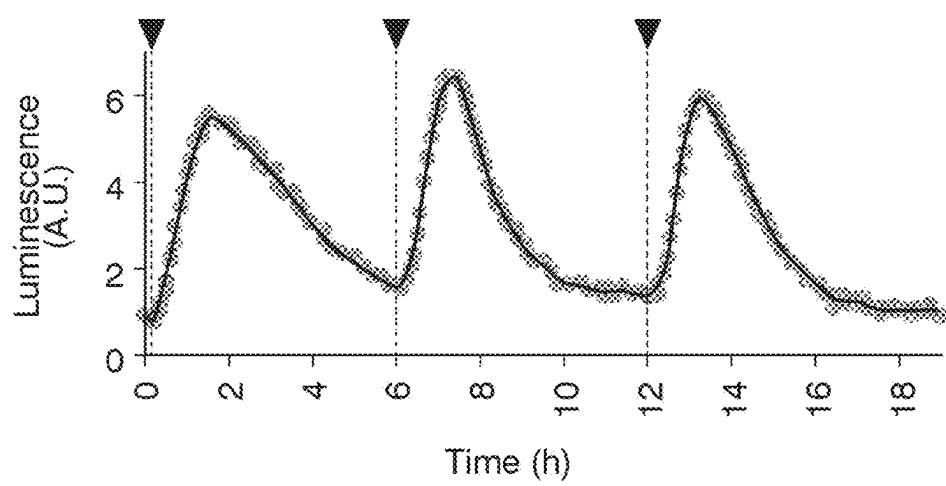


FIG. 19

FIG. 20

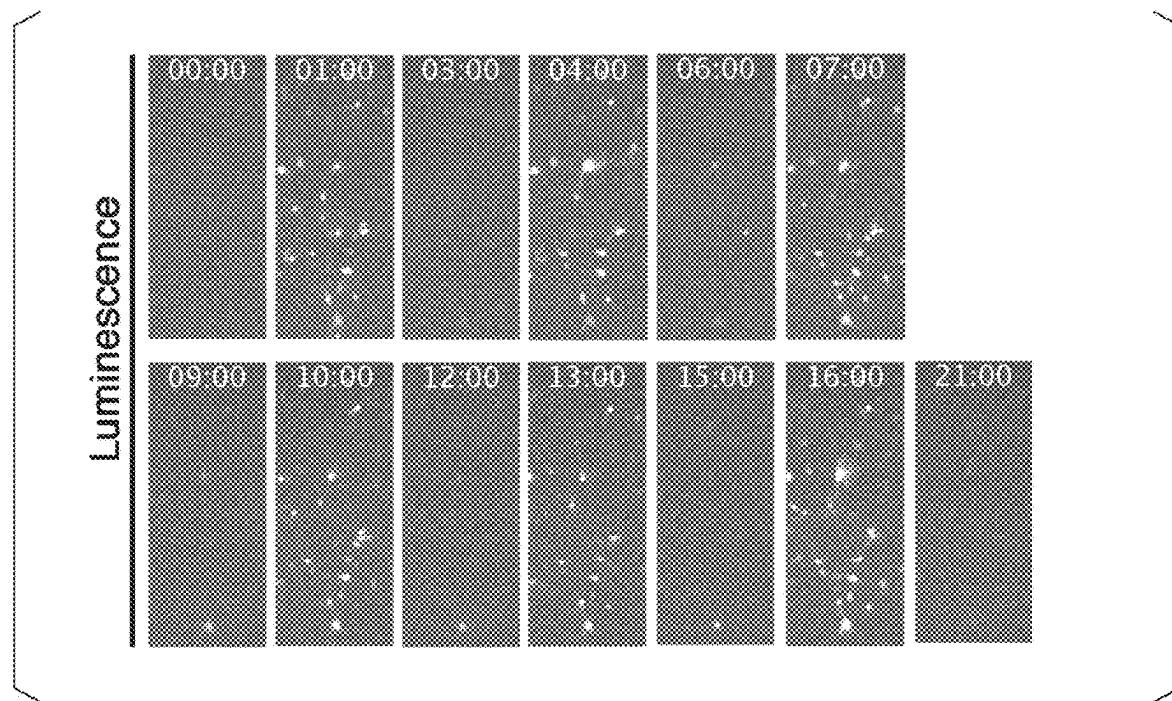


FIG. 21

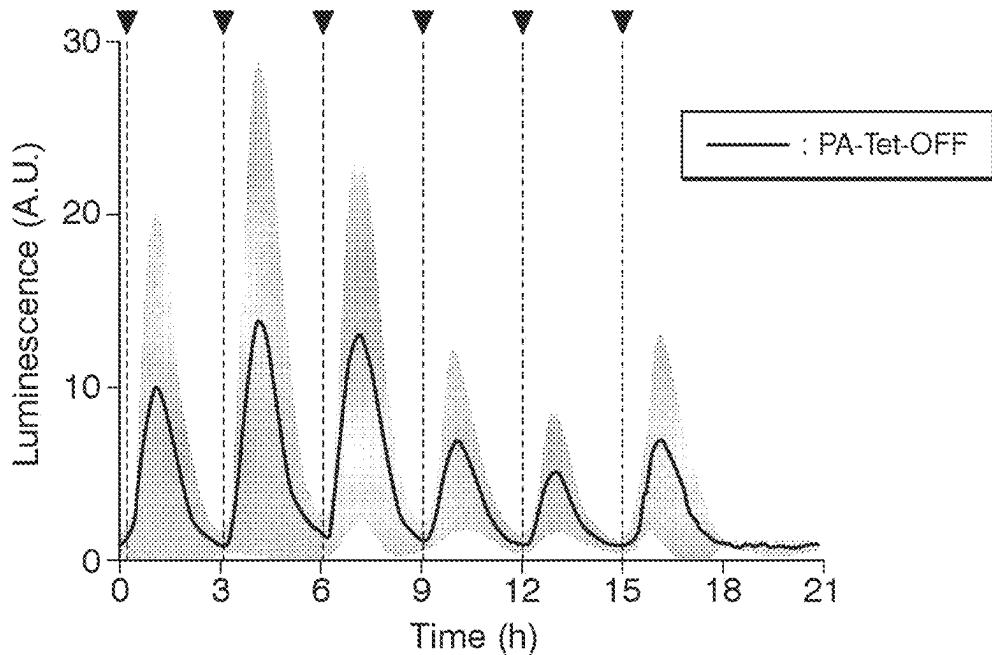


FIG. 22

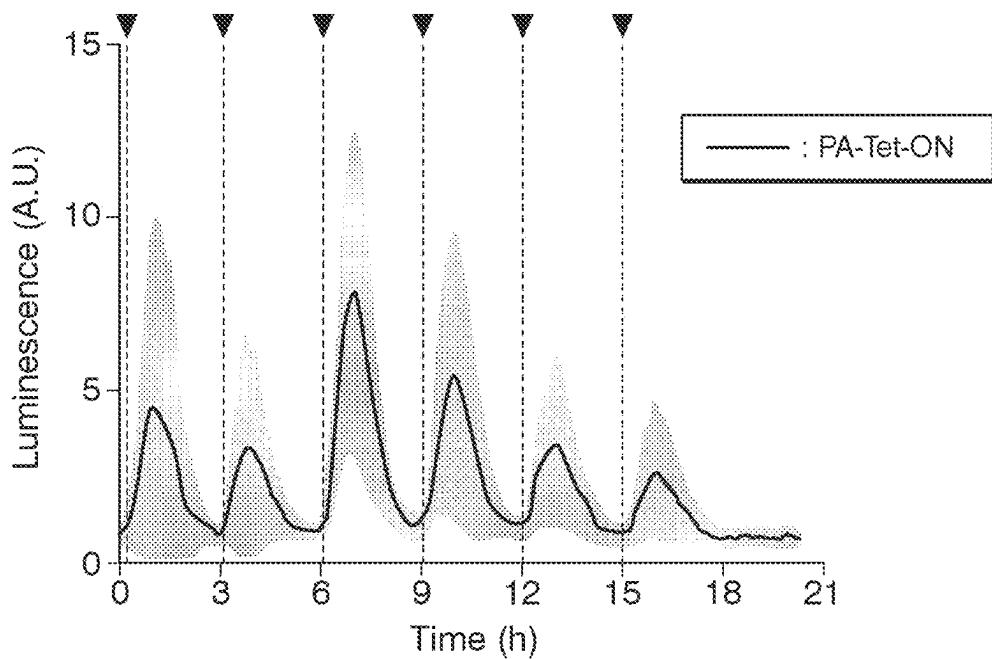


FIG. 23

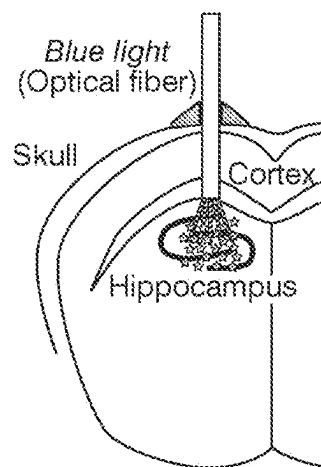


FIG. 24

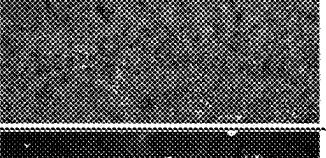
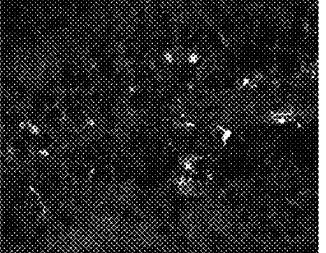
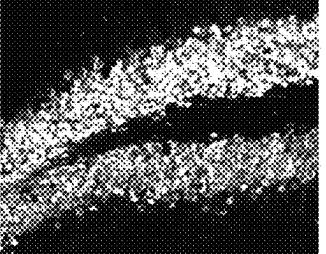
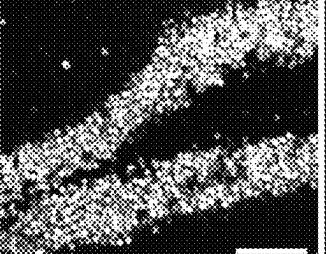




		Dark	Light
CA1	GFP		
	mCherryNLS		
DG	GFP		
	mCherryNLS		

FIG. 25

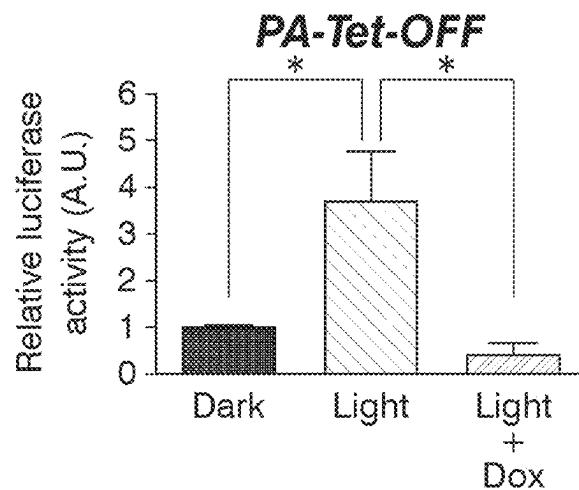


FIG. 26

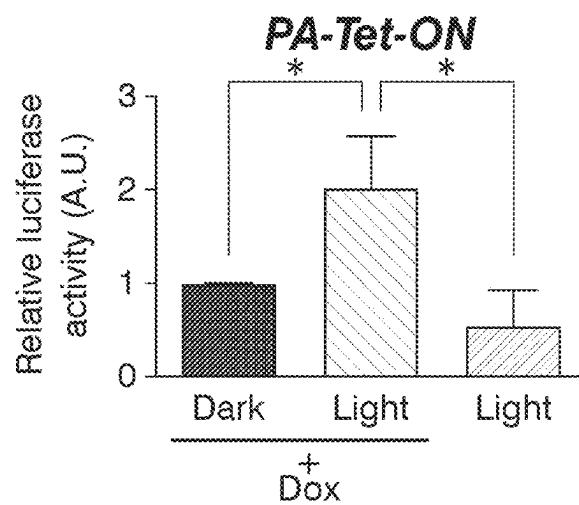


FIG. 27

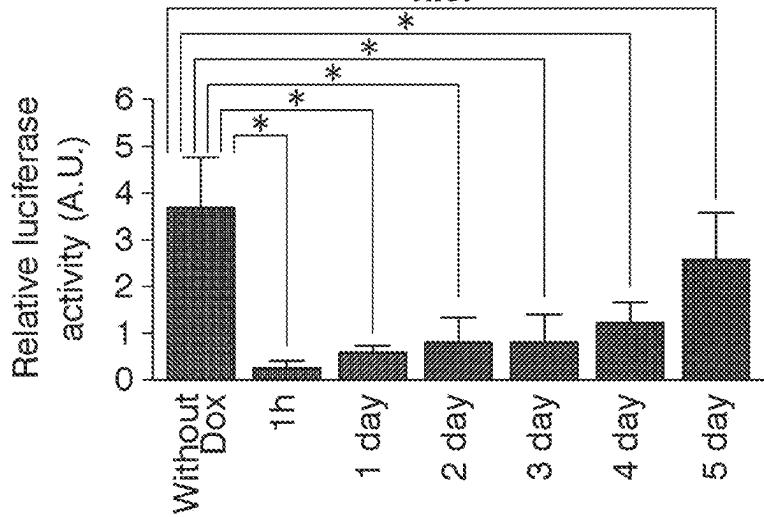

PA-Tet-OFF
n.s.

FIG. 28

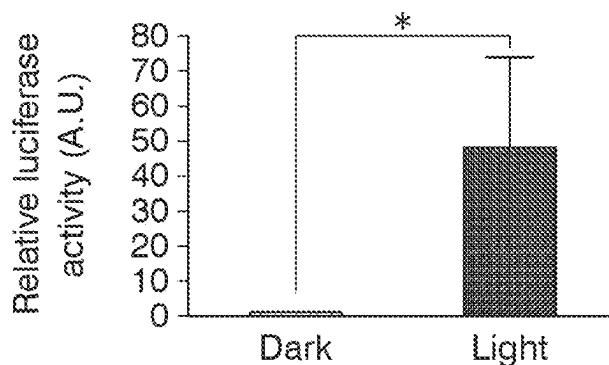
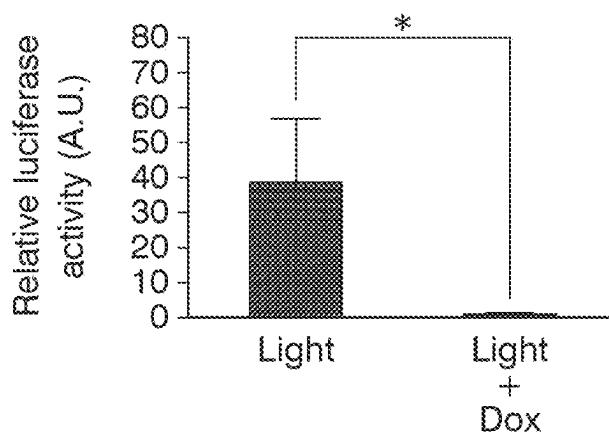



FIG. 29

PHOTOACTIVATABLE TET EXPRESSION CONTROL SYSTEM

CROSS-REFERENCE TO RELATED PATENT APPLICATION

This application claims priority to Japanese Patent Application No. 2018-163617, filed Aug. 31, 2018, the content of which is incorporated herein by reference.

TECHNICAL FIELD OF THE INVENTION

The present invention relates to a tetracycline gene expression control system capable of controlling the expression of target genes by both light irradiation and a tetracycline (Tet)-based compound.

BACKGROUND OF THE INVENTION

The Tet-OFF/ON system utilizes the interaction between a Tet response element (TRE) having a Tet operator (TetO) sequence and a Tet repressor (TetR), and regulates the expression of exogenous genes in target cells by treating the cells with Tet or doxycycline (Dox), which is a more stable Tet analog (for example, see Non-Patent Literature 1). In the Tet-OFF system, a fusion protein consisting of TetR and a transactivation domain binds to TRE in the absence of Dox, which activates the minimal promoter that controls the expression of downstream genes. In the Tet-ON system, a fusion protein consisting of reverse TetR (rTetR) and a transactivation domain binds to TRE in the presence of Dox, which activates the minimal promoter that controls the expression of downstream genes. The Tet-OFF/ON system is a chemically controlled system that is most commonly used in mammalian cells. However, because this system uses Dox, which is a small molecule, for expression control, it is difficult for this system to induce target gene expression in a limited time frame or in cells within a limited space. For example, it is known that dynamic gene expression in stem cells or progenitor cells plays a key role in the retention, growth, and differentiation of stem cells in the ontogeny and maintenance of tissue homeostasis. Furthermore, it is known that these phenomena are closely correlated with the function of clock genes that control circadian rhythms or ultradian rhythms. However, the Tet-OFF/ON system cannot be operated with excellent time resolution•spatial resolution required to study these phenomena. Therefore, this system is not suited for studies•experiments that require rapid activation or inactivation of target genes described above.

As a gene expression system that overcomes the technical limitations of the conventional chemically controlled gene expression systems and can take temporal•spatial control, a system capable of controlling gene expression (ON/OFF) by light irradiation, that is, a photoactivatable (PA) expression system has been developed. In the technique of controlling gene expression by light, simply by adjusting the area to be irradiated with light or adjusting irradiance, it is possible to easily induce the target gene expression only in cells within a certain space in a limited time frame. For example, there is a report regarding the analysis of the functional importance of dynamic change in gene expression in basic helix-loop-helix (bHLH) transcription by using a PA-Gal4/UAS system (Light-ON system) which uses GAVPO as a photoactivatable transcription factor (see Non-Patent Literature 2 and Non-Patent Literature 3). Because GAVPO has a high activation and deactivation reaction rate, by changing the light irradiation pattern, it is possible to artificially induce

the Ascl1 gene expression in neural stem cells in various dynamic phases (for example, persistent expression or oscillatory expression).

Examples of protein modules having light-dependent interaction include a blue light-responsive heterodimer formation module derived from *Arabidopsis thaliana*. This module consists of a Cryptochrome 2 (Cry2) photoreceptor and cryptochrome-interacting basic helix-loop-helix 1 (CIB1), which is a protein specifically binding to the Cry2 photoreceptor (for example, Non-Patent Literatures 4 to 8). *Arabidopsis thaliana* Cry2 is a photolyase-like photoreceptor that regulates the development and growth of plants by regulating circadian rhythms. Cry2 has two domains, the N-terminal photolyase homology region (PHR) and the Cryptochrome C-terminal extension (CCE or CCT). PHR is a chromophore-binding domain that non-covalently binds to the chromophore flavin adenine dinucleotide (FAD). Cry2 can bind to the bHLH transcription factor CIB1 in a blue light-specific manner. The truncating variant of the Cry2 and CIB1 essential domain acts as a blue light-dependent heterodimer formation module. In addition, it has been revealed that some point mutations of Cry2 induce a faster or slower light cycle (Non-Patent Literature 9, Non-Patent Literature 10, and Non-Patent Literature 11).

Examples of the near-infrared light-responsive heterodimer formation module include a protein module consisting of BphP1, which is a phytochrome derived from the photosynthetic bacterium *Rhodopseudomonas palustris*, and PpsR2, which is a protein specifically binding to BphP1. (For example, Non-Patent Literature 27). In a case where BphP1 and PpsR2 are irradiated with near-infrared light at 740 to 780 nm, the proteins bind to each other and form a heterodimer. This heterodimer is formed by the absorption of near-infrared light by using Biliverdin (BV), which is an endogenous chromophore of eukaryotes including mammals. PpsR2 is a relatively large protein having many domains. Therefore, by reengineering the BphP1/PpsR2 system so that the N-terminal side and the C-terminal side are deleted, a BphP1/Q-PAS1 system was developed which uses a PpsR2 deletion variant (Q-PAS1) consisting only of a Q-linker and a downstream PAS1 domain of the Q-linker (for example, Non-Patent Literatures 28 and 29).

CITATION LIST

- Non-Patent Literature 1: Das et al., Current gene therapy, 2016, vol. 16, p. 156-167.
- Non-Patent Literature 2: Imayoshi et al., Science, 2013, vol. 342, p. 1203-1208.
- Non-Patent Literature 3: Imayoshi and Kageyama, Neuron, 2014, vol. 82, p. 9-23.
- Non-Patent Literature 4: Duan et al., Nature Communications, 2017, vol. 8, Article number: 547.
- Non-Patent Literature 5: Jeong et al., Proceedings of the National Academy of Sciences of the United States of America, 2010, vol. 107 (30), p. 13538-13543.
- Non-Patent Literature 6: Keller et al., The Plant Journal, 2011, vol. 67 (2), p. 195-207.
- Non-Patent Literature 7: Wu and Yang, Molecular plant, 2010, vol. 3 (3), p. 539-548.
- Non-Patent Literature 8: Yu et al., The *Arabidopsis* Book, 2010, vol. 8, Article number: e0135.
- Non-Patent Literature 9: Kennedy et al., Nature Methods, 2010, vol. 7 (12), p. 973-975.
- Non-Patent Literature 10: Liu et al., Nature, 2012, vol. 484, p. 381-385.

Non-Patent Literature 11: Taslimi et al., *Nature chemical biology*, 2016, vol. 12, p. 425-430.

Non-Patent Literature 12: Szulc et al., *Nature Methods*, 2006, vol. 3 (2), p. 109-116.

Non-Patent Literature 13: Wang et al., *Nature Methods*, 2012, vol. 9 (3), p. 266-269.

Non-Patent Literature 14: Hallett et al., *ACS Synthetic Biology*, 2016, vol. 5, p. 53-64.

Non-Patent Literature 15: Mizushima and Nagata, *Nucleic Acids Research*, 1990, vol. 18 (17), p. 5322.

Non-Patent Literature 16: Masamizu et al., *Proceedings of the National Academy of Sciences of the United States of America*, 2006, vol. 103 (5), p. 1313-1318.

Non-Patent Literature 17: Miyoshi, 'Chapter 28 Gene Delivery to Hematopoietic Stem Cells Using Lentiviral Vectors', *Methods in Molecular Biology*, 2004, vol. 246 ("Gene Delivery to Mammalian Cells Volume 2: Viral Gene Transfer Techniques"), p. 429-438.

Non-Patent Literature 18: Kawashima et al., *Nature Methods*, 2013, vol. 10 (9), p. 889-895.

Non-Patent Literature 19: Pedelacq et al., *Nature Biotechnology*, 2006, vol. 24 (1), p. 79-88.

Non-Patent Literature 20: Nonaka et al., *Neuron*, 2014, vol. 84, p. 92-106.

Non-Patent Literature 21: Okuno et al., *Cell*, 2012, vol. 149, p. 886-898.

Non-Patent Literature 22: Isomura et al., *Genes & Development*, 2017, vol. 31, p. 524-535.

Non-Patent Literature 23: Hand et al., *Neuron*, 2005, vol. 48, p. 45-62.

Non-Patent Literature 24: Peters et al., *Nature*, 2014, vol. 510, p. 263-267.

Non-Patent Literature 25: Pathak et al., *ACS Synthetic Biology*, 2014, vol. 3, p. 832-838.

Non-Patent Literature 26: Sano and Yokoi, *Journal of Neuroscience*, 2007, vol. 27 (26), p. 6948-6955.

Non-Patent Literature 27: Kaberniuk et al., *NATURE METHODS*, 2016, vol. 13, p. 591-597.

Non-Patent Literature 28: Redchuk, et al., *Nature Chemical Biology*, 2017, vol. 13, p. 633-639.

Non-Patent Literature 29: Redchuk, et al., *Nature Protocols*, 2018, vol. 13 (5), p. 1121-1136.

SUMMARY OF THE INVENTION

Technical Problem

An object of the present invention is to provide a photoactivatable Tet-OFF/ON system that can precisely control temporal and spatial gene expression.

Solution to Problem

As a result of intensive studies, the inventors of the present invention have found that by incorporating a photoactivatable binding switch consisting of Cry2/CIB1 (hereinafter, called "Cry2/CIB1-PA binding switch" in some cases) or a photoactivatable binding switch consisting of BphP1/Q-PAS1 (hereinafter, called "BphP1/Q-PAS1-PA binding switch" in some cases) into a Tet-OFF/ON system, it is possible to obtain a system (hereinafter, called "PA-Tet-OFF/ON system" in some cases) that can control the expression of target genes by both light irradiation and a Tet-based compound. Based on this finding, the inventors have accomplished the present invention.

That is, a PA-Tet-OFF/ON system and the like according to the present invention are the following [1] to [27].

[1] A photoactivatable tetracycline gene expression control system, including a target gene expression cassette including a tetracycline response element having a TetO sequence, a promoter which is positioned downstream of the tetracycline response element and controlled by the tetracycline response element, and a target gene which is positioned downstream of the promoter and of which expression is controlled by the promoter, a first fusion protein expression cassette including a gene which encodes a first fusion protein containing a Tet repressor protein or a reverse Tet repressor protein and a first protein, and a second fusion protein expression cassette including a gene which encodes a second fusion protein containing a transactivation domain of a transactivation element p65 and a second protein, in which the first protein and the second protein bind to each other and form a heterodimer only in a state of being irradiated with light at a specific wavelength.

[2] The PA-Tet-OFF/ON system described in [1], in which the TetR or the rTetR has a threonine residue as an amino acid residue corresponding to the 194th isoleucine of wild-type TetR of *Escherichia coli*.

[3] The photoactivatable tetracycline gene expression control system described in [1] or [2], in which the Tet repressor protein or the reverse Tet repressor protein has a threonine residue as an amino acid residue corresponding to the 194th isoleucine of a wild-type Tet repressor protein of *Escherichia coli*.

[4] The photoactivatable tetracycline gene expression control system described in any one of [1] to [3], in which the first protein is CIB1 or a variant thereof and the second protein is Cry2 or a variant thereof, or the first protein is Cry2 or a variant thereof and the second protein is CIB1 or a variant thereof.

[5] The PA-Tet-OFF/ON system described in [4], in which the first protein is CIB1 or a variant thereof, and the second protein is Cry2 or a variant thereof.

[6] The PA-Tet-OFF/ON system described in [5], in which in the first fusion protein, CIB1 or a variant thereof is linked to a C-terminal side of the Tet repressor protein or the reverse Tet repressor protein.

[7] The PA-Tet-OFF/ON system described in [5] or [6], in which CIB1 or a variant thereof contained in the first fusion protein is a C-terminal deletion variant of CIB1 that consists of a partial protein corresponding to a region consisting of the 1st to 170th amino acids of wild-type CIB1 of *Arabidopsis thaliana*, or a variant that is obtained by deleting a nuclear localization signal from the C-terminal deletion variant of CIB1.

[8] The photoactivatable tetracycline gene expression control system described in [7], in which CIB1 or a variant thereof contained in the first fusion protein is a variant obtained by deleting a nuclear localization signal from a C-terminal deletion variant of CIB1 consisting of a partial protein corresponding to a region consisting of the 1st to 170th amino acids of wild-type CIB1 of *Arabidopsis thaliana*, and the second fusion protein contains a nuclear localization signal on the N-terminal or the C-terminal.

[9] The PA-Tet-OFF/ON system described in any one of [5] to [8], in which Cry2 or a variant thereof contained in the second fusion protein is a C-terminal deletion variant having an N-terminal photolyase homology region or a variant obtained by substituting an amino acid residue in the C-terminal deletion variant with phenylalanine, and the amino acid residue corresponds to the 348th leucine of wild-type Cry2 of *Arabidopsis thaliana*.

[10] The photoactivatable tetracycline gene expression control system described in any one of [1] to [3], in which

the first protein is Bphp1 or a variant thereof and the second protein is Q-PAS1 or a variant thereof, or the first protein is Q-PAS1 or a variant thereof and the second protein is Bphp1 or a variant thereof.

[11] The photoactivatable tetracycline gene expression control system described in [10], in which the first protein is Bphp1 or a variant thereof, and the second protein is Q-PAS1 or a variant thereof.

[12] The photoactivatable tetracycline gene expression control system described in [11], in which the second fusion protein contains a nuclear localization signal on the N-terminal, and Q-PAS1 or a variant thereof is linked to the C-terminal side of the transactivation domain of the transactivation element p65.

[13] The photoactivatable tetracycline gene expression control system described in [11] or [12], in which in the first fusion protein, Bphp1 or a variant thereof is linked to the N-terminal side of the Tet repressor protein or the reverse Tet repressor protein, and in the second fusion protein, Q-PAS1 or a variant thereof is linked to the C-terminal side of the transactivation domain of the transactivation element p65.

[14] The PA-Tet-OFF/ON system described in any one of [1] to [13], further including, in addition to the target gene expression cassette: an expression cassette for a protein in which the first fusion protein and the second fusion protein are linked to each other through a T2A self-cleaving peptide; or an expression cassette for bicistronically expressing the first fusion protein and the second fusion protein.

[15] The PA-Tet-OFF/ON system described in any one of [1] to [14], in which the target gene is a gene that encodes a protein modified with ubiquitin.

[16] A cell including the PA-Tet-OFF/ON system described in any one of [1] to [15].

[17] A method for controlling target gene expression, including controlling expression of the target gene in the cell described in [16] by adjusting conditions so that the cell is irradiated or not irradiated with blue light or near-infrared light and treated or not treated with a Tet-based compound.

[18] A kit for a PA-Tet-OFF/ON system, including a target gene expression vector including TRE having a TetO sequence, a minimal promoter which is positioned downstream of the TRE and controlled by the TRE, and a multicloning site which is positioned downstream of the minimal promoter and into which a target gene will be inserted, a first expression vector including a first fusion protein expression cassette containing a gene that encodes a first fusion protein in which TetR or rTetR is linked to CIB1 or a variant thereof, and a second expression vector including a second fusion protein expression cassette containing a gene that encodes a second fusion protein in which a transactivation domain of a transactivation element p65 is linked to Cry2 or a variant thereof.

[19] A kit for a photoactivatable tetracycline gene expression control system, including a target gene expression vector including a tetracycline response element having a TetO sequence, a promoter which is positioned downstream of the tetracycline response element and controlled by the tetracycline response element, and a multicloning site which is positioned downstream of the promoter and into which a target gene will be inserted; a first expression vector including a first fusion protein expression cassette containing a gene that encodes a first fusion protein in which a Tet repressor protein or a reverse Tet repressor protein is linked to Bphp1 or a variant thereof, and a second expression vector including a second fusion protein expression cassette containing a gene that encodes a second fusion protein in

which a transactivation domain of a transactivation element p65 is linked to Q-PAS1 or a variant thereof.

[20] The kit for a PA-Tet-OFF/ON system described in [18] or [19], including, instead of the first expression vector and the second expression vector, an expression vector including an expression cassette for a protein in which the first fusion protein and the second fusion protein are linked to each other through a T2A self-cleaving peptide, or an expression cassette for bicistronically expressing the first fusion protein and the second fusion protein.

[21] The kit for a PA-Tet-OFF/ON system described in [18] to [20], in which the TetR or rTetR has a threonine residue as an amino acid residue corresponding to the 194th isoleucine of wild-type TetR of *Escherichia coli*.

[22] An expression vector including an expression cassette for expressing a fusion protein in which TetR or rTetR is linked to CIB1 or a variant thereof.

[23] An expression vector including an expression cassette for expressing a fusion protein in which a transactivation domain of a transactivation element p65 is linked to Cry2 or a variant thereof.

[24] An expression vector including an expression cassette for expressing a fusion protein in which a Tet repressor protein or a reverse Tet repressor protein is linked to Bphp1 or a variant thereof.

[25] An expression vector including an expression cassette for expressing a fusion protein in which a transactivation domain of a transactivation element p65 is linked to Q-PAS1 or a variant thereof.

[26] An expression vector including an expression cassette for a protein in which a fusion protein, in which a Tet repressor protein or a reverse Tet repressor protein is linked to CIB1 or a variant thereof, and a fusion protein, in which a transactivation domain of a transactivation element p65 is linked to Cry2 or a variant thereof, are linked to each other through a T2A self-cleaving peptide, or an expression cassette for bicistronically expressing a fusion protein in which a Tet repressor protein or a reverse Tet repressor protein is linked to CIB1 or a variant thereof and a fusion protein in which a transactivation domain of a transactivation element p65 is linked to Cry2 or a variant thereof.

[27] An expression vector including an expression cassette for a protein in which a fusion protein, in which a Tet repressor protein or a reverse Tet repressor protein is linked to Bphp1 or a variant thereof, and a fusion protein, in which a transactivation domain of a transactivation element p65 is linked to Q-PAS1 or a variant thereof, are linked to each other through a T2A self-cleaving peptide, or an expression cassette for bicistronically expressing a fusion protein in which a Tet repressor protein or a reverse Tet repressor protein is linked to Bphp1 or a variant thereof and a fusion protein in which a transactivation domain of a transactivation element p65 is linked to Q-PAS1 or a variant thereof.

Advantageous Effects of the Invention

The PA-Tet-OFF/ON system according to the present invention is obtained by incorporating a Cry2/CIB1-PA binding switch or a BphP1/Q-PAS1-PA binding switch into the conventional Tet-OFF/ON system, and can control the expression of target genes not only by the treatment with a Tet-based compound that has been performed conventionally, but also by an irradiation treatment with blue light or near-infrared light. Therefore, this system can precisely control the temporal and spatial gene expression, and is useful as a tool for various biological experiments that require spatial expression control and rapid activity control.

Furthermore, in a case where the kit for a PA-Tet-OFF/ON system or the expression vector according to the present invention is used, it is possible to more conveniently control the target gene expression by operating the system.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a view schematically showing PA-Tet-OFF candidate constructs used in Example 1.

FIG. 2(A) is a schematic view of an expression cassette including a T86 construct confirmed to be a PA-Tet-OFF construct in Example 1. FIG. 2(B) is a schematic view of a Ub-Eluc expression cassette for a pTREtight-Ub-ELuc reporter used in Example 1. FIG. 2(C) is a schematic view of an expression cassette for a protein in which a TetR (I194T, 1-206)-CIB1 (-NLS) fusion construct and a Cry2 PHR (L348F)-p65AD-NLS \times 2 fusion construct are linked to each other through a T2A self-cleaving peptide [TetR (I194T, 1-206)-CIB1 (-NLS)-T2A-Cry2 PHR (L348F)-p65AD-NLS \times 2 fusion construct].

FIG. 3 is a view showing the results of investigating the influence of linker sequences for TetR and a CIB1 derivative on the PA-Tet-controlled expression efficiency in Example 2 by using a T86 construct.

FIG. 4 is a view showing the results of investigating the influence of the I194 amino acid substitution in TetR on the PA-Tet-controlled expression efficiency in Example 2 by using a T86 construct.

FIG. 5 is a view showing the results of measuring luminescence signal intensity quantified by performing luciferase assay in Example 3 on Tet-independent constructs and PA-Tet-ON constructs obtained by introducing mutations into TetR (I194T, 1-206) in a T86 construct, the results obtained by performing the luciferase assay under dark conditions and blue-light irradiation conditions with or without administering Dox.

FIG. 6 is a view showing the results of measuring luminescence signal intensity quantified by performing luciferase assay in Example 3 on a PA-Tet-OFF-T2A construct and a PA-Tet-ON-T2A construct obtained by introducing mutations into a T86 construct and on constructs of the conventional Tet-OFF/ON system (a tTA-Ad construct and a Tet-ON 3G construct), the results obtained by performing the luciferase assay under dark conditions and blue-light irradiation conditions with or without administering Dox.

FIG. 7 is a view showing the results of investigating Dox concentration-dependent transcriptional activity of a PA-Tet-OFF system (A) and a PA-Tet-ON system (B) in HEK293T cells transiently transfected in Example 3.

FIG. 8 is a schematic view showing an expression cassette for PA-Tet-OFF construct/PA-Tet-ON construct (A) and a Ub-NLS-luc2 expression cassette in a TRE3G-Ub-NLS-luc2-Hes1 3'UTR lentiviral vector (B) that were used for preparing a PA-Tet-OFF/ON system stable expression strain in Example 4.

FIG. 9 is a view showing the results of investigating blue light intensity-dependent transcriptional activity of the PA-Tet-OFF system in Eph4 cells stably transduced with a lentiviral vector in Example 4.

FIG. 10 is a view showing the results of investigating blue light intensity dependence and the Dox concentration dependence of the PA-Tet-ON system in Eph4 cells stably transduced with a lentiviral vector in Example 4. FIG. 10(A) is a view showing the blue light intensity dependence at each blue light intensity. FIG. 10(B) is a view showing the Dox concentration dependence at each Dox concentration. FIG.

10(C) is a matrix in which the blue light intensity is plotted on the Y-axis, the Dox concentration is plotted on the X-axis, and the transcriptional activity (luminescence signal intensity) is plotted on the Z-axis.

FIG. 11 is a view showing the experiment results obtained by irradiating the PA-Tet-ON system stable strain with blue light once a day for 6 days and adding Dox (1,000 ng/mL) to the medium only on the 1st, 3rd, and 5th days in Example 4, in which the timing of exposure to blue light is indicated by arrowheads, the timing of adding Dox to the medium is shown in the upper part, and the measured transcriptional activity (luminescence signal intensity) of the PA-Tet-ON system stable strain is shown in the lower part.

FIG. 12 is a view showing the results obtained in Example 5 by irradiating a PA-Tet-OFF stable strain (Ub-NLS-luc2 reporter) (A) and a PA-Tet-OFF stable strain (luc2 reporter) (B) with blue light pulses and monitoring the luminescence signal intensity in real time.

FIG. 13 is a view showing the results obtained in Example 20 by measuring the half-life of a switch-on reaction rate (A) and the half-life of a switch-off reaction rate (B) of PA-Tet-controlled gene expression in a PA-Tet-OFF/ON system in PA-Tet-OFF/ON system stable strains.

FIG. 14 is a view showing the results obtained in Example 25 by repeatedly exposing the PA-Tet-OFF stable strain (Ub-NLS-luc2 reporter) to blue light pulses at intervals of 3 hours (A), 6 hours (B), 12 hours (C), and 24 hours (D) and monitoring the luminescence signal intensity in real time.

FIG. 15 is a view showing irradiation regions and irradiation timing of patterned blue light radiated to the PA-Tet-OFF stable strain (Ub-NLS-luc2 reporter) in Example 6.

FIG. 16(A) shows mCherry fluorescence images and bioluminescence images of 10 target cells irradiated with blue light pulses in Example 6. FIG. 16(B) is a view showing the result of monitoring luminescence signal intensity of the target cells and unirradiated cells in Example 6.

FIG. 17 shows luminescence signal images of slices of a developing mouse brain that underwent the introduction of a PA-Tet-OFF system and was periodically irradiated with blue light at intervals of 6 hours in Example 7.

FIG. 18 is a view showing the results of real-time monitoring of the luminescence signal intensity of slices of a developing mouse brain that underwent the introduction of a PA-Tet-OFF system and was periodically irradiated with blue light at intervals of 6 hours in Example 7.

FIG. 19 is a view schematically showing two constructs used in Example 7 for the introduction of the PA-Tet-OFF/ON system, a CAG-FLAG-TetR (or rTetR)-CIBN (-NLS)-T2A-mCherryNLS construct ("Virus 1" in FIG. 19) and a CAG-NLS-attached Cry2 PHR (L348F)-p65 ADN-terminal fusion construct ("Virus 2" in FIG. 19), and two reporters, a TRE3G-Ub-NLS-luc2-Hes1 3'UTR reporter ("Virus 3" in FIG. 19) and a reporter expressed in the TetO-GFP transgenic reporter mouse strain ("Tg mouse" in FIG. 19)).

FIG. 20 shows images of luminescence signals generated due to the luciferase expression in transformed neurons transfected with the construct of the PA-Tet-OFF system in Example 7, in which the images show luminescence signals observed for 21 hours from the start of blue light pulse irradiation (0 hours).

FIG. 21 is a view showing the results of measuring the luminescence signal intensity over time that was induced by luciferase expression in transformed neurons transfected with the construct of a PA-Tet-OFF system was in Example 7.

FIG. 22 is a view showing the results of measuring the luminescence signal intensity over time that was induced by

luciferase expression in transformed neurons transfected with the construct of a PA-Tet-ON system in Example 7.

FIG. 23 is a view schematically showing the way the blue light is radiated to hippocampal neurons of an adult TRE-GFP transgenic mouse brain transfected with a PA-Tet-OFF system in Example 7.

FIG. 24 shows fluorescence images obtained by irradiating the mouse brain with blue light in Example 7 by the method illustrated in FIG. 23 and then imaging the brain 12 hours after the start of exposure to the blue light, in which the images in the left column ("Dark") show the region not being irradiated with the blue light, and the images in the right column ("Light") show the region irradiated with the blue light.

FIG. 25 is a view showing the results of measuring the luminescence signal intensity induced by luciferase expression in brain neurons of mouse pups transfected with the PA-Tet-OFF system in Example 7 and then subjected to a blue light pulse irradiation treatment.

FIG. 26 is a view showing the results of measuring the luminescence signal intensity induced by luciferase expression in brain neurons of mouse pups transfected with the PA-Tet-ON system in Example 7 and then subjected to a blue light pulse irradiation treatment.

FIG. 27 is a view showing the results of measuring the luminescence signal intensity induced by luciferase expression in PA-Tet-OFF system-transfected brain neurons subjected to a blue light pulse irradiation treatment 1 hour, 1 day, 2 days, 3 days, 4 days, and 5 days after a Dox treatment in Example 7.

FIG. 28 is a view showing the results of measuring the luminescence signal intensity induced by luciferase expression in the subcutaneous tissue of the dorsal skin of an adult mouse transplanted with a PA-Tet-OFF stable strain (Ub-NLS-luc2 reporter) in Example 8, in which "Dark" represents the luminescence signal intensity obtained under dark conditions, and "Light" represent the luminescence signal intensity obtained after blue light irradiation.

FIG. 29 is a view showing the results of measuring the luminescence signal intensity induced by luciferase expression in the subcutaneous tissue of the dorsal skin of an adult mouse transplanted with a PA-Tet-OFF stable strain (Ub-NLS-luc2 reporter) in Example 8, in which "Light" represents the luminescence signal intensity obtained after the blue light irradiation in the absence of Dox, and "Light+Dox" represents the luminescence signal intensity obtained after the blue light irradiation in the presence of Dox.

DESCRIPTION OF EMBODIMENTS OF THE INVENTION

Unlike in the conventional Tet-OFF/ON systems in which TetR (rTetR in the case of PA-Tet-ON system) and a transactivation domain are in the form of a fusion protein, in the PA-Tet-OFF/ON system according to the present invention, TetR and a transactivation domain are present as different molecules, and the complexation of these molecules is controlled using a photoresponsive binding switch. The photoresponsive binding switch is a module consisting of two kinds of proteins that bind to each other and form a heterodimer only in a state where the proteins are irradiated with light at a specific wavelength. In the present specification, one of the proteins forming a heterodimer is called first protein, and the other is called second protein. In the present invention, a fusion protein in which TetR is linked to one of the first protein and the second protein is called first fusion protein, and a fusion protein in which a transactiva-

tion domain is linked to the remaining other one is called second fusion protein. In a case where the first fusion protein and the second fusion protein are irradiated with light at a specific wavelength to cause the heterodimerization of the first protein and the second protein, the first fusion protein and the second fusion protein form a complex through the heterodimerization. As a result, a complex consisting of TetR and a transactivation domain is formed, and a target gene is expressed downstream of TRE in the absence of a Tet-based compound. In an environment where the proteins are not irradiated with light at a specific wavelength, the first protein and the second protein do not form a heterodimer, and the expression of a target gene is not induced. In this way, the PA-Tet-OFF/ON system according to the present invention can control the expression of a target gene by both light irradiation and a Tet-based compound by means of controlling the complexation of TetR and a transactivation domain by light irradiation.

For example, the PA-Tet-OFF/ON system according to the present invention is controlled using a Cry2/CIB1-PA binding switch. That is, one of the first protein and the second protein is Cry2 or a variant thereof, and the other is CIB1 or a variant thereof. The Cry2/CIB1-PA binding switch is a blue light-responsive heterodimer formation module derived from *Arabidopsis thaliana*. In a case where this module is irradiated with blue light, a complex consisting of a Cry2 dimer and a CIB1 dimer is formed. In the present invention, one of Cry2 and CIB1 is linked to TetR to form a fusion protein, and the remaining other one of Cry2 and CIB1 is linked to a transactivation domain to form a fusion protein. Therefore, for example, in the PA-Tet-OFF system, under the conditions where blue light irradiation is not carried out, TetR and a transactivation domain do not form a complex, and a target gene is not expressed downstream of TRE even in the absence of a Tet-based compound. In contrast, in a case where blue light irradiation is carried out, a Cry2/CIB1 heterodimer is formed. As a result, a complex of TetR and a transactivation domain is formed, and a target gene is expressed downstream of TRE in the absence of a Tet-based compound. Here, in the presence of a Tet-based compound, the complex of TetR and a transactivation domain cannot bind to TRE, and a target gene is not expressed.

For example, the PA-Tet-OFF/ON system according to the present invention is controlled using a BphP1/Q-PAS1-PA binding switch. That is, one of the first protein and the second protein is BphP1 or a variant thereof, and the other is Q-PAS1 or a variant thereof. The BphP1/Q-PAS1-PA binding switch is a near-infrared light-responsive heterodimer formation module derived from *Rhodopseudomonas palustris*. In a case where this module is irradiated with near-infrared light, a heterodimer consisting of BphP1 and Q-PAS1 is formed. In the present invention, one of BphP1 and Q-PAS1 is linked to TetR to form a fusion protein, and the remaining other one of BphP1 and Q-PAS1 is linked to a transactivation domain to form a fusion protein. Therefore, for example, in the PA-Tet-OFF system, under the conditions where near-infrared light irradiation is not carried out, TetR and a transactivation domain do not form a complex, and a target gene is not expressed downstream of TRE even in the absence of a Tet-based compound. In contrast, in a case where near-infrared light irradiation is carried out, a BphP1/Q-PAS1 heterodimer is formed. As a result, a complex of TetR and a transactivation domain is formed, and a target gene is expressed downstream of TRE in the absence of a Tet-based compound. Here, in the presence of a Tet-

based compound, the complex of TetR and a transactivation domain cannot bind to TRE, and a target gene is not expressed.

Specifically, the PA-Tet-OFF/ON system according to the present invention includes a target gene expression cassette including TRE having a TetO sequence, a minimal promoter which is positioned downstream of TRE and controlled by the TRE, and a target gene which is positioned downstream of the minimal promoter and of which the expression is controlled by the minimal promoter, a first fusion protein expression cassette including a gene that encodes a first fusion protein containing TetR or rTetR, and a second fusion protein expression cassette including a gene that encodes a second fusion protein including a transactivation domain of a transactivation element p65 (region corresponding to residues 286 to 550 of human p65, hereinafter, represented by "p65AD"). In the present invention, p65AD is used as a transactivation domain. Therefore, the target gene expression is induced to a higher level in the present invention than in a system using a transactivation domain of VP16.

The first fusion protein contains TetR or rTetR and the first protein. That is, TetR or rTetR and the first protein are directly or indirectly linked to each other. In the first fusion protein, any of TetR, rTetR, or the first protein may be on the N-terminal side. The second fusion protein contains p65AD and the second protein. That is, p65AD and the second protein are directly or indirectly linked to each other. In the second fusion protein, any of p65AD or the second protein may be on the N-terminal side.

In a case where the PA-Tet-OFF/ON system according to the present invention uses the Cry2/CIB1-PA binding switch, and the first fusion protein containing TetR or rTetR is CIB1 or a variant thereof, the second fusion protein containing p65AD contains Cry2 or a variant thereof. In a case where the first fusion protein containing TetR or rTetR contains Cry2 or a variant thereof, the second fusion protein containing p65AD contains CIB1 or a variant thereof.

In a case where the PA-Tet-OFF/ON system according to the present invention uses the BphP1/Q-PAS1-PA binding switch, and the first fusion protein containing TetR or rTetR contains BphP1 or a variant thereof, the second fusion protein containing p65AD contains Q-PAS1 or a variant thereof. In a case where the first fusion protein containing TetR or rTetR contains Q-PAS1 or a variant thereof, the second fusion protein containing p65AD contains BphP1 or a variant thereof.

In the present invention and the present specification, a Tet-based compound is a compound having a function of binding to a complex consisting of TetR and p65AD just as Tet so as to inhibit the complex from binding to a TetO sequence. Furthermore, the compound also has a function of binding to a complex consisting of rTetR and p65AD so as to cause the complex to bind to a TetO sequence. The Tet-based compound includes Tet and analogs thereof. Examples of Tet analogs include Dox, anhydrotetracycline, cyanotetracycline, and the like.

TetR used in the present invention is a protein that binds to TRE in a state of not binding to Tet and does not bind to TRE in a state of binding to Tet. TetR is not particularly limited. For example, it is possible to use TetR appropriately selected from TetRs that can be used in the conventional Tet-OFF/ON system. Specifically, examples of usable TetR include TetR of Tet-resistant operons in Tet-resistant micro-organisms or a variant thereof. It is preferable to use TetR of *Escherichia coli* or a variant thereof which has been very frequently used in the conventional Tet-OFF/ON system.

TetR used in the present invention may be the wild-type TetR of any Tet-resistant microorganisms existing in nature. However, as TetR, variant TetR is preferable which has a threonine residue as an amino acid residue corresponding to 5 the 194th isoleucine in the wild-type TetR (tetracycline repressor protein class B from transposon Tn10) of *Escherichia coli* (hereinafter, called "TetR (I194T)" in some cases). In the conventional Tet-OFF/ON system, the TetR (I194T) expression efficiency induced by a Tet-based compound is 10 substantially the same as the wild-type TetR expression efficiency. However, in the PA-Tet-OFF/ON system according to the present invention, PA-Tet-controlled expression efficiency of this variant is higher than the expression efficiency of the wild-type TetR. By substituting an amino acid residue which corresponds to the 194th isoleucine in the wild-type TetR of *Escherichia coli* in TetR used in the conventional Tet-OFF/ON system with a threonine residue, TetR suitable for the PA-Tet-OFF/ON system according to the present invention is obtained.

20 rTetR used in the present invention is a protein that binds to TRE in a state of binding to Tet and does not bind to TRE in a state of not binding to Tet. rTetR is obtained by introducing a reverse phenotype-inducing mutation into TetR. Examples of the reverse phenotype-inducing mutation 25 include rT_A (E71K, D95N, L101S, and G102D), S2 (E19G, A56P, D148E, and H179R), M2 (S12G, E19G, A56P, D148E, and H179R), V10 (E19G, A56P, F67S, F86Y, D148E, R171K, and H179R), V16 (V9I, E19G, A56P, F67S, F86Y, D148E, R171K, and H179R) (Non-Patent Literature 30 1), and the like. These mutations are based on the amino acid sequence of wild-type TetR of *Escherichia coli*. As a mutation to be introduced into rTetR used in the present invention, M2, V10, or V16 is preferable, and V10 is more preferable, because such a mutation further increases the 35 PA-Tet-controlled expression efficiency of a target gene.

The I194T mutation brings about the effect of improving the PA-Tet-controlled expression efficiency, not only in TetR but also in rTetR. Therefore, rTetR used in the present invention is preferably prepared by introducing I194T and 40 reverse phenotype-inducing mutations into TetR, more preferably prepared by introducing I194T and M2, V10, or V16 mutations into TetR, and even more preferably prepared by introducing I194T and V10 mutations into TetR.

In the present invention and the present specification, a 45 target gene is a gene whose expression is controlled by the PA-Tet-OFF/ON system. The target gene may be a natural gene of any of naturally occurring organisms or viruses, an artificially modified gene, or an artificially designed and synthesized gene. The method for artificially modifying a natural gene is not particularly limited. Examples thereof include a method of modifying a natural gene into a gene that encodes a protein obtained by the substitution, addition, or deletion of one or more amino acids in a protein encoded by the natural gene, a method of modifying a natural gene into a gene that encodes a fusion protein consisting of two or more proteins which are linked to each other directly or through an appropriate linker, and the like. These can be carried out by conventional methods using gene recombination techniques.

50 In the present invention and the present specification, a target gene may be a gene that encodes a fluorescent protein or a protein linked to an enzyme marker, such as luciferase or β -galactosidase, directly or through a T2A self-cleaving peptide, because it is easy to tell whether or not these genes are expressed. In addition, the target gene may be linked to a gene encoding a fluorescent protein or an enzyme marker by a bicistronic expression element such as an internal

ribosomal entry site (IRES). Furthermore, in a case where a target protein to be expressed is modified with ubiquitin, and a gene encoding this protein is used as a target gene, it is possible to inhibit the long-term accumulation of the protein in cells and to strictly control the time for which the target gene is expressed.

In the present invention and the present specification, an expression cassette is DNA necessary for expressing a protein, and contains at least a gene that encodes the protein and a promoter that controls the expression of the gene. The promoter contained in various expression cassettes used in the present invention is not particularly limited as long as the promoter functions in an expression system (host expression system) to be transfected with the PA-Tet-OFF/ON system to express a target gene. The promoter may be a promoter intrinsic to cells derived from the host expression system, a promoter derived from cells of bio species other than the above cells, or an artificially synthesized promoter. Examples of promoters contained in various expression cassettes used in the present invention include promoters used in various expression vectors, such as the hCMV promoter, the SV40 promoter, the CAG promoter, and the EF1 α promoter.

The expression cassette may further contain a terminator positioned downstream of the target gene to be expressed. Furthermore, one or more 5'-untranslated regions (UTR) or one or more 3'-UTRs may be contained in the expression cassette. In a case where the host expression system is a eukaryotic cell expression system, the expression cassette may have a polyadenylation sequence positioned downstream of the gene. The terminator, 5'-UTR, 3'-UTR, and the like to be incorporated into the expression cassette can be appropriately selected from those generally used in the field of protein expression using cells and the like.

The target gene expression cassette used in the present invention contains TRE, a minimal promoter positioned downstream of TRE, and a target gene for which the minimal promoter determines a transcription initiation site. The minimal promoter means a partial promoter that determines the transcription initiation site but is incapable of initiating transcription by itself. In a state where a complex consisting of TetR and a transactivation domain or a complex consisting of rTetR and a transactivation domain is not bound to TRE, the minimal promoter in the target gene expression cassette cannot induce the expression of the target gene. Only after being activated by TRE bound to a complex consisting of TetR and a transactivation domain or a complex consisting of rTetR and a transactivation domain, the minimal promoter can initiate the transcription of the target gene. The minimal promoter contained in the target gene expression cassette is not particularly limited. For example, it is possible to use a partial promoter of promoters, such as the hCMV promoter and SV40 promoter, which are widely used in expressing proteins.

The target gene expression cassette used in the present invention contains TRE which is positioned upstream of the minimal promoter and controls the transcriptional activity of the minimal promoter. TRE is not particularly limited as long as it has one or more TetO sequences. TRE may consist only of a TetO sequence or include a region in addition to a TetO sequence. In a case where TRE has a plurality of TetO sequences, the TetO sequences may be directly linked to each other in tandem or may be linked to each other through an appropriate DNA linker. Furthermore, the plurality of TetO sequences in TRE may all be the same TetO sequence, or may be different types of TetO sequences. For example, TRE used in the target gene expression cassette can be

appropriately selected from TREs that can be used in the conventional Tet-OFF/ON system.

The TetO sequence may be a DNA sequence to which a complex consisting of TetR and p65AD formed via a Cry2/CIB1 heterodimer or a BphP1/Q-PAS1 heterodimer can bind in the absence of a Tet-based compound, or a DNA sequence to which a complex consisting of rTetR and p65AD formed via a Cry2/CIB1 heterodimer or a BphP1/Q-PAS1 heterodimer can bind in the presence of a Tet-based compound. In a case where the complex consisting of TetR and p65AD or the complex consisting of rTetR and p65AD binds to TRE through a TetO sequence, the minimal promoter positioned downstream of TRE is activated, and the target gene is expressed. The TetO sequence contained in the target gene expression cassette used in the present invention is not particularly limited. The TetO sequence to be used can be appropriately selected from known TetO sequences. Examples of the TetO sequence include a TetO sequence of Tet-resistant operons in Tet-resistant microorganisms or a variant thereof. It is preferable to use a TetO sequence of *Escherichia coli* or a variant thereof which has been very frequently used in the conventional Tet-OFF/ON system.

The first fusion protein expression cassette used in the present invention is an expression cassette for expressing a first fusion protein containing TetR or rTetR and a first protein. Furthermore, the second fusion protein expression cassette is an expression cassette for expressing a second fusion protein containing p65AD and a second protein.

In a case where the PA-Tet-OFF/ON system according to the present invention uses a Cry2/CIB1-PA binding switch, one of the first protein and the second protein is Cry2 or a variant thereof, and the other is CIB1 or a variant thereof. The first fusion protein expression cassette used in the present invention is an expression cassette for expressing a first fusion protein containing TetR or rTetR and CIB1 or a variant thereof or Cry2 or a variant thereof. The second fusion protein expression cassette is an expression cassette for expressing a second fusion protein containing p65AD and CIB1 or a variant thereof or Cry2 or a variant thereof. In a case where the first fusion protein is a fusion protein containing TetR or rTetR and CIB1 or a variant thereof, the second fusion protein is a fusion protein containing p65AD and Cry2 or a variant thereof. Conversely, in a case where the first fusion protein is a fusion protein containing TetR or rTetR and Cry2 or a variant thereof, the second fusion protein is a fusion protein containing p65AD and CIB1 or a variant thereof.

Examples of CIB1 used in the present invention include wild-type CIB1 (AtCIB1: full length of 335 amino acids) of *Arabidopsis thaliana* or a homologous protein thereof. Examples of the CIB1 variant used in the present invention include a C-terminal deletion variant and a nuclear localization signal (NLS) deletion variant of CIB1 described above. NLS is a region consisting of the 93rd to 107th amino acid residues in AtCIB1. The NLS deletion variant may be a variant prepared by the substitution of one or more amino acids in NLS or a variant prepared by the deletion of NLS. Examples of the C-terminal deletion variant of CIB1 include a C-terminal deletion variant consisting of a partial N-terminal protein corresponding to the region consisting of the 1st to 170th amino acids in AtCIB1 and a C-terminal deletion variant consisting of a partial N-terminal protein corresponding to the region consisting of the 1st to 81st amino acids in AtCIB1. Examples of CIB1 or a variant thereof used in the present invention include a full-length CIB1 protein, an NLS deletion variant of CIB1, a C-terminal deletion variant consisting of a partial N-terminal protein

corresponding to a region consisting of the 1st to 170th amino acids in AtCIB1, a C-terminal deletion variant which consists of a partial N-terminal protein corresponding to a region consisting of the 1st to 170th amino acids in AtCIB1 and from which NLS has been deleted, and a C-terminal deletion variant consisting of a partial N-terminal protein corresponding to a region consisting of the 1st to 81st amino acids in AtCIB1. As CIB1 or a variant thereof used in the present invention, a C-terminal deletion variant of CIB1 consisting of a partial N-terminal protein corresponding to a region consisting of the 1st to 170th amino acids in AtCIB1 or a variant obtained by deleting NLS from the above C-terminal deletion variant is preferable, because these further increase the PA-Tet-controlled expression efficiency.

Examples of Cry2 used in the present invention include wild-type Cry2 of *Arabidopsis thaliana* (AtCry2: full length of 612 amino acids) or a homologous protein thereof. Examples of the Cry2 variant used in the present invention include a C-terminal deletion variant having N-terminal PHR of Cry2 and a variant obtained by substituting an amino acid residue which corresponds to the 348th leucine in AtCry2 in the C-terminal deletion variant with phenylalanine. Examples of the C-terminal deletion variant having N-terminal PHR of Cry2 include a C-terminal deletion variant of Cry2 consisting of a partial N-terminal protein corresponding to a region consisting of the 1st to 535th amino acids of AtCry2, a C-terminal deletion variant of Cry2 consisting of a partial N-terminal protein corresponding to a region consisting of the 1st to 496th amino acids of AtCry2, and the like. Cry2 or a variant thereof used in the present invention is preferably a C-terminal deletion variant of Cry2 consisting of a partial N-terminal protein corresponding to a region consisting of the 1st to 535th amino acids of AtCry2, a C-terminal deletion variant of Cry2 consisting of a partial N-terminal protein corresponding to a region consisting of the 1st to 496th amino acids of AtCry2, or a C-terminal deletion variant of Cry2 obtained by introducing a point mutation into a partial N-terminal protein corresponding to a region consisting of the 1st to 535th amino acids of AtCry2 so that an amino acid residue corresponding to the 348th leucine of AtCry2 is substituted with phenylalanine, because these genes further increase the PA-Tet-controlled expression efficiency.

The first fusion protein used in the present invention is a protein in which TetR or rTetR is linked to CIB1 or a variant thereof or to Cry2 or a variant thereof directly or through a peptide linker consisting of one or more amino acids. In the first fusion protein, CIB1 or the like may be linked to the C-terminal side or N-terminal side of TetR or rTetR. The length of the peptide linker is not particularly limited. For example, the peptide linker may consist of 1 to 25 amino acids.

The second fusion protein used in the present invention is a protein in which p65AD is linked to CIB1 or a variant thereof or to Cry2 or a variant thereof directly or through a peptide linker consisting of one or more amino acids. In the second fusion protein, CIB1 or the like may be linked to the C-terminal side or N-terminal side of p65AD.

The first fusion protein used in the present invention is preferably a protein in which CIB1 or a variant thereof is linked to the C-terminal side of TetR or rTetR directly or through a peptide linker consisting of one or more amino acids, more preferably a protein in which a C-terminal deletion variant of CIB1 consisting of a partial N-terminal protein corresponding to a region consisting of the 1st to 170th amino acids of AtCIB1 or a variant obtained by deleting NLS from the above C-terminal deletion variant is

linked to the C-terminal side of TetR or rTetR directly or through a peptide linker consisting of one or more amino acids, and even more preferably a protein in which a C-terminal deletion variant of CIB1 consisting of a partial N-terminal protein corresponding to a region consisting of the 1st to 170th amino acids of AtCIB1 or a variant obtained by deleting NLS from the above C-terminal deletion variant is linked to the C-terminal side of TetR or rTetR through a peptide linker consisting of an amino acid sequence represented by SPKKK (SEQ ID NO: 13), because these proteins further increase the PA-Tet-controlled expression efficiency.

The second fusion protein used in the present invention is preferably a protein in which Cry2 or a variant thereof is linked to the N-terminal side or C-terminal side of p65AD directly or through a peptide linker consisting of one or more amino acids, more preferably a protein in which a C-terminal deletion variant having N-terminal PHR of Cry2 or a variant, which is obtained by introducing a point mutation into the above C-terminal deletion variant so that an amino acid residue corresponding to the 348th leucine of AtCry2 is substituted with phenylalanine, is linked to the N-terminal side or C-terminal side of p65AD directly or through a peptide linker consisting of one or more amino acids, even more preferably a protein in which a C-terminal deletion variant of Cry2 consisting of a partial N-terminal protein corresponding to a region consisting of the 1st to 535th amino acids of AtCry2, a C-terminal deletion variant of Cry2 consisting of a partial N-terminal protein corresponding to a region consisting of the 1st to 496th amino acids of AtCry2, or a C-terminal deletion variant of Cry2 which is obtained by introducing a point mutation into a partial N-terminal protein corresponding to a region consisting of the 1st to 535th amino acids of AtCry2 so that an amino acid residue corresponding to the 348th leucine of AtCry2 is substituted with phenylalanine, is linked to the N-terminal side or C-terminal side of p65AD directly or through a peptide linker consisting of one or more amino acids, still more preferably a protein in which a C-terminal deletion variant of Cry2 consisting of a partial N-terminal protein corresponding to a region consisting of the 1st to 535th amino acids of AtCry2 or a C-terminal deletion variant of Cry2 consisting of a partial N-terminal protein corresponding to a region consisting of the 1st to 496th amino acids of AtCry2 is linked to the C-terminal side of p65AD directly or through a peptide linker consisting of one or more amino acids, or preferably a protein in which a C-terminal deletion variant of Cry2, which is obtained by introducing a point mutation into a partial N-terminal protein corresponding to a region consisting of the 1st to 535th amino acids of AtCry2 so that an amino acid residue corresponding to the 348th leucine of AtCry2 is substituted with phenylalanine, is linked to the N-terminal side of p65AD directly or through a peptide linker consisting of one or more amino acids, because these proteins further increase the PA-Tet-controlled expression efficiency.

In a case where the PA-Tet-OFF/ON system according to the present invention uses the BphP1/Q-PAS1-PA binding switch, one of the first protein and the second protein is BphP1 or a variant thereof, and the other is Q-PAS1 or a variant thereof. The first fusion protein expression cassette used in the present invention is an expression cassette for expressing a first fusion protein containing TetR or rTetR and BphP1 or a variant thereof or Q-PAS1 or a variant thereof. The second fusion protein expression cassette is an expression cassette for expressing a second fusion protein containing p65AD and BphP1 or a variant thereof or Q-PAS1 or a variant thereof. In a case where the first fusion

protein is a fusion protein containing TetR or rTetR and BphP1 or a variant thereof, the second fusion protein is a fusion protein containing p65AD and Q-PAS1 or a variant thereof. Conversely, in a case where the first fusion protein is a fusion protein containing TetR or rTetR and Q-PAS1 or a variant thereof, the second fusion protein is a fusion protein containing p65AD and BphP1 or a variant thereof.

Examples of BphP1 used in the present invention include wild-type BphP1 of *Rhodopseudomonas palustris* (RpBphP1: SEQ ID NO: 21, Non-Patent Literature 27) or a homologous protein thereof. Examples of the BphP1 variant used in the present invention include a variant obtained by deleting a region which does not affect the heterodimerization of BphP1 and Q-PAS1 and a variant obtained by introducing a mutation into such a region. Examples of the mutation to be introduced include mutations that induce the substitution, insertion, or deletion of one or more amino acids.

Examples of Q-PAS1 used in the present invention include a region consisting of Q-linker and PAS1 of the wild-type PpsR2 of *Rhodopseudomonas palustris* (RpPpsR2: Non-Patent Literature 26). Specifically, examples thereof include a partial protein RpQ-PAS1 consisting of the 101st to 251st amino acid residues (SEQ ID NO: 22, Non-Patent Literatures 28 and 29) or a partial protein corresponding to a region consisting of Q-linker and PAS1 of a homologous protein of RpPpsR2.

The first fusion protein used in the present invention is a protein in which TetR or rTetR is linked to BphP1 or a variant thereof or to Q-PAS1 or a variant thereof directly or through a peptide linker consisting of one or more amino acids. In the first fusion protein, BphP1 or the like may be linked to the C-terminal side or N-terminal side of TetR or rTetR. The length of the peptide linker is not particularly limited. For example, the peptide linker may consist of 1 to 25 amino acids.

The second fusion protein used in the present invention is a protein in which p65AD is linked to BphP1 or a variant thereof or to Q-PAS1 or a variant thereof directly or through a peptide linker consisting of one or more amino acids. In the second fusion protein, BphP1 or the like may be linked to the C-terminal side or N-terminal side of p65AD.

The first fusion protein used in the present invention is preferably a protein in which BphP1 or a variant thereof is linked to the N-terminal side or C-terminal side of TetR or rTetR directly or through a peptide linker consisting of one or more amino acids, more preferably a protein in which BphP1 is linked to the N-terminal side of TetR or rTetR directly or through a peptide linker consisting of one or more amino acids, and even more preferably a protein in which RpBphP1 is linked to the N-terminal side of TetR or rTetR through a peptide linker consisting of an amino acid sequence represented by SPKKK, HMEF (SEQ ID NO: 23), TSTR (SEQ ID NO: 24), or SPKKKHMEF (SEQ ID NO: 25), because these proteins further increase the PA-Tet-controlled expression efficiency.

The second fusion protein used in the present invention is preferably a protein in which Q-PAS1 or a variant thereof is linked to the N-terminal side or C-terminal side of p65AD directly or through a peptide linker consisting of one or more amino acids, more preferably a protein in which Q-PAS1 is linked to the N-terminal side of p65AD directly or through a peptide linker consisting of one or more amino acids, even more preferably a protein in which RpQ-PAS1 is linked to the N-terminal side of p65AD directly or through a peptide linker consisting of one or more amino acids, and still more preferably a protein in which RpQ-PAS1 is linked to the

N-terminal side of p65AD through a peptide linker consisting of an amino acid sequence represented by HMEF or TSTR, because these proteins further increase the PA-Tet-controlled expression efficiency.

Unless the effects of the present invention are impaired, other peptides or proteins may be added to the first fusion protein and the second fusion protein used in the present invention. For example, in a case where the first fusion protein is a protein in which a variant, which is obtained by deleting NLS from a partial N-terminal protein corresponding to a region consisting of the 1st to 170th amino acids of AtCIB1, is linked to the C-terminal side of TetR or rTetR directly or through a peptide linker consisting of one or more amino acids, the second fusion protein is preferably a protein having one or more NLS added to the N-terminal or C-terminal. Furthermore, in a case where the second fusion protein is a protein in which p65AD is linked to Q-PAS1 directly or through a peptide linker consisting of one or more amino acids, the second fusion protein is preferably a protein having one or more NLS added to the N-terminal or C-terminal and more preferably a protein having one or more NLS added to the N-terminal.

The PA-Tet-OFF/ON system according to the present invention may include an expression cassette for a protein in which the first fusion protein and the second fusion protein are linked to each other through a T2A self-cleaving peptide, instead of the first fusion protein expression cassette and the second fusion protein expression cassette. The second fusion protein may be linked to the downstream side of the first fusion protein through the T2A self-cleaving peptide, or the first fusion protein may be linked to the downstream side of the second fusion protein through the T2A self-cleaving peptide. In addition, the proteins described above can be used as both the first fusion protein and the second fusion protein to be linked to each other through the T2A self-cleaving peptide.

The PA-Tet-OFF/ON system according to the present invention may include an expression cassette for bicistrionically expressing the first fusion protein and the second fusion protein, instead of the first fusion protein expression cassette and the second fusion protein expression cassette. The expression cassette for bicistrionically expressing the first fusion protein and the second fusion protein can be manufactured by conventional methods such as a method of linking a region encoding the first fusion protein to a region encoding the second fusion protein by using a bicistronic expression element such as IRES. The region encoding the second fusion protein may be linked to the downstream side of the region encoding the first fusion protein through a bicistronic expression element, or the region encoding the first fusion protein may be linked to the downstream side of the region encoding the second fusion protein through a bicistronic expression element. The proteins described above can be used as both the first fusion protein and the second fusion protein to be bicistrionically expressed.

For the expression system into which the PA-Tet-OFF/ON system according to the present invention is introduced, by adjusting conditions so that the expression system is irradiated or not irradiated with blue light or near-infrared light and treated or not treated with a Tet-based compound, it is possible to control the expression of a target gene in the expression system. For an expression system into which a PA-Tet-OFF system having the TetR-containing first fusion protein is introduced, by irradiating the expression system with blue light or near-infrared light in the absence of a Tet-based compound, it is possible to induce the expression of a target gene. Furthermore, by increasing the irradiance of

the blue light or the near-infrared light to be radiated, it is possible to improve the expression efficiency of the target gene. For an expression system into which a PA-Tet-ON system having rTetR-containing first fusion protein is introduced, by adding a Tet-based compound to the expression system and irradiating the expression system with blue light or near-infrared light, it is possible to induce the expression of a target gene. Furthermore, by increasing the irradiance of the blue light or the near-infrared light to be radiated or increasing the concentration of the Tet-based compound, it is possible to improve the expression efficiency of the target gene.

The expression system into which the PA-Tet-OFF/ON system according to the present invention is to be introduced may be a cell or a cell-free system. In a case where a cell is used as the expression system, the cell may be a cultured cell, a cell in the living body of an animal, or a cell in a tissue collected from an animal. The PA-Tet-OFF/ON system according to the present invention is suitable for inducing expression in an animal cell or a cell-free expression system derived from an animal cell, and particularly suitable for inducing expression in a mammalian cell or a cell-free expression system derived from a mammalian cell.

The PA-Tet-OFF/ON system according to the present invention induces the expression of a target gene only in the region irradiated with blue light or near-infrared light. Therefore, for example, by appropriately adjusting the region to be irradiated with blue light or the like or adjusting the irradiation timing, the system can induce the expression of a target gene only in a limited space at the desired timing.

In a case where the PA-Tet-OFF/ON system according to the present invention uses the BphP1/Q-PAS1-PA binding switch, a heterodimer of BphP1 and Q-PAS1 is formed using By. As BV used in this case, it is possible to use endogenous BV of eukaryote. However, it is also preferable to introduce exogenous BV into a cell. In a case where the cell is rich in BV, it is possible to form a heterodimer with higher sensitivity to near-infrared light and to induce the expression of a target gene. The introduction of BV into a cell to be caused to express the target gene may be performed by directly introducing BV into the cell by microinjection or the like or may be performed by introducing a gene encoding a protein having a function of facilitating the biosynthesis of BV into the cell.

The method for introducing the PA-Tet-OFF/ON system according to the present invention into an expression system is not particularly limited. For example, by incorporating appropriate vectors into the respective expression cassettes and introducing these vectors into an expression system by a conventional method, it is possible to introduce the PA-Tet-OFF/ON system according to the present invention into the expression system. For example, an expression vector into which the target gene expression cassette is incorporated, an expression vector containing the first fusion protein expression cassette, and an expression vector containing the second fusion protein expression cassette are introduced into the expression system. In addition, an expression vector into which the target gene expression cassette is incorporated and an expression vector containing an expression cassette for a gene encoding a protein in which the first fusion protein and the second fusion protein are linked to each other through a T2A self-cleaving peptide may be introduced into the expression system. Alternatively, an expression vector into which the target gene expression cassette is incorporated and an expression vector containing an expression cassette for

bicistrionically expressing the first fusion protein and the second fusion protein may be introduced into the expression system.

In a case where the expression system is a cell-free expression system, the expression cassettes can be added to the expression system as they are. In a case where the expression system is an animal cell, vectors that are appropriately selected according to the type of the animal cell and incorporated with the respective expression cassettes by a gene recombination technique can be introduced into the target cell by a generally used method such as calcium phosphate transfection, lipofection, or electroporation. As the vectors, it is possible to use known vectors such as a plasmid vector, a retroviral vector, and an adeno-associated viral vector.

All or some of the expression cassettes constituting the PA-Tet-OFF/ON system according to the present invention may be incorporated into the chromosome of an animal cell. The incorporation of the expression cassettes into the chromosome can be performed by a conventional knock-in technique such as homologous recombination.

As a kit for constructing a PA-Tet-OFF/ON system for expressing a target gene, a kit is useful which is obtained by combining an expression vector containing a first fusion protein expression cassette and an expression vector containing a second fusion protein expression cassette with a target gene expression vector containing TRE, a minimal promoter which is positioned downstream of the TRE and controlled by the TRE, and a multicloning site which is positioned downstream of the minimal promoter and into which a target gene will be inserted. As the target gene expression vector, the same vector as the TRE-containing vector used in the conventional Tet-OFF/ON system can be used as it is.

In a case where the PA-Tet-OFF/ON system according to the present invention uses the Cry2/CIB1-PA binding switch, the expression vector having the first fusion protein expression cassette contained in the kit for a PA-Tet-OFF/ON system is preferably an expression vector having the first fusion protein expression cassette containing a gene encoding a first fusion protein in which TetR or rTetR is linked to CIB1 or a variant thereof, and the expression vector having the second fusion protein expression cassette is preferably an expression vector having the second fusion protein expression cassette containing a gene encoding the second fusion protein in which p65AD is linked to Cry2 or a variant thereof, because these expression vectors further increase the PA-Tet-controlled expression efficiency. Furthermore, a kit is also preferable which has, instead of the expression vector having the first fusion protein expression cassette and the expression vector having the second fusion protein expression cassette, an expression vector having an expression cassette for a protein in which a fusion protein consisting of TetR or rTetR linked to CIB1 or a variant thereof and a fusion protein consisting of p65AD linked to Cry2 or a variant thereof are linked to each other through a T2A self-cleaving peptide. In addition, a kit is also preferable which has, instead of the expression vector having the first fusion protein expression cassette and the expression vector having the second fusion protein expression cassette, an expression vector having an expression cassette for the bicistronic expression of a fusion protein consisting of TetR or rTetR linked to CIB1 or a variant thereof and a fusion protein consisting of p65AD linked to Cry2 or a variant thereof.

In a case where the PA-Tet-OFF/ON system according to the present invention uses the BphP1/Q-PAS1-PA binding

switch, the expression vector having the first fusion protein expression cassette contained in the kit for a PA-Tet-OFF/ON system is preferably an expression vector having the first fusion protein expression cassette containing a gene encoding the first fusion protein consisting of TetR or rTetR linked to BphP1 or a variant thereof, and the expression vector having the second fusion protein expression cassette is preferably an expression vector having the second fusion protein expression cassette containing a gene encoding a second fusion protein consisting of p65AD linked to Q-PAS1 or a variant thereof, because these expression vectors further increase the PA-Tet-controlled expression efficiency. Furthermore, a kit is also preferable which has, instead of the expression vector having the first fusion protein expression cassette and the expression vector having the second fusion protein expression cassette, an expression vector having an expression cassette for a protein in which a fusion protein consisting of TetR or rTetR linked to BphP1 or a variant thereof and a fusion protein consisting of p65AD linked to Q-PAS1 or a variant thereof are linked to each other through a T2A self-cleaving peptide. Moreover, a kit is also preferable which has, instead of the expression vector having the first fusion protein expression cassette and the expression vector having the second fusion protein expression cassette, an expression vector having an expression cassette for the bicistronic expression of a fusion protein consisting of TetR or rTetR linked to BphP1 or a variant thereof and a fusion protein consisting of p65AD linked to Q-PAS1 or a variant thereof.

EXAMPLES

Next, the present invention will be more specifically described with reference to examples and the like, but the present invention is not limited to the examples.

<Construct>

The constructs used in the following experiments were prepared as below.

For functional screening of PA-Tet-OFF candidate constructs, a DNA binding domain, a dimerization domain, and a Tet binding domain (residues 1 to 206 of TetR, hereinafter, represented by "TetR (1-206)") of TetR (SEQ ID NO: 1) and p65AD (SEQ ID NO: 2) were amplified using pLVPT-tTR-KRAB (plasmid #11642, manufactured by Addgene) (Non-Patent Literature 12) and pEF-hGAVPO (Non-Patent Literatures 2 and 13), respectively. The nucleic acids having sequences optimized for the mammalian codons encoding Cry2 (SEQ ID NO: 3) variants (Cry2 PHR, Cry2 PHR (L348F), Cry2 535, and Cry2 535 (L348F)), CIB1 (SEQ ID NO: 4), and variants thereof (CIB1 without a nuclear localization sequence [NLS], CIBN, CIBN without NLS, and CIB81) were synthesized by FASMAC (Non-Patent Literatures 10, 11, and 14). In order to validate the sequences of flexible linkers, a sequence derived from tTA-Ad (pTet-OFF Advanced, manufactured by Clontech/Takara Bio Inc.) having an S2A point mutation was used. The amino acid sequence encoded by tTA-Ad (S2A, residues 1 to 206) was identical to the amino acid sequence of TetR (residues 1 to 206). By using these sequences, TetR (residues 1 to 206) or p65AD was fused with a Cry2 variant or a CIB1 variant. Furthermore, the sequences of other point mutations, NLS, T2A, or FLAG® (registered trademark) tags were introduced into or added thereto by a conventional overlap extension polymerase chain reaction (PCR), restriction enzyme digestion, and ligation. These constructs were cloned into an expression vector plasmid (pEF-BOS) containing a human elongation factor 1a promoter sequence and

a polyadenylation sequence and a variant thereof (Non-Patent Literature 15). All of the prepared constructs were checked by DNA sequencing.

In order to generate PA-Tet-ON candidate constructs, 5 TetR sequences having the following reverse phenotypic (variant) mutations were synthesized: rtTA (E71K, D95N, L101S, and G102D), S2 (E19G, A56P, D148E, and H179R), M2 (S12G, E19G, A56P, D148E, and H179R), V10 (E19G, A56P, F67S, F86Y, D148E, R171K, and H179R), V16 (V91, E19G, A56P, F67S, F86Y, D148E, R171K, and H179R) (Non-Patent Literature 1). These sequences were then substituted with TetR sequences of PA-Tet-OFF plasmids. Reporter plasmids for PA-Tet-OFF/ON activity were prepared using Emerald luciferase (Eluc) derived from Pyrearinus termittilluminans (manufactured by TOYOBO CO., LTD.). In order to rapidly degrade Eluc so as to prevent the long-term accumulation of the reporters in cells, one copy of variant ubiquitin (G76V) was fused with the N-terminal of Eluc (Non-Patent Literature 16). The Ub-Eluc encoding sequence was inserted into a TREtight plasmid (manufactured by Clontech/Takara Bio Inc.) (TREtight-Ub-Eluc reporter).

In constructing plasmids for lentiviral vectors, a PA-Tet 25 construct encoding sequence was inserted into the multicloning site of a CSII-EF-MCS plasmid, a CSII-EF-MCS-IRES2-Bsd plasmid, a CSII-EF-MCS-IRES2-mCherryNLS plasmid, or CSII-CAG-MCS plasmid (Non-Patent Literatures 2 and 17). Bsd represents a blasticidin resistance gene. 30 CSII-EF-MCS was digested with AgeI so that the elongation factor (EF) promoter was removed. Furthermore, in order to avoid the influence of long terminal repeat (LTR)-mediated transcription, a TRE3G sequence (manufactured by Clontech/Takara Bio Inc.) and the 3'-untranslated region (UTR) of the mouse Hes1 gene were cloned in the reverse direction. A sequence encoding Ub-NLS-luc2 (ubiquitinated and destabilized firefly luciferase with NLS) or luc2 was inserted next to the TRE3G sequence. Hereinafter, a vector into 35 which the sequence encoding Ub-NLS-luc2 is inserted will be called TRE3G-Ub-NLS-luc2-Hes1 3'UTR lentiviral vector, and a vector into which the sequence encoding luc2 is inserted will be called TRE3G-luc2-Hes1 3'UTR lentiviral vector.

40 45 In a plasmid construct of an adeno-associated viral (AAV) vector, FLAG-TetR (I194T, residues 1 to 206)-CIBN (without NLS)-T2A-mCherryNLS construct or an N-terminal fusion construct of NLS-tagged Cry2 PHR (L348F)-p65 AD was inserted into a multicloning site of pAAV-CAG-ArchT-GFP (plasmid #29777, manufactured by Addgene) by removing the ArchT-GFP sequence by digestion with BamHI and EcoRI. In order to create an expression cassette flanked by inverted terminal repeats (ITR), a GFP reporter plasmid controlled by TRE was constructed by inserting a 50 55 TRE3Gs sequence, cDNA of a destabilizing signal-containing sfGFP (Non-Patent Literature 19), and a poly(A) signal sequence into a pFBAAV vector (Non-Patent Literature 18) (pFBAAV-TRE3G-GFP-pest-SV40 pA).

Nucleic acids having sequences optimized for mammalian codons encoding RpBphP1 (Non-Patent Literature 27) and Q-PAS1 (Non-Patent Literatures 28 and 29) were synthesized by FASMAC. By using these nucleic acids, constructs fused with TetR (residues 1 to 206) and p65AD or various variants thereof were cloned into pEF-BOS and variants thereof. All of the prepared constructs were checked by DNA sequencing. Other viral vectors were also prepared in the same manner as described above.

<Cell Culture>

In the following experiments, unless otherwise specified, cell culture was carried out as follows.

HEK293T cells and Eph4 cells (ATCC [American Type Culture Collection]) were cultured in a Dulbecco's Modified Eagle's Medium (DMEM) (manufactured by NACALAI TESQUE, INC. or Gibco) supplemented with 10% fetal bovine serum (FBS) (Hyclone, manufactured by Thermo Fisher Scientific Inc.), 100 units/mL penicillin, and 100 mg/mL streptomycin (manufactured by NACALAI TESQUE, INC.) at 37° C. in 5% CO₂. The HEK293T cells and the Eph4 cells were subcultured using 0.05% and 0.25% trypsin/EDTA (manufactured by NACALAI TESQUE, INC. or Gibco), respectively.

<Lentivirus Packaging>

In the following experiments, unless otherwise specified, lentivirus packaging was carried out as follows.

By using the methods described in Non-Patent Literature 2, Non-Patent Literature 17, and the like, lentiviral particles were produced from HEK293T cells transfected with packaging plasmids by calcium phosphate co-transfection or lipofection. The supernatant was started to be collected 24 hours after transfection and continuously collected for up to 36 hours. The supernatant was centrifuged at 6,000 g for 16 hours and concentrated. The obtained virus pellets were resuspended in phosphate-buffered saline (PBS) or physiological saline at a volume 1/100 to 1/500 of the initial volume, and the viral aliquots were frozen. The viral titer was about 10⁸ to 10⁹ IU (infectious units)/mL. The cultured cells were infected with the purified lentiviral particles at MOI (multiplicity of infection) of 10 to 20. The transduced cells were selected by Blasticidin S (2 µg/mL, manufactured by Invitrogen) for the lentiviral vector co-expressing Bsd and by fluorescence-activated cell sorting for the lentiviral vector co-expressing mCherry.

<Light Source>

In the following experiments, unless otherwise specified, the following sources were used as light sources.

An LED light source (LEDB-SBOXH, manufactured by OPTOCODE CORPORATION) was used to irradiate the cultured cells with blue light in a CO₂ incubator. In blue light illumination under a microscope (excluding the application of patterned light), blue light was produced by a pE-2 LED excitation system (CoolLED) with a 470 nm LAM. In order to irradiate brain nerve cells with blue light (465 nm), blue light was delivered by a penlight (Handy Blue Pro Plus, manufactured by RelyOn Ltd.) or PLEXBRIGHT® (manufactured by Plexon Inc.).

<Application of Patterned Light>

A mosaic 3-pattern illuminator (Andor Instruments, manufactured by Belfast) equipped with a blue light-emitting diode (X-CITE® (registered trademark) 120 LED, manufactured by Excelitas Technologies) was attached to a microscope and used to supply light through an objective lens.

<Luciferase Assay>

In the following experiments, unless otherwise specified, the luciferase activity of lysed cells was assayed by using a luciferase assay system (manufactured by Promega Corporation) according to the manufacturer's protocol.

<Luciferase Activity Monitoring in Live Cells>

In the following experiments, unless otherwise specified, luciferase activity in live cells was monitored as follows.

Population-level luminescence signals were recorded by a live cell monitoring system (CL24B-LIC/B, manufactured by Churitsu Electric Corporation) equipped with a high-sensitivity photomultiplier tube (PMT) and an LED blue

light source (LEDB-SBOXH, manufactured by OPTOCODE CORPORATION). Cells were seeded in a black 24-well plate containing 1 mM luciferin-containing medium, and photon counting was carried out.

5 <Estimation of Activation and Inactivation Reaction Rate of PA-Tet-Controlled Gene Expression>

The half-life of the switch-on/off reaction rate of PA-Tet-controlled gene expression in the PA-Tet-OFF system and the PA-Tet-ON system was determined through the following three steps.

First, in order to eliminate the linear trend of activity independent of photo stimulation, each waveform was determined. In the detrending process, linear regression was performed using data points less than the median absolute deviation of the waveform, and the values predicted by the regression were subtracted from all points in the waveform. Second, the event epoch induced by photo stimulation was estimated by comparing each value of the waveform with a stochastic threshold. At the stochastic threshold, random numbers with the same waveform vector length were generated from the Gaussian distribution. The stochastic threshold was generated by the same method in all assays. Each value of the waveform was compared with the threshold at the corresponding time point. This process was repeated 100 times, and the time point at which the probability that the gene expression level will exceed the threshold is higher than 50% was treated as an event (that is, PA-Tet-controlled gene expression). Finally, the period from the start to the peak of an event epoch was estimated as the value of τ_{on} , and the period from the peak to the end of the event epoch was estimated as the value of τ_{off} . The half-life of the switch-on/off reaction rate of PA-Tet-controlled gene expression was calculated using the values of τ_{on} and τ_{off} .

<Luciferase Imaging>

35 In the following experiments, unless otherwise specified, luciferase imaging was carried out as follows.

Cells were seeded in a 35-mm glass-based dish at 50% to 60% confluence, and incubated at 37° C. in 5% CO₂. Then, 1 mM luciferin was added to the medium. Bioluminescence images were obtained using an upright microscope (IX83, manufactured by Olympus Corporation) equipped with a 20× or 40× immersion objective lens. Digital images were obtained using a cooled CCD camera (iKon-M DU934P-BV, manufactured by Andor). Filters and cameras were automatically controlled using software (METAMORPH® (registered trademark), manufactured by Universal Imaging Corporation). Stray light was removed by turning off the electric system. The imaging system was used in a darkroom.

40 <Image Analysis and Quantification>

In the following experiments, unless otherwise specified, image analysis and quantification were carried out as follows.

45 Image analysis was performed using the ImageJ software and custom plug-ins (Non-Patent Literatures 2 and 22). Custom code for the ImageJ plug-in used in this experiment is available on request. In order to analyze bioluminescence imaging sequence files, "spike noise filter" was applied to the stack file so that the noise signals caused by cosmic rays were removed. CCD readout noise was also removed by "temporal background reduction filter". In this normalization procedure, the background intensity measured outside the imaging region of each time frame was subtracted from the signal intensity. Based on "circadian gene expression" 50 (CGE), individual cells were tracked, and the bioluminescence signals were quantified. Nuclear localization mCherry was co-expressed and used to detect and track moving cells.

The average signal intensity in the nucleus was measured and analyzed with PRISM® (registered trademark) 5.0 software (manufactured by GraphPad Software.).

<Immunofluorescence Staining>

In the following experiments, unless otherwise specified, immunofluorescence staining was carried out as follows.

Cells or tissues were washed with PBS and immobilized with 4% paraformaldehyde/PBS for 20 minutes at room temperature. The immobilized cells were washed with PBS, blocked and permeabilized with 5% normal donkey serum (NDS) and 0.1% TRITON-X-100®/PBS for 20 minutes at room temperature, and incubated at 4° C. overnight together with primary antibodies diluted with PBS containing 1% NDS. The cells were then washed with PBS and incubated at room temperature for 1 hour together with conventional secondary antibodies bound to Alexa 405, Alexa 488, or Alexa 594 (manufactured by Invitrogen). The stained cells or tissues were imaged with an LSM510 or LSM780 confocal microscope (manufactured by ZEISS). The following antibodies were used as primary antibodies: mouse monoclonal anti-MAP2 antibody (M4403, manufactured by Sigma-Aldrich Co. LLC.), rabbit polyclonal anti-GFP antibody (A11122, manufactured by Thermo Fisher Scientific Inc.), and mouse monoclonal anti-NeuN antibody (MAB377, manufactured by Millipore Corporation).

<Evaluation of PA-Tet-OFF/ON Characteristics>

In the following experiments, unless otherwise specified, the characteristics of PA-Tet-OFF/ON were evaluated as follows.

(1) Functional Screening of PA-Tet-OFF Candidate Constructs

For functional screening of PA-Tet-OFF candidate constructs, HEK293T cells were seeded in a 24-well plate at 5 to 9×10⁴ cells/well and cultured at 37° C. in 5% CO₂ for 24 hours. The cells were then transfected with LIPO-FECTAMINE® (registered trademark) LTX (manufactured by Invitrogen) or polyethyleneimine (manufactured by Polysciences, Inc.) according to the manufacturer's protocol. Three plasmids, pEF-TetR (1-206) fused with the Cry2/CIB variant, pEF-p65AD fused with the Cry2/CIB variant, and the pTREtight-Ub-ELuc reporter, were subjected to co-transfection at 25:25:8 (mass ratio). The total amount of DNA was 0.58 µg/well. Forty-eight hours after transfection, the cells were exposed to blue light (7.2 W/m²; pulsed for 2 seconds every minute) for 3 hours. Then, the cells were lysed, and the luciferase activity thereof was measured with a plate reader (ARVO X3, manufactured by PerkinElmer Inc.). Control cells were transfected with plasmids and then kept in a dark place. In order to analyze the constructs having the T2A sequence, expression vectors, PBS (pBluescript plasmids), and reporters were mixed together at 25:25:8 (mass ratio) and subjected to co-transfection. By using PBS, the total amount of DNA with which the cells will be transfected was adjusted.

(2) Analysis on Relationship Between Irradiance and Induced Gene Expression Level

In order to analyze the relationship between irradiance and induced gene expression level, stable Eph4 cell clones transduced with PA-Tet-OFF and a TRE3G-Ub-NLS-luc2-Hes1 3'UTR lentiviral vector (FIG. 8(B)) were seeded in a 24-well plate at 5 to 9×10⁴ cells/well, cultured for 24 hours, and assayed in the same manner as in the candidate construct screening. The cells were irradiated for 3 hours with blue light (7.2 W/m²; pulsed for 2 seconds every minute) at irradiance of 0, 1.7, 3.5, 5.5, and 7.0 W/m².

(3) Analysis on Relationship Between Dox Concentration and Induced Gene Expression Level

In order to analyze the relationship between the Dox concentration and the induced gene expression level, HEK293T cells were seeded in a 24-well plate at 5 to 9×10⁴ cells/well, transfected, and assayed in the same manner as in candidate construct screening. Dox was applied to the cells at concentrations of 0, 1, 7.5, 15, 20, 50, and 100 ng/mL for the PA-Tet-OFF constructs and at concentrations of 0, 10, 15, 20, 30, 35, 40, 50, 75, 100, and 250 ng/mL for the PA-Tet-ON constructs. The cells were irradiated with blue light (7.2 W/m²; pulsed for 2 seconds every minute) for 3 hours.

(4) Double-Controlled Analysis Using Light Intensity and Dox Concentration

In order to carry out double-controlled analysis using light intensity and Dox concentration, the stable cell clones transduced with PA-Tet-ON and the TRE3G-Ub-NLS-luc2-Hes1 3'UTR lentiviral vector were seeded in a 24-well plate at 1×10⁵ cells/well and cultured for 24 hours. Dox was applied to the cells at concentrations of 0, 50, 75, 87.5, 92.5, 100, 250, and 500 ng/mL. The cells were irradiated with blue light (7.2 W/m²; pulsed for 2 seconds every minute) for 3 hours at irradiance of 0, 1.8, 3.6, 5.9, and 7.1 W/m².

(5) Evaluation of Temporal Characteristics of PA-Tet-OFF/ON

In order to investigate the temporal characteristics of PA-Tet-OFF/ON, transfected HEK293T cells or lentivirus-transduced Eph4 cells were used. The cells were seeded in a black 24-well plate at 1×10⁴ cells/well and exposed to blue light (7.2 W/m²) for 1 to 2 minutes. Population-level luminescence signals were recorded using a live cell monitoring system (CL24B-LIC/B, manufactured by Churitsu Electric Corporation).

(6) Measurement of Ability of PA-Tet-OFF/ON System to Spatially Control Gene Expression

In order to investigate the ability of the PA-Tet-OFF/ON system to spatially control gene expression in target cells, Eph4 cells transduced with lentivirus were seeded in a 35-mm glass-based dish (Cat #3910-035, manufactured by IWAKI & CO., LTD.) at 50% to 60% confluence. Before being irradiated with light, the cells were incubated at 37° C. in 5% CO₂ on a chamber stage of a microscope. Patterned light was generated by the MOSAIC 3 device and applied to the cells. The light (10 ms pulse) was applied to the cells 50 times to obtain luminescence signals changing over time. The power of the blue light source was set to 100%, and a 200×200 pixel area was observed through a 40× objective lens (UApO 40×Oil Iris3/340, manufactured by Olympus Corporation) (NA was changed to 0.55). As a result, light energy of 1.3 W/m² was measured.

<Statistical Analysis>

In the following experiments, unless otherwise specified, statistical analysis was carried out using PRISM® (registered trademark) 5.0 or 6.0 software (manufactured by GraphPad Software.). A P-value less than 0.05 was considered as significant

<Primary Neuronal Culture>

In the following experiments, unless otherwise specified, primary neuronal culture was carried out as follows.

Hippocampal neurons were obtained from CA1/CA3/60 dentate gyrus of the hippocampus of 1-day-old (P1) mouse pups by a process devised by slightly modifying the methods described in Non-Patent Literature 20 and Non-Patent Literature 21. To finish the culture, the dissociated cells were seeded on a coverslip (Assistant, manufactured by Karl Hecht GmbH & Co KG.) coated with MATRIGEL® (manufactured by Invitrogen), and cultured on a minimum essential medium supplemented with 1 mM GLUTAMAX®

(trademark)-I, 25 µg/mL insulin, 2% GS21 neurotrophic supplement (manufactured by GlobalStem, Inc.), and 5% FBS (HYCLONE®, manufactured by Thermo Fisher Scientific Inc.). Twenty-four to forty-eight hours after seeding, 4 µM cytosine arabinoside (manufactured by Sigma-Aldrich Co. LLC.) was added to the medium so that the growth of glial cells was suppressed.

<Production of Recombinant AAV>

In the following experiments, unless otherwise specified, recombinant AAV was produced as follows.

Serotype DJ/8 AAV was produced in HEK293T cells co-transfected with an ITR-containing AAV vector, a packaging vector pAAV-DJ/8, and pHelper (manufactured by Cell Biolabs, Inc.). From the transfected cells, recombinant AAV particles were collected using an extraction kit (AAVpro extraction solution, manufactured by Takara Bio Inc.). The collected AAV particles were further purified using a discontinuous iodixanol gradient with ultracentrifugation (OPTIPREP®, manufactured by Alere Technologies AS) and concentrated in PBS by ultrafiltration. Viral titers of the purified AAV were measured by qPCR and adjusted to 2 to 10×10^{12} genomic copies (gc/mL) per milliliter.

<Mouse Research>

All of the following animal experiments were approved by the Animal Care Committee of Kyoto University and met all relevant regulatory standards.

(1) Verification of PA-Tet-OFF/ON System in Neural Stem/Progenitor Cells of Developing Mouse Brain

In order to verify the PA-Tet-OFF/ON system in neural stem/progenitor cells of developing mouse brain, pEF-mCherryNLS, pEF-PA-Tet-OFF, and the CSII-TRE3G-NLS-Ub-luc2-Hes1 3'UTR plasmid were mixed together at a ratio of 1:2:2 (mass ratio), and E14.5 dorsal telencephalic progenitor cells were co-transfected with these plasmids by ex utero electroporation (Non-Patent Literatures 2 and 23). In order to deliver the plasmid DNA (2.5 µg/µL) into the telencephalic ventricle by microinjection and to transfet the neural stem/progenitor cells on the surface of the neocortical ventricle with the plasmids, ex utero electroporation (6 pulses, 50 mV, square wave generator (CUY21, manufactured by BEX CO., LTD.), 5 mm paddle electrode) was performed. The brain was immediately dissected, embedded in 3% low-melting-point agarose by the method described in Non-Patent Literature 2 and Non-Patent Literature 23, cut into 250 µm organotypic slices by using a vibratome (VT1000, manufactured by LEICA), moved to a 12 mm well culture insert (Millicell, PICM01250, manufactured by Merck KGaA), and cultured in a slice culture medium. The slices were incubated at 37°C and in 5% CO₂ while being periodically irradiated with blue light.

(2) Verification of PA-Tet-OFF/ON System in Adult Brain Neurons

In order to verify the PA-Tet-OFF/ON system in adult brain neurons, stereotaxic viral injection was performed on mice by using a sharp glass micropipette as described in Non-Patent Literature 18 and Non-Patent Literature 24. The mice (10 to 14 weeks old) were anesthetized with 440 mg/kg chloral hydrate (manufactured by Tokyo Chemical Industry Co., Ltd.) by intraperitoneal injection. Petrolatum was applied to both eyes to prevent dryness, and the scalp was treated with a depilatory cream. The mice were then immobilized on a small animal stereotaxic instrument (manufactured by David Kopf Instruments). The scalp was cut at the midline, and the periosteum was removed using a surgical knife. The skull was thinned with a drill, and mini-craniotomy was performed using a 27-gauge needle. The virus was injected through a pulled glass micropipette connected to a Hamilton syringe (Hamilton Company) pumped using a syringe pumping device (manufactured by World Precision

Instruments). The stereotaxic injection was performed on the following tissue at appropriate coordinates: hippocampal dentate gyrus (A/P: -1.94 mm from bregma, M/L: ±1.3 mm from bregma, D/V: -1.82 mm from surface of pia mater).

5 Two AAV vectors (AAV2-DJ/8 vector containing CAG-FLAG-TetR (I194T, 1-206)-CIBN (-NLS)-T2A-mCherryNLS construct and AAV2-DJ/8 vector containing CAG-NLS-attached Cry2 PHR (L348F)-p65 AD N-terminal fusion construct) were used for co-transfection at a ratio of 1:1 (titer ratio). The viral solution was injected at a volume of 0.5 to 1.5 µL at a rate of 0.1 µL/min. After the injection, the pipette was kept at the injection site for 10 more minutes before being removed. After the removal of the micropipette, the skin incision site was sutured, treated with an antibiotic cream, and a painkiller was injected subcutaneously to relieve postoperative pain. The animals having undergone injection were usually bred for 2 weeks before exposure to blue light. For AAV transduction into cortical neurons, custom headplates were adhered and fixed to the skull. A cranial incision (about 3.5 mm) was made over the visual cortex area. Three AAV vectors (AAV2-DJ/8 vector containing a CAG-FLAG-TetR (I194T, 1-206)-CIBN (-NLS)-T2A-mCherryNLS construct, AAV2-DJ/8 vector containing a CAG-NLS-attached Cry2 PHR (L348F)-p65 AD N-terminal fusion construct, and an AAV2-DJ/8 vector containing a TRE3G-luc2-Hes1 3'UTR construct) were used for co-transfection at a ratio of 1:1:1 (titer ratio).

(3) Photo Stimulation after AAV Transduction

Photo stimulation was started 14 days after the AAV transduction.

For irradiating the cortex with light, custom headplates and chronic cranial windows were implanted, and the mice were immobilized under blue penlights. The dorsal cortex was irradiated with blue light (100 W/m²; pulsed for 3 minutes every 30 minutes) for 6 hours.

For irradiating the adult mouse hippocampus with light, by using a blue LED (PLEXBRIGHT®, manufactured by Plexon Inc) connected to an optical implant through a fiber patch cable and a rotary joint, freely moving awake mice were treated for 12 hours at an intensity of 85.6 W/m² in a duty cycle of 1.6% (pulsed for 1 second at 0.016 Hz). After being irradiated with blue light, the mice were immediately sacrificed and perfused. The incised brain was subjected to immunohistochemistry.

For irradiating the brains of mouse pups with light, anesthetized mice were stimulated through an optical fiber using a blue LED (PLEXBRIGHT®, manufactured by Plexon Inc). After being irradiated with blue light (40 W/m²; pulsed for 1 second every 15 seconds; continued for 3 hours), the mice were immediately sacrificed, the right brain irradiated with blue light was immediately extracted and lysed, and the luciferase activity thereof was measured.

(4) Dox Treatment

The mice were treated with Dox. For long-term Dox administration, drinking water containing 1 mg/mL Dox in a 5% by mass sucrose solution was given to the mice. For Dox pulse treatment, the mice were given Dox by intraperitoneal injection at a single dose of 0.1 mg/g (body weight).

(5) Analysis in Subcutaneous Tissue

First, stable cell clones of Eph4 cells transduced with PA-Tet-OFF by using a lentiviral vector were transplanted into the subcutaneous tissue of the dorsal skin of adult mice. The stable cell clones were transplanted at 2 to 5×10^6 cells into the subcutaneous tissue by injection. Twenty-four hours after the injection of Eph4 cells, luciferin was additionally given to the mice at 200 mg/g (body weight) by intraperitoneal, subcutaneous, and intramuscular injection, and the mice were imaged using a CCD camera (iXon3, manufactured by ANDOR). The mice were anesthetized, then the

transplantation area of the dorsal skin of the mouse was irradiated with blue light (200 W/m²; for 1 minute), and the luciferase signals generated due to the change in the luciferin substrate in the mice were measured. For performing a Dox treatment, Dox (0.1 mg/g (body weight)) was given by intraperitoneal injection 1 hour before the irradiation with blue light. To correct the change of the luciferase signals, the Eph4 cells transfected with the pEF-luc2 expression vector were independently transplanted into the mice. These control mice were imaged along with the mice transplanted with Eph4 cells transfected with PA-Tet-OFF. Luminescence data from the control mice was used to correct the light-induced transcription in the transplanted Eph4 cells transfected with PA-Tet-OFF. The average intensity of the luminescence signals measured for 30 to 60 minutes after the blue light irradiation was plotted on a bar graph.

Example 1

As an attempt to construct a PA-Tet-OFF system that induces the expression of target genes by light irradiation and a Tet-based compound, a Cry2/CIB1-PA binding switch was incorporated into the Tet-OFF system. For constructing the system, HEK293T cells as an immortalized human embryonic kidney cell line were used, and a PA-Tet gene expression system optimal for mammalian cells was investigated. Specifically, a reporter plasmid (pTREtight-Ub-ELuc reporter) containing an expression cassette having a Tet operator, a promoter which is positioned downstream of the Tet operator and controlled by the Tet operator, and a Ub-Eluc gene which is positioned downstream of the promoter and of which the expression is controlled by the promoter, a plasmid containing an expression cassette for a fusion protein obtained by fusing TetR with one of Cry2 and CIB1, and a plasmid containing an expression cassette for a fusion protein obtained by fusing a p65AD protein with the remaining other one of Cry2 and CIB1 were introduced into the HEK293T cells, thereby obtaining transformed cells. These cells were irradiated with blue light in the absence of a Tet-based compound, and the relative expression level of Ub-ELuc was investigated.

FIG. 1 is a view schematically showing the used PA-Tet-OFF candidate constructs. In FIG. 1, “PHR” represents a photolyase homology region, and “NLS” represents a nuclear localization signal. As TetR, a point mutant (represented as “TetR (I194T, 1-206)”) obtained by substituting the 194th isoleucine residue in TetR (1-206) with a threonine residue was used.

FIG. 1(A) is a view schematically showing amino acid sequences of Cry2 and variants thereof. FIG. 1(B) is a view schematically showing amino acid sequences of CIB1 and

variants thereof. In FIG. 1(B), “(without NLS)” means an NLS deletion variant, which is a variant obtained by substituting all of the 93rd lysine, the 94th arginine, the 106th lysine, and the 107th lysine in the NLS sequence of CIB1 (region consisting of the 93rd to 107th amino acids) with alanine. All of the used Cry2, Cry2 variants, CIB1, and CIB1 variants were subjected to codon optimization for efficient expression in mammalian cells.

FIGS. 1(C) to 1(F) are views schematically showing the combination of the TetR-containing fusion protein and the p65AD protein-containing fusion protein used in each test. FIG. 1(C) shows the combination of a TetR (I194T, 1-206)-Cry2 variant fusion construct and a p65AD-CIB1 variant fusion construct. FIG. 1(D) shows the combination of a TetR (I194T, 1-206)-Cry2 variant fusion construct and a CIB1 variant-p65AD N-terminal fusion construct. FIG. 1(E) shows the combination of a TetR (I194T, 1-206)-CIB1 variant fusion construct and a p65AD-Cry2 variant fusion construct. FIG. 1(F) shows the combination of a TetR (I194T, 1-206)-CIB1 variant fusion construct and a Cry2 variant-p65AD N-terminal fusion construct.

The light-dependent transcriptional activity of each of the candidate constructs was assayed. Blue light irradiation was performed by exposing the cells to pulsed blue light (for example, pulsed for 2 seconds every 1 minute) only 3 hours before the cell lysis. All experiments were performed in 3 independent trials (3 batches) to obtain consistent results. The results are shown in Tables 1 to 4. Table 1 shows the results obtained from the candidate construct shown in FIG. 1(C). Table 2 shows the results obtained from the candidate construct shown in FIG. 1(D). Table 3 shows the results obtained from the candidate construct shown in FIG. 1(E). Table 4 shows the results obtained from the candidate construct shown in FIG. 1(F). In Tables 1 to 4, “linker” in the column of “Element #1” represents the amino acid sequence of a linker that links TetR (I194T, 1-206) to the Cry2 variant or CIB1 variant to be fused with the C-terminal side of TetR. In addition, the column of “An initial construct screening result” shows the result of the first one batch. In this column, “Dark” and “Light” each represents a relative value (the luminescence signal intensity of Negative Control under dark conditions is regarded as 1) of luminescence signal intensity (relative expression level of Ub-ELuc) quantified through image analysis by performing luciferase assay under dark conditions or under blue-light irradiation conditions, and “Light/Dark” represents a ratio therebetween. In the column of “Three independent data sets to confirm reproducibility, “Average of the Light/Dark ratio” represents the average of “Light/Dark” ratio of three independent batches, and “S.D. of the Light/Dark ratio” is the standard deviation thereof.

TABLE 1

Construct	Element #1				Element #2				An initial construct screening result	Three independent data sets to confirm reproducibility		
	TetR	Light-interacting			p65 AD and light-interacting					Average of the Light/Dark ratio	S.D. of the Light/Dark ratio	
		ID	mutation	Linker	protein	protein	protein					
Negative control	I194T	SPKKK	None (TetR only)		None (p65 AD only)				1.0	1.3	1.3	1.2
T1	I194T	SPKKK	Cry2 PHR		p65 AD-CIB1 full				1.1	1.8	1.6	1.4
T2	I194T	SPKKK	Cry2 PHR	NLS	p65 AD-CIB1 full no				1.1	2.0	1.8	2.1

TABLE 1-continued

Construct	Element #1		Element #2			An initial construct screening result			Three independent data sets to confirm reproducibility			
	TetR	Light-interacting	p65 AD and light-interacting				of the Light/Dark	of the Light/Dark				
				Dark	Light	Light/Dark						
ID	mutation	Linker	protein	protein	Dark	Light	Light/Dark	ratio	ratio			
T3	I194T	SPKKK	Cry2 PHR	p65 AD-CIBN	1.0	1.1	1.1	1.0	0.1			
T4	I194T	SPKKK	Cry2 PHR	p65 AD-CIBN no NLS	0.9	1.1	1.2	1.0	0.1			
T5	I194T	SPKKK	Cry2 PHR	NLSx2-p65 AD-CIBN no NLS	1.0	1.1	1.2	1.4	0.7			
T6	I194T	SPKKK	Cry2 PHR	p65 AD-CIB81	1.0	1.2	1.2	1.3	0.3			
T7	I194T	SPKKK	Cry2 PHR (L348F)	p55 AD-CIB1 full	1.0	1.5	1.5	1.4	0.3			
T8	I194T	SPKKK	Cry2 PHR (L348F)	p65 AD-CIB1 full no NLS	1.1	1.4	1.4	1.3	0.3			
T9	I194T	SPKKK	Cry2 PHR (L348F)	p65 AD-CIBN	1.1	1.1	1.0	0.8	0.2			
T10	I194T	SPKKK	Cry2 PHR (L348F)	p65 AD-CIBN no NLS	1.1	1.1	1.0	0.8	0.1			
T11	I194T	SPKKK	Cry2 PHR (L348F)	NLSx2-p65 AD-CIBN no NLS	1.1	1.1	1.0	0.9	0.1			
T12	I194T	SPKKK	Cry2 PHR (L348F)	p65 AD-CIB81	1.2	1.1	1.0	0.9	0.1			
T13	I194T	SPKKK	Cry2 535	p65 AD-CIB1 full	1.6	1.1	0.7	0.8	0.1			
T14	I194T	SPKKK	Cry2 535	p65 AD-CIB1 full no NLS	1.6	1.1	0.7	0.8	0.1			
T15	I194T	SPKKK	Cry2 535	p65 AD-CIBN	1.4	1.1	0.8	0.8	0.0			
T16	I194T	SPKKK	Cry2 535	p65 AD-CIBN no NLS	1.4	1.1	0.8	0.8	0.1			
T17	I194T	SPKKK	Cry2 535	NLSx2-p65 AD-CIBN no NLS	1.4	1.1	0.8	0.8	0.0			
T18	I194T	SPKKK	Cry2 535	p65 AD-CIB81	1.3	1.2	0.9	0.8	0.1			
T19	I194T	SPKKK	Cry2 535 (L348F)	p65 AD-CIB1 full	1.4	1.3	0.9	0.9	0.0			
T20	I194T	SPKKK	Cry2 535 (L348F)	p55 AD-CIB1 full no NLS	1.4	1.1	0.8	0.9	0.1			
T21	I194T	SPKKK	Cry2 535 (L348F)	p65 AD-CIBN	1.3	1.1	0.9	0.9	0.1			
T22	I194T	SPKKK	Cry2 535 (L348F)	p65 AD-CIBN no NLS	1.2	1.1	0.9	0.9	0.1			
T23	I194T	SPKKK	Cry2 535 (L348F)	NLSx2-p65 AD-CIBN no NLS	1.2	1.1	0.9	0.9	0.1			
T24	I194T	SPKKK	Cry2 535 (L348F)	p65 AD-CIB81	1.3	1.1	0.8	0.9	0.1			
No transfection	—	—	—	—	1.1	1.1	1.0	1.0	0.1			

TABLE 2

Construct	Element #1		Element #2			An initial construct screening result			Three independent data sets to confirm reproducibility			
	TetR	Light-interacting	p65 AD and light-interacting				of the Light/Dark	of the light/Dark				
				Dark	Light	Light/Dark						
ID	mutation	Linker	protein	protein	Dark	Light	Light/Dark	ratio	ratio			
Negative control	I194T	SPKKK	None (TetR only)	None (p65 AD only)	1.0	1.1	1.1	1.0	0.1			
T25	I194T	SPKKK	Cry2 PHR	CIBN-p65 AD	2.2	3.7	1.7	1.5	0.3			
T26	I194T	SPKKK	Cry2 PHR	CIBN no NLS-p65 AD	1.1	2.2	2.0	1.5	0.5			
T27	I194T	SPKKK	Cry2 PHR	CIBN-p65 AD-NLSx2	2.4	2.3	0.9	1.0	0.0			
T28	I194T	SPKKK	Cry2 PHR	CIBN no NLS-p65 AD-NLSx2	1.0	1.3	1.3	1.0	0.2			
T29	I194T	SPKKK	Cry2 PHR (L348F)	CIBN-p65 AD	1.0	1.8	1.8	1.4	0.4			
T30	I194T	SPKKK	Cry2 PHR (L348F)	CIBN no NLS-p65 AD	0.8	1.0	1.4	1.1	0.3			

TABLE 2-continued

Construct	Three independent data sets to confirm reproducibility							
	Element #1		Element #2			Average		S.D.
	TetR	Light-interacting	p65 AD and light-interacting	An initial construct screening result			of the Light/Dark	of the light/Dark
ID	mutation	Linker	protein	protein	Dark	Light	Light/Dark	ratio
T31	I194T	SPKKK	Cry2 PHR (L348F)	CIBN-p65 AD-NLSx2	1.3	1.3	1.0	1.0
T32	I194T	SPKKK	Cry2 PHR (L348F)	CIBN no NLS-p65 AD-NLSx2	0.8	0.9	1.2	1.0
T33	I194T	SPKKK	Cry2 535	CIBN-p65 AD	0.9	1.1	1.3	0.9
T34	I194T	SPKKK	Cry2 535	CIBN no NLS-p65 AD	0.8	0.7	0.9	0.8
T35	I194T	SPKKK	Cry2 535	CIBN-p65 AD-NLSx2	1.2	1.0	0.8	0.8
T36	I194T	SPKKK	Cry2 535	CIBN no NLS-p65 AD-NLSx2	0.8	0.7	0.8	0.1
T37	I194T	SPKKK	Cry2 535 (L348F)	CIBN-p65 AD	0.8	1.0	1.4	1.0
T38	I194T	SPKKK	Cry2 535 (L348F)	CIBN no NLS-p65 AD	0.7	0.8	1.2	1.0
T39	I194T	SPKKK	Cry2 535 (L348F)	CIBN-p65 AD-NLSx2	1.1	1.0	1.0	0.9
T40	I194T	SPKKK	Cry2 535 (L348F)	CIBN no NLS-p65 AD-NLSx2	0.8	0.8	1.0	0.9
No transfection	—	—	—	—	0.7	0.7	1.0	0.8

TABLE 3

Construct	Three independent data sets to confirm reproducibility							
	Element #1		Element #2			Average		S.D.
	TetR	Light-interacting	p65 AD and light-interacting	An initial construct screening result			of the Light/Dark	of the light/Dark
ID	mutation	Linker	protein	protein	Dark	Light	Light/Dark	ratio
Negative control	I194T	SPKKK	None (TetR only)	None (p65 AD only)	1.0	1.1	1.2	1.0
T41	I194T	SPKKK	CIB1 full	p65 AD-Cry2 PHR	13.8	20.7	1.6	1.6
T42	I194T	SPKKK	CIB1 full	p65 AD-Cry2 PHR (L348F)	8.3	17.2	2.2	1.7
T43	I194T	SPKKK	CIB1 full	p65 AD-Cry2 535	4.3	8.7	2.1	2.1
T44	I194T	SPKKK	CIB1 full	p65 AD-Cry2 535 (L348F)	4.8	10.5	2.3	2.0
T45	I194T	SPKKK	CIB1 full	NLSx2-p65 AD-Cry2 PHR	21.9	50.9	2.4	1.9
T46	I194T	SPKKK	CIB1 full	NLSx2-p65 AD-Cry2 PHR (L348F)	19.3	34.3	1.8	1.7
T47	I194T	SPKKK	CIB1 full no NLS	p65 AD-Cry2 PHR	36.2	65.2	2.0	1.5
T48	I194T	SPKKK	CIB1 full no NLS	p65 AD-Cry 2PHR (L348F)	33.0	47.9	1.6	1.4
T49	I194T	SPKKK	CIB1 full no NLS	p65 AD-Cry2 535	10.4	31.8	3.3	2.0
T50	I194T	SPKKK	CIB1 full no NLS	p65 AD-Cry2 535 (L348F)	9.3	23.9	2.7	2.0
T51	I194T	SPKKK	CIB1 full no NLS	NLSx2-p65 AD-Cry2 PHR	56.0	109.4	2.2	1.6
T52	I194T	SPKKK	CIB1 full no NLS	NLSx2-p65 AD-Cry2 PHR (L348F)	50.2	86.8	1.9	1.4
T53	I194T	SPKKK	CIBN	p65 AD-Cry2 PHR	0.6	34.8	64.7	42.1
T54	I194T	SPKKK	CIBN	p65 AD-Cry2 PHR (L348F)	0.5	1.8	3.7	3.9
T55	I194T	SPKKK	CIBN	p65 AD-Cry2 535	0.3	13.0	51.2	43.1
T56	I194T	SPKKK	CIBN	p65 AD-Cry2 535 (L348F)	0.3	2.1	7.0	8.1
T57	I194T	SPKKK	CIBN	NLSx2-p65 AD-Cry2 PHR	1.4	65.7	47.6	39.1
T58	I194T	SPKKK	CIBN	NLSx2-p65 AD-Cry2 PHR (L348F)	0.5	7.2	13.5	19.3
T59	I194T	SPKKK	CIBN no NLS	p65 AD-Cry2 PHR	0.8	20.2	40.8	27.3
T60	I194T	SPKKK	CIBN no NLS	p65 AD-Cry2 PHR (L348F)	0.9	6.1	7.6	8.3
T61	I194T	SPKKK	CIBN no NLS	p65 AD-Cry2 535	0.5	21.0	91.5	45.9
T62	I194T	SPKKK	CIBN no NLS	p65 AD-Cry2 535 (L348F)	0.5	5.7	25.0	13.3
T63	I194T	SPKKK	CIBN no NLS	NLSx2-p65 AD-Cry2 PHR	2.4	129.6	69.5	38.0
T64	I194T	SPKKK	CIBN no NLS	NLSx2-p65 AD-Cry 2PHR (L348F)	1.7	21.0	12.5	14.3
T65	I194T	SPKKK	CIB81	p65 AD-Cry2 PHR	77.7	211.3	2.7	2.3
T66	I194T	SPKKK	CIB81	p65 AD-Cry2 PHR (L348F)	61.2	355.7	6.0	4.7

TABLE 3-continued

Construct									Three independent data sets to confirm reproducibility		
	Element #1		Element #2		An initial construct screening result			Average of the Light/Dark	S.D. of the Light/Dark		
	TetR	mutation	Linker	protein	p65 AD and light-interacting	protein	Dark	Light	Light/Dark ratio		
T67	I194T	SPKKK	CIB81		p65 AD-Cry2 535		21.8	171.4	7.9	6.0	3.1
T68	I194T	SPKKK	CIB81		p65 AD-Cry2 535 (L348F)		28.7	212.5	7.4	6.1	1.6
T69	I194T	SPKKK	CIB81		NLSx2-p65 AD-Cry2 PHR		322.6	656.5	2.1	1.8	0.5
T70	I194T	SPKKK	CIB81		NLSx2-p65 AD-Cry2 PHR (L348F)		146.0	423.6	2.9	2.6	0.6
No transfection	—	—	—		—		0.0	0.1	2.5	2.3	1.0

TABLE 4

Construct									Three independent data sets to confirm reproducibility		
	Element #1		Element #2		An initial construct screening result			Average of the light/Dark	S.D. of the Light/Dark		
	TetR	mutation	Linker	protein	p65 AD and light-interacting	protein	Dark	Light	Light/Dark ratio		
Negative control	I194T	SPKKK	None (TetR only)		None (p65 AD only)		1.0	1.0	1.0	0.8	0.2
T71	I194T	SPKKK	CIB1 full		Cry2 PHR-p65 AD		2.4	4.1	1.7	1.5	0.2
T72	I194T	SPKKK	CIB1 full		Cry2 PHR (L348F)-p65 AD		2.7	4.3	1.6	1.6	0.4
T73	I194T	SPKKK	CIB1 full		Cry2 PHR-p65 AD-NLSx2		20.1	16.6	0.8	0.9	0.2
T74	I194T	SPKKK	CIB1 full		Cry2 PHR (L348F)-p65 AD-NLSx2		5.1	6.8	1.4	1.0	0.4
T75	I194T	SPKKK	CIB1 full no NLS		Cry2 PHR-p65 AD		3.0	5.4	2.0	1.4	0.5
T76	I194T	SPKKK	CIB1 full no NLS		Cry2 PHR (L348F)-p65 AD		4.8	7.2	1.5	1.2	0.3
T77	I194T	SPKKK	CIB1 full no NLS		Cry2 PHR-p65 AD-NLSx2		30.1	25.2	0.9	0.9	0.1
T78	I194T	SPKKK	CIB1 full no NLS		Cry2 PHR (L348F)-p65 AD-NLSx2		11.3	12.4	1.2	0.9	0.3
T79	I194T	SPKKK	CIBN		Cry2 PHR-p65 AD		1.2	5.0	4.3	5.6	3.5
T80	I194T	SPKKK	CIBN		Cry2 PHR (L348F)-p65 AD		0.9	11.0	12.7	53.1	35.6
T81	I194T	SPKKK	CIBN		Cry2 PHR-p65 AD-NLSx2		4.3	6.9	1.7	1.5	0.2
T82	I194T	SPKKK	CIBN		Cry2 PHR (L348F)-p65 AD-NLSx2		0.9	7.0	7.4	11.4	6.7
T83	I194T	SPKKK	CIBN no NLS		Cry2 PHR-p65 AD		1.1	2.3	2.0	2.7	0.8
T84	I194T	SPKKK	CIBN no NLS		Cry2 PHR (L348F)-p65 AD		0.9	4.7	5.4	8.7	5.6
T85	I194T	SPKKK	CIBN no NLS		Cry2 PHR-p65 AD-NLSx2		1.5	5.2	3.7	2.9	0.7
T86	I194T	SPKKK	CIBN no NLS		Cry2 PHR (L348F)-p65 AD-NLSx2		1.0	8.4	8.4	10.7	3.7
T87	I194T	SPKKK	CIB81		Cry2 PHR-p65 AD		4.8	10.7	2.3	1.4	0.7
T88	I194T	SPKKK	CIB81		Cry2 PHR (L348F)-p65 AD		6.6	17.0	2.6	2.0	0.7
T89	I194T	SPKKK	CIB81		Cry2 PHR-p65 AD-NLSx2		130.2	73.7	0.6	0.8	0.2
T90	I194T	SPKKK	CIB81		Cry2 PHR (L348F)-p65 AD-NLSx2		37.1	34.8	1.0	1.2	0.3
No transfection	—	—	—		—		0.8	0.7	0.8	1.2	0.3

As shown in Tables 1 to 4, it was revealed that in a case where a construct (FIGS. 1(E) and 1(F)) constructed by linking TetR (I194T, 1-206) to the N-terminal side of CIB1 or a variant thereof is used, the ratio of Ub-Eluc expression level under the light irradiation conditions to the Ub-Eluc expression level under the dark conditions (value in the column of "Average of the Light/Dark ratio" in the table) is higher, and the expression of Ub-Eluc is more efficiently induced by blue light irradiation, than in a case where a construct (FIGS. 1(C) and 1(D)) constructed by linking TetR (I194T, 1-206) to the N-terminal side of Cry2 or a variant thereof is used. Particularly, the combination of the TetR (I194T, 1-206)-CIB1 variant fusion construct and the p65AD-Cry2 variant fusion construct (FIG. 1(E)) tended to bring about a higher Light/Dark ratio and higher PA-Tet-controlled expression efficiency, compared to the combination of the TetR (I194T, 1-206)-CIB1 variant fusion construct and the Cry2 variant-p65AD N-terminal fusion construct (FIG. 1(F)). Especially, compared to other candidate constructs, the constructs (with construct ID of T53, T55, T57, T59, T61, and T63) using CIBN (partial construct consisting of residues 1 to 170 of CIB1) or CIBN (-NLS) (construct obtained by removing the nuclear localization signal by introducing a mutation into NLS of CIBN) as a CIB1 variant and using Cry2 PHR (partial construct consisting of residues 1 to 496 of Cry2) or Cry2 535 (partial construct consisting of residues 1 to 535 of Cry2) as a Cry2 variant brought about markedly higher PA-Tet-controlled expression efficiency. Furthermore, by the comparison between the T59 construct and the T63 construct and the comparison between the T60 construct and the T64 construct, it was revealed that in a case where CIBN (-NLS) is used as a CIB1 variant, by linking two nuclear localization signals in tandem to the N-terminal side of p65AD ("NLS×2" in the table), the PA-Tet-controlled expression efficiency is further improved.

Example 2

By using the T86 construct (Element #1: SEQ ID NO: 5, Element #2: SEQ ID NO: 6) confirmed to be the PA-Tet-OFF construct in Example 1, the influence of the linker sequence of TetR and a CIB1 derivative on the PA-Tet-controlled expression efficiency and the influence of the I194 amino acid substitution in TetR on the PA-Tet-controlled expression efficiency were investigated. As a control, the construct as "Negative control" shown in Table 4 (Element #1: SEQ ID NO: 7, Element #2: SEQ ID NO: 8) was used. In addition, a construct obtained by replacing TetR (I194T, 1-206) in the T86 construct with wild-type TetR (1-206) was also tested in the same manner, and the influence of the linker sequence was investigated.

FIG. 2(A) is a schematic view of the expression cassette containing the T86 construct used in Example 1. FIG. 2(B) is a schematic view of the Ub-Eluc expression cassette of the pTREtight-Ub-Eluc reporter used in Example 1. FIG. 2(C) is a schematic view of the expression cassette for a protein [TetR (I194T, 1-206)-CIB1 (-NLS)-T2A-Cry2 PHR (L348F)-p65AD-NLS×2 fusion construct] (SEQ ID NO: 9) in which TetR (I194T, 1-206)-CIB1 (-NLS) fusion construct and Cry2 PHR (L348F)-p65AD-NLS×2 fusion construct are linked to each other through a T2A self-cleaving peptide. As in Example 1, in a case where the plasmid containing the expression cassette (SEQ ID NO: 12) for a TetR (I194T, 1-206)-CIB1 (-NLS)-T2A-Cry2 PHR (L348F)-p65AD-NLS×2 fusion construct was expressed in cells, the T86 construct brought about higher PA-Tet-controlled expression

efficiency, than in a case where the plasmid containing the expression cassette (SEQ ID NO: 10) for a TetR (I194T, 1-206)-CIB1 (-NLS) fusion construct and the plasmid containing the expression cassette (SEQ ID NO: 11) for a Cry2 PHR (L348F)-p65AD-NLS×2 fusion construct were co-expressed in cells. Therefore, in order to verify the effect of the linker sequence and to verify the effect of the I194 amino acid substitution in TetR, the TetR (I194T, 1-206)-CIB1 (-NLS)-T2A-Cry2 PHR (L348F)-p65AD-NLS×2 fusion construct was appropriately modified and used.

A plasmid containing an expression cassette for a gene encoding the protein or a variant thereof shown in FIG. 3 was introduced into HEK293T cells together with the pTREtight-Ub-Eluc reporter, thereby obtaining transformed cells. These cells were irradiated with blue light in the absence of a Tet-based compound, and the light-dependent transcriptional activity of Ub-Eluc was investigated.

For the verification of the effect of the linker sequence of TetR and a CIB1 derivative, as linker sequences, GP consisting of 2 amino acids, SPKKK consisting of 5 amino acids (SEQ ID NO: 13), TGNSADGGGGSGGGSGGGSTQG consisting of 24 amino acids (SEQ ID NO: 14), LEASPSNPGASNGSGT (SEQ ID NO: 15) consisting of 16 amino acids, GYPSHWRPLE consisting of 10 amino acids (SEQ ID NO: 16), and LEASTGGSGT consisting of 10 amino acids (SEQ ID NO: 17) were used. For each construct, luciferase assay was performed under dark conditions ("Dark" in FIG. 3) and under blue-light irradiation conditions ("Light" in FIG. 3), and the luminescence signal intensity quantified by image analysis was measured. The measurement results are shown in FIG. 4. The data in FIG. 4 represent mean±standard deviation (n=3). In addition, all the experiments were repeated 3 times to obtain consistent results.

As shown in FIG. 3, it was revealed that compared to the construct using TetR (1-206), the construct using TetR (I194T, 1-206) induces a higher level of Ub-Eluc expression under the blue-light irradiation conditions and brings about higher PA-Tet-controlled expression efficiency. Furthermore, it was revealed that the type of the linker sequence linking TetR (I194T, 1-206) to CIB1 (-NLS) affects the PA-Tet-controlled expression efficiency. Particularly, in a case where SPKKK was used as a linker sequence, Ub-Eluc was sufficiently expressed to a high level under the blue-light irradiation conditions while substantially not being expressed under the dark conditions, and the PA-Tet-controlled expression efficiency was especially excellent.

For the verification of the effect of the I194 amino acid substitution in TetR, variants obtained by substituting I194 in TetR with the amino acids shown in FIG. 4 were used. For each construct, luciferase assay was performed in the same manner, and the luminescence signal intensity quantified by image analysis was measured. The measurement results are shown in FIG. 4. The data in FIG. 4 represent mean±standard deviation (n=3). In addition, all the experiments were repeated 3 times to obtain consistent results. As a result, it was revealed that TetR (I194T, 1-206) in which I194 was substituted with threonine brings about markedly excellent PA-Tet-controlled expression efficiency.

Example 3

By using the T86 construct confirmed to be the PA-Tet-OFF construct in Example 1, an attempt was made to construct a Tet-based compound-independent PA expression control system (PA-Tet-independent system) and a PA-Tet-ON system. Dox was used as a Tet-based compound.

A construct of the PA-Tet-independent system was constructed by introducing H100Y (point mutation for substituting the 100th histidine residue with tyrosine, the same shall be applied hereinafter) into TetR (I194T, 1-206) in the T86 construct shown in FIG. 2(C). In addition, a construct of the PA-Tet-ON system was constructed by introducing 5 types of reverse phenotypic mutations (Reverse Tet mutations) known for TetR into TetR (I194T, 1-206) in the T86 construct shown in FIG. 2(C): rtTA (E71K, D95N, L101S, and G102D), S2 (E19G, A56P, D148E, and H179R), M2 (S12G, E19G, A56P, D148E, and H179R), V10 (E19G, A56P, F67S, F86Y, D148E, R171K, and H179R), V16 (V9I, E19G, A56P, F67S, F86Y, D148E, R171K, and H179R). As a comparison target, the T86 construct shown in FIG. 2(A) was also used.

For each construct, a plasmid containing the expression cassette was introduced into HEK293T cells together with a pTREtight-Ub-ELuc reporter, thereby obtaining transformed cells. These cells were irradiated with blue light in the absence of Dox or in the presence of Dox, and the light-dependent transcriptional activity of Ub-ELuc was investigated. All experiments were performed in 3 independent trials (3 batches) to obtain consistent results. FIG. 5 shows a measured value (A.U.) of the luminescence signal intensity (relative expression level of Ub-ELuc) quantified by image analysis after performing a luciferase assay under dark conditions and under blue-light irradiation conditions. In Table 5, the column of "An initial construct screening result" shows the result of the first batch. In this column, "Dark" and "Light" each represents a relative value (the luminescence signal intensity of Negative Control of Example 1 under dark conditions is regarded as 1) of luminescence signal intensity (expression level of Ub-ELuc) under dark conditions or under blue-light irradiation conditions, and "Light/Dark" represents a Light/Dark ratio. The column of "Three independent data sets to confirm reproducibility" shows the average of Light/Dark ratios of three independent batches and the standard deviations thereof.

brought about by the blue light irradiation was markedly higher than in a case where the T86 construct ("PA-Tet-OFF (T86)" in FIG. 5) shown in FIG. 2(A) was used. The blue light-dependent transcriptional activity of these constructs disappeared in the presence of Dox. In the construct (PA-Tet-H100Y) using TetR (I194T, H100Y, 1-206), Ub-ELuc was expressed in both the presence of Dox and the absence of Dox, and the expression of Ub-ELuc was induced by only the blue light irradiation, which indicates that the expression of Ub-ELuc is not affected by Dox. On the other hand, in all the variants obtained by introducing the reverse phenotypic mutation into TetR (I194T, 1-206), Ub-ELuc was not expressed in the absence of Dox regardless of whether or not the blue light irradiation was performed. However, in the presence of Dox, the expression of Ub-ELuc was induced by blue light irradiation in the M2 variant, the V10 variant, and the V16 variant. Especially, in the V10 variant, Ub-ELuc was sufficiently expressed to a high level under blue-light irradiation conditions while substantially not being expressed under dark conditions, which indicates that the V10 variant brings about particularly excellent PA-Tet-controlled expression efficiency.

Next, the PA-Tet-OFF/ON system and the conventional Tet-OFF/ON system were compared with each other. As the PA-Tet-OFF/ON system, a PA-Tet-OFF-T2A construct and a PA-Tet-ON-T2A construct were used. As the conventional Tet-OFF/ON system, a commercially available "tTA-Ad" construct and a "Tet-ON 3G" construct (manufactured by Clontech/Takara Bio Inc.) were used. For each construct, a plasmid containing the expression cassette was introduced into HEK293T cells together with a pTREtight-Ub-ELuc reporter, thereby obtaining transformed cells. These cells were irradiated with blue light in the absence of Dox or in the presence of Dox, and the light-dependent transcriptional activity of Ub-ELuc was investigated. Under the blue-light irradiation conditions, cells were exposed to blue light pulses (pulsed for 1 second every 30 seconds) for 36 hours.

TABLE 5

Construct name and ID	Dox (ng/mL)	An initial construct screening result			Three independent data sets to confirm reproducibility	
		Dark	Light	Light/Dark	Average of the Light/Dark	S.D. of the Light/Dark
PA-Tet-OFF (T86)	0	0.8	12.3	33.8	16.0	15.8
PA-Tet-OFF-T2A	0	4.0	76.7	36.2	19.0	15.0
PA-Tet + H100Y mutation	0	2.6	58.1	30.6	19.0	11.1
PA-Tet + rtTA mutation	0	0.2	0.5	3.5	3.2	0.8
PA-Tet + S2 mutation	0	0.2	0.5	3.1	2.2	0.7
PA-Tet + M2 mutation	0	0.3	0.3	1.1	1.4	0.6
PA-Tet-ON (V10 mutation)	0	0.2	0.2	1.1	1.3	0.6
PA-Tet + V16 mutation	0	0.2	0.3	1.6	1.5	0.7
PA-Tet-OFF (T86)	75	0.1	0.1	1.2	1.7	0.4
PA-Tet-OFF-T2A	75	0.1	0.1	0.9	1.1	0.2
PA-Tet + H100Y mutation	75	3.1	41.4	22.7	19.4	6.3
PA-Tet + rtTA mutation	75	0.1	0.4	3.4	22.5	17.3
PA-Tet + S2 mutation	75	0.2	0.7	3.1	17.0	12.8
PA-Tet + M2 mutation	75	0.3	12.7	38.4	31.6	8.1
PA-Tet-ON (V10 mutation)	75	1.2	51.7	42.7	32.8	11.5
PA-Tet + V16 mutation	75	5.9	76.7	26.4	15.8	10.5

As in Example 2, in the absence of Dox, in a case where the T86 construct ("PA-Tet-OFF-T2A" in FIG. 5) shown in FIG. 2(C) was used, the expression induction efficiency

65 All experiments were performed in 3 independent trials (3 batches) to obtain consistent results. FIG. 6 shows a measured value (A.U.) of the luminescence signal intensity

(relative expression level of Ub-ELuc) quantified by image analysis after performing a luciferase assay under dark conditions and under blue-light irradiation conditions. In Table 6, the column of “An initial construct screening result” and the column of “Three independent data sets to confirm reproducibility” are the same as those in Table 5. As a result, the longer the cells were irradiated with blue light, the more the luciferase reporter activity induced by the PA-Tet-OFF/ON system was dramatically increased to an extent equivalent to the luciferase reporter activity induced by a conventional system controlled by only Tet.

TABLE 6

Construct name and ID	Dox (ng/mL)	An initial construct screening result			Average of the Light/Dark ratio	S.D. of the Light/Dark ratio	Three independent data sets to confirm reproducibility
		Dark	Light	Light/Dark			
PA-Tet-OFF-T2A	0	15.4	8090.9	525.3	2782.8	2091.4	
tTA-Ad (Clontech/TAKARA)	0	8877.6	8116.2	0.9	1.1	0.2	
PA-Tet-ON-T2A	0	3.6	25.3	9.2	9.6	1.0	
Tet-ON 3G (Clontech/TAKARA)	0	29.6	37.7	1.3	1.5	0.2	
PA-Tet-OFF-T2A	500	9.9	1.8	0.2	0.2	0.0	
tTA-Ad (Clontech/TAKARA)	500	19.6	30.6	1.7	2.2	0.5	
PA-Tet-ON-T2A	500	22.8	9140.6	412.5	959.1	514.4	
Tet-ON 3G (Clontech/TAKARA)	500	29839.8	28378.1	1.0	1.0	0.1	

In addition, for the PA-Tet-OFF system using the PA-Tet-OFF-T2A construct and the PA-Tet-independent system using the PA-Tet-H100Y construct, the influence of Dox concentration on the PA-Tet-controlled expression efficiency was investigated. The results are shown in FIG. 7(A). Furthermore, for the PA-Tet-ON system using a construct obtained by introducing a V10 mutation into the PA-Tet-OFF-T2A construct (PA-Tet-ON-T2A construct), the influence of Dox concentration on the PA-Tet-controlled expression efficiency was investigated. The results are shown in FIG. 7(B). The data represent mean±standard deviation (n=3) obtained from one experiment. In FIGS. 7(A) and 35 7(B), “*” means p<0.05 (paired student’s t-test).

In the PA-Tet-OFF system, Dox attenuated the PA-Tet-controlled gene expression in a concentration-dependent manner (FIG. 7(A)). Conversely, at a Dox concentration of 0 to 250 ng/mL, the PA-Tet-controlled gene expression increased in correlation with the Dox concentration in the PA-Tet-ON system (FIG. 7(B)). Particularly, even under the conditions where the Dox concentration was extremely low (1 ng/mL for the PA-Tet-OFF system and 10 ng/mL for the PA-Tet-ON system), the effect brought about by Dox was observed in both systems. On the other hand, in the PA-Tet-independent system, the Dox concentration dependence was not confirmed. In the PA-Tet-ON system, the induced luciferase activity was slightly reduced at a Dox concentration higher than 250 ng/mL, which indicates that there is an optimal Dox concentration for gene expression. The Dox concentration at which the gene expression is maximized depends on the cell type and the gene delivery method.

Example 4

The PA-Tet-OFF system and the PA-Tet-ON system were introduced into Eph4 cells by using a lentiviral vector,

thereby preparing stable expression strains of these systems. The Dox concentration dependence and the blue light intensity dependence of these strains were investigated.

FIG. 8(A) is a schematic view of an expression cassette for a PA-Tet-OFF construct/PA-Tet-ON construct used for preparing the PA-Tet-OFF/ON system stable expression strains. FIG. 8(B) is a schematic view of a Ub-NLS-luc2 expression cassette in a TRE3G-Ub-NLS-luc2-Hes1 3'UTR lentiviral vector. Eph4 cells were transduced with these 5 genes, thereby preparing a PA-Tet-OFF system stable strain and a PA-Tet-ON system stable strain.

FIG. 9 shows the results of investigating the blue light intensity dependence of the transcriptional activity of the PA-Tet-OFF system stable strain. FIG. 10 shows the results of investigating the blue light intensity dependence and the Dox concentration dependence of the transcriptional activity of the PA-Tet-ON system stable strain. The radiant energy was varied in a range of 0 to 7.1 W/m². The Dox concentration was varied in a range of 0 to 500 ng/mL. The data in both drawings represent the mean±standard deviation (n=3) obtained from one experiment. It was confirmed that the transcriptional activity increases in a light intensity-dependent manner in all the stable strains, and the expression is induced in a light intensity-dependent manner. In addition, it was confirmed that in the PA-Tet-ON system stable strain, the expression was induced in a Dox concentration-dependent manner. As is evident from the results in FIG. 10, particularly, as is evident from FIG. 10(C), in a case where the PA-Tet-ON system is used, by appropriately adjusting the blue light intensity and the concentration of a Tet-based compound, it is possible to adjust the transcriptional activity of a target gene to a desired level. That is, in the PA-Tet-OFF/ON system, gene expression can be controlled by both the light intensity and the concentration of a Tet-based compound, which indicates that the PA-Tet-OFF/ON system is useful especially for various biological experiments in which a gene expression level needs to be strictly controlled.

Next, the PA-Tet-ON system stable strain was irradiated with blue light (pulsed light) once a day for 6 days, and Dox (1,000 ng/mL) was added to the medium only on the 1st, 3rd, and 5th days. The timing of exposure to blue light (arrowhead) and the timing of adding Dox to the medium are 40 shown in the upper part of FIG. 11, and the transcriptional activity (luminescence signal intensity) of the PA-Tet-ON system stable strain is shown in the lower part of FIG. 11. 45

Most of PA-Tet-controlled gene expression systems are activated by a small amount of light, and the transcriptional activity is sufficiently activated by short exposure to indoor lighting (Non-Patent Literatures 2, 13, and 25). Therefore, the cells containing the PA-Tet-controlled gene expression system should be kept in absolute darkness or under a special red or far-red lighting device. In addition, before being subjected to a light irradiation experiment, the cells should be prepared under dark conditions for hours or days in some cases. In contrast, the light-dependent activity of the PA-Tet-OFF/ON system can be conditionally induced by exposure to a Tet-based compound or washing the Tet-based compound off. For example, in PA-Tet-ON system stable strain, light-dependent gene expression did not persist in the absence of Dox (FIG. 11). In contrast, by the introduction of Dox immediately before the blue light irradiation, light-dependent gene expression could be induced during one week of experiment (FIG. 11). In this way, the control by a Tet-based compound in the PA-Tet-OFF/ON system makes it possible to prevent unwanted gene induction especially in long-term experiments.

Example 5

Cry2 is rapidly activated by light irradiation and spontaneously dissociates from CIB1 with a half-life of about 5.5 minutes (Non-Patent Literature 9 and Non-Patent Literature 11). The dynamics of rapid activation and inactivation of the Cry2/CIB1 system can result in dynamic change of target gene expression positioned downstream of the PA-Tet-OFF/ON system, such as periodic oscillation or stepwise increase of gene expression patterns. Therefore, by irradiating the PA-Tet-OFF/ON system stable strain with short pulsed light (1 or 2 minutes) and monitoring the luciferase expression level under the control of the TRE sequence in real time, the temporal characteristics of the PA-Tet-OFF/ON system were verified.

As the PA-Tet-OFF system stable strain, 2 strains, the PA-Tet-OFF system stable strain prepared in Example 4 (using a TRE3G-Ub-NLS-luc2-Hes1 3'UTR lentiviral vector as a reporter construct, hereinafter, called "PA-Tet-OFF stable strain (Ub-NLS-luc2 reporter)" in some cases)) and a PA-Tet-OFF system stable strain (hereinafter, called "PA-Tet-OFF stable strain (luc2 reporter)" in some cases)) obtained by transducing Eph4 cells with the PA-Tet-OFF construct described in FIG. 8(A) and TRE3G-luc2-Hes1 3'UTR lentiviral vector, were used. Similarly, as the PA-Tet-ON system stable strain, 2 strains, the PA-Tet-ON system stable strain prepared in Example 4 (using a TRE3G-Ub-NLS-luc2-Hes1 3'UTR lentiviral vector as a reporter construct, hereinafter, called "PA-Tet-ON stable strain (Ub-NLS-luc2 reporter)" in some cases)) and a PA-Tet-ON system stable strain (hereinafter, called "PA-Tet-ON stable strain (luc2 reporter)" in some cases)) obtained by transducing Eph4 cells with the PA-Tet-ON construct described in FIG. 8(A) and the TRE3G-luc2-Hes1 3'UTR lentiviral vector, were used.

Each of the PA-Tet-OFF/ON system stable strains was irradiated with short blue light pulses (for 1 or 2 minutes), and the luminescence signal intensity was monitored in real time. FIG. 12(A) shows the results obtained from the PA-Tet-OFF stable strain (Ub-NLS-luc2 reporter), and FIG. 12(B) shows the results obtained from the PA-Tet-OFF stable strain (luc2 reporter). In FIGS. 12(A) and 12(B), the vertical dotted line represents a point in time when the cells were irradiated with the pulsed light. The period from when the blue light irradiation was started to when the lumines-

cence signal intensity reached a peak was adopted as on-phase, and the period from when the luminescence signal intensity reached a peak to when the luminescence signal intensity returned to the level exhibited before the blue light irradiation was adopted as off-phase. As shown in FIG. 12(A), in the PA-Tet-OFF stable strain (Ub-NLS-luc2 reporter), the blue light pulse-induced luciferase activity was observed about 1.1 hours after the irradiation with blue light pulses and then returned to the background level within 3 hours. In addition, before the blue light irradiation, substantially no luminescence signal was observed. On the other hand, in the PA-Tet-OFF stable strain (luc2 reporter), luminescence signals were observed before the blue light irradiation, and both the on-phase and the off-phase were longer than in the PA-Tet-OFF stable strain (Ub-NLS-luc2 reporter) (FIG. 12(B)).

For each of the PA-Tet-OFF/ON system stable strains, the half-life of the switch-on/off reaction rates of PA-Tet-controlled gene expression in the PA-Tet-OFF/ON system was determined by kymograph analysis based on the luminescence signal intensity monitoring results. FIG. 13(A) shows the results of the half-life of the switch-on reaction rate, and FIG. 13(B) shows the results of the half-life of the switch-off reaction rate. The data represent mean±standard deviation (n=3). In FIGS. 13(A) and 13(B), "*" means p<0.05 (paired student's t-test).

The PA-Tet-OFF stable strain (Ub-NLS-luc2 reporter) was repeatedly exposed to blue light pulses at intervals of 3 hours (FIG. 14(A)), 6 hours (FIG. 14(B)), 12 hours (FIG. 14(C)), and 24 hours (FIG. 14(D)), and the luminescence signal intensity was monitored in real time. In FIGS. 14(A) to 14(D), the point in time when the cells were irradiated with blue light pulses is represented by a vertical dotted line. The experiment was repeated at least 3 times to obtain consistent results. As a result, the periodic exposure to the blue light pulses induced strong oscillatory expression at the same period as that of the blue light pulses. Even though the cells were periodically irradiated with blue light pulses at extremely short intervals, such as 3 hours, the accumulation of the Ub-NLS-luc2 reporter was not observed, because the destabilized luciferase reporter having the 3'UTR sequence has a short half-life. This result indicates that a reporter having a short half-life is essential for generating this short ultradian rhythm. In contrast, a normal and stable luciferase reporter is likely to be suitable for longer-term periodic gene expression experiments that mimic the expression of typical clock genes over circadian rhythms. In reality, as shown in FIG. 13, in a PA-Tet-OFF/ON stable strain (luc2 reporter) using a reporter construct exploiting normal and stable luciferase, the half-life of the switch-on/off reaction rate of PA-Tet-controlled gene expression was extended.

Example 6

Another great advantage of photocontrolled systems is the ability to spatially limit the gene expression in target cells. Therefore, the PA-Tet-OFF stable strain (Ub-NLS-luc2 reporter) was used to investigate the ability to spatially limit the gene expression. In order to investigate the spatially limited gene expression in target cells, a bioluminescence imaging microscope equipped with a digital mirror device (DMD) for generating spatial patterns of light was used.

A population of PA-Tet-OFF stable strain (Ub-NLS-luc2 reporter) was installed in a bioluminescent imaging microscope with DMD and irradiated with patterned light generated by DMD. Specifically, different round cell populations were sequentially activated at different timing. FIG. 15(A)

shows the region of the PA-Tet-OFF stable strain (Ub-NLS-luc2 reporter) irradiated with the patterned blue light and the irradiation timing. In FIG. 15(A), “t” in each cell image represents the elapsed time (hour and minute) from the start of the experiment, and the region in a white circle represents the region irradiated with blue light at the time point. The patterned light was radiated to three regions of interest (ROI-1 to ROI-3) at different timing. That is, ROI-1 was irradiated with light 0 minutes (#1), 7 hours and 35 minutes (#4), 9 hours and 50 minutes (#7), and 12 hours and 10 minutes (#8) after the start of the experiment. ROI-2 was irradiated with light 2 hours and 30 minutes (#2), 8 hours and 20 minutes (#5), and 12 hours and 10 minutes (#8) after the start of the irradiation. ROI-3 was irradiated with light 5 hours (#3), 9 hours and 5 minutes (#6), and 12 hours and 10 minutes (#8) after the start of the irradiation.

FIG. 15(B) shows images of mCherry fluorescence signals (upper image) and luminescence signals (lower image) occurring in each region of interest 13 hours and 20 minutes after the start of irradiation. In addition, FIG. 15(C) shows the results of monitoring the luminescence signal intensity in each region of interest. The point in time when the cells were irradiated with blue light pulses is represented by the vertical dotted line. As shown in FIG. 15(B), PA-Tet-controlled luciferase expression was observed only in cells included in ROI-1 to ROI-3 irradiated with the blue light pulses. Furthermore, as shown in FIG. 15(C), PA-Tet-controlled luciferase expression was observed at the timing at which the cells were irradiated with blue light pulses.

Next, only 10 target cells (cells represented by “1” to “10” in FIG. 16(A)) were simultaneously irradiated with blue light pulses, and the light-induced reporter expression in these cells was monitored. In FIG. 16(A), “t” represents the elapsed time (hours and minutes) from the pulse irradiation, the left images show the signals observed 0 minutes after the pulse irradiation, the middle images show signals observed 1 hour and 5 minutes after the pulse irradiation, and the right images show signals observed 4 hours after the pulse irradiation. One hour and five minutes after the blue light pulse irradiation, PA-Tet-controlled luciferase expression was observed only in the 10 target cells irradiated with blue light, and the expression of luciferase was not induced in the adjacent unirradiated cells. In addition, after 4 hours, the PA-Tet-controlled luciferase expression was terminated in all target cells.

For 9 cells among the irradiated target cells except for the target cell 9, the luminescence signal intensity was quantified and averaged. In the target cell 9, cell division occurred during the time-lapse imaging experiment. Therefore, this cell was excluded in averaging the luminescence signal intensity. Similarly, from the unirradiated cells adjacent to the target cells, 9 cells were randomly selected, and the luminescence signal intensity thereof was quantified and averaged. The results are shown in FIG. 16(B). The data represent mean±standard deviation obtained from one experiment. In FIG. 16(B), the solid line represents the average, and the region surrounded by the dotted line is a range of mean±standard deviation. The experiment was repeated at least 3 times to obtain consistent results. From these results, it was confirmed that with the PA-Tet-OFF/ON system, by strictly controlling the region to be irradiated with light, it is possible to induce the expression of a target gene only in cells within a limited space.

Example 7

The PA-Tet-OFF/ON system was verified in a developing mouse brain and an adult mouse brain.

(1) Verification of PA-Tet-OFF System in Neural Stem/Progenitor Cells of Developing Mouse Brain

By ex utero electroporation, the PA-Tet-OFF system was introduced into neural stem/progenitor cells of a developing mouse brain. The electroporated brain was immediately extracted from the embryo, cut into slices, and placed on a thin film for tissue culture. The slices were periodically irradiated with blue light at intervals of 6 hours, and the reporter activity was monitored. FIG. 17 shows images of luminescence signals generated by the luciferase expression in the slices (MZ: marginal zone, CP: cortical plate, VZ: ventricle, SVZ: subventricular zone). FIG. 18 shows the results of real-time monitoring of the luminescence signal intensity of the slices. In FIG. 18, the point in time when the cells were irradiated with blue light pulses is represented by a vertical dotted line. One hour and twenty minutes after the blue light irradiation, that is, 1 hour and 20 minutes, 7 hours and 20 minutes, and 13 hours and 20 minutes after the start of the blue light irradiation, PA-Tet-controlled luciferase expression that appeared blue was observed in the neural stem/progenitor cells in VZ and SVZ (FIG. 17). VZ and SVZ are regions where neural stem/progenitor cells are divided to produce neurons. All experiments were performed in two independent trials to obtain consistent results.

(2) Verification of PA-Tet-OFF System in Primary Cultured Neurons Derived from Hippocampus of Mouse Pups

By using the AAV vector, the PA-Tet-OFF system was introduced into differentiated neurons.

FIG. 19 is a view schematically showing 2 constructs used for introduction of the PA-Tet-OFF/ON system, which are a CAG-FLAG-TetR (or rTetR)-CIBN (-NLS)-T2A-mCherryNLS construct (“Virus 1” in FIG. 19) (SEQ ID NO: 18) and a CAG-NLS-attached Cry2 PHR (L348F)-p65AD N-terminal fusion construct (“Virus 2” in FIG. 19) (SEQ ID NO: 19). FIG. 19 also schematically shows a TRE3G-Ub-NLS-luc2-Hes1 3'UTR reporter (“Virus 3” in FIG. 19) (SEQ ID NO: 20) and a TetO-GFP reporter (“Tg mouse” in FIG. 19) (Non-Patent Literature 26) expressed in a TetO-GFP transgenic reporter mouse strain. As “TetR (or rTetR)” in “Virus 1” construct in FIG. 19, TetR (I194T, 1-206) was used in the PA-Tet-OFF system, and rTetR (I194T, 1-206) was used in the PA-Tet-ON system.

First, mouse hippocampus-derived neurons that had been primary cultured for 3 days were transduced with an AAV vector expressing the Virus 1 construct and an AAV vector expressing the Virus 2 construct, and the obtained AAV-transformed neurons were subjected to immunofluorescence staining by using anti-Microtubule Associated Protein 2 (MAP2) antibodies. In most MAP2-positive neurons, fluorescence of the transduction marker mCherry was observed. Therefore, the neurons were confirmed to be transduced with the introduced AAV vectors.

Next, the mouse hippocampus-derived neurons that had been primary cultured for 3 days were transduced with an AAV vector expressing the Virus 1 construct and an AAV vector expressing the Virus 2 construct. Furthermore, on the 7th day of the primary culture, the neurons were transduced with the Virus 3 reporter lentivirus. Then, on the 20th day of the primary culture, the neurons were periodically irradiated with blue light pulses every 3 hours, and the fluorescence signals generated by the luciferase expression were investigated to monitor the reporter activity. Dox (500 ng/mL) was added to the transformed neurons transfected with the PA-Tet-ON system construct, and then the neurons were periodically irradiated with blue light pulses every 3 hours.

FIG. 20 shows images of luminescence signals generated by the luciferase expression in the transformed neurons

transfected with the construct of the PA-Tet-OFF system. The images show luminescence signals observed for 21 hours from the start of the blue light pulse irradiation (0 hours). In addition, FIG. 21 shows the results of measuring the luminescence signal intensity over time that was induced by luciferase expression in transformed neurons transfected with the construct of the PA-Tet-OFF system. FIG. 22 shows the results of measuring the luminescence signal intensity over time that was induced in the presence of Dox by luciferase expression in transformed neurons transfected with the construct of the PA-Tet-ON system. In FIGS. 21 and 22, the timing of blue light pulse irradiation is indicated by arrowheads. All experiments were performed in two independent trials to obtain consistent results. As a result, it was confirmed that even in primary cultured cells, it is possible to control the expression of exogenous genes by light irradiation and Dox by means of transducing the cells with the PA-Tet-OFF/ON system.

(3) Verification of PA-Tet-OFF System in Adult Brain Neurons

By using the AAV vector, the PA-Tet-OFF system was introduced into differentiated neurons.

FIGS. 23 and 24 show the results of transducing the hippocampus of a TRE-GFP transgenic mouse (Non-Patent Literature 26) with an AAV vector expressing the Virus 1 construct and an AAV vector expressing the Virus 2 construct. FIG. 23 is a view schematically showing the way the blue light is radiated to hippocampal neurons after the AAV transduction. FIG. 24 shows fluorescence images captured 12 hours after the start of exposure to blue light. In FIG. 24, the images in the left column ("Dark") show the region of brain not being irradiated with the blue light, and the images in the right column ("Light") show the region of brain irradiated with the blue light (scale bar: 100 μ m). In neurons of the hippocampus (CA1) and dentate gyrus (DG) regions, GFP reporter expression increased in a blue light-dependent manner. In the hippocampus irradiated with blue light, $42.8 \pm 2.3\%$ of hippocampal neurons and $36.7 \pm 6.0\%$ of dentate gyrus granule cells expressed GFP. In contrast, under dark conditions, only $4.7 \pm 1.4\%$ of hippocampal neurons and $4.4 \pm 1.6\%$ of dentate gyrus neurons expressed GFP.

Next, Dox-dependent inhibition of transcriptional activity of the PA-Tet-OFF system in brain neurons was analyzed. Mice that had been subjected to AAV transduction within 1 day after birth were subjected to a blue light pulse irradiation treatment on the 12th to 15th day after birth. In the light irradiation treatment, the mCherry expression region in the brain of each mouse placed on and fixed to a custom-made stage was irradiated with blue light pulses for 3 hours at an irradiance of 40 W/m^2 and a duty cycle of 7.1% (pulsed for 1 second at 0.071 Hz). The luminescence signal intensity induced by the luciferase expression in the brain cells after the light irradiation treatment was measured. Furthermore, for mice treated with Dox (0.1 mg/g (body weight)) 1 hour before the light irradiation treatment, the luminescence signal intensity was also measured in the same manner. The measurement results are shown in FIG. 25. In the mouse brain neurons (represented by "Light" in FIG. 25) subjected to the light irradiation treatment, luciferase expression was activated, and the luminescence signal intensity increased. In contrast, in the brain neurons treated with Dox 1 hour before the light irradiation (represented by "Light+Dox" in FIG. 25), the luminescence signal intensity was substantially the same as the luminescence signal intensity in the brain neurons not being irradiated with light (represented by "Dark" in FIG. 25), that is, significantly attenuated to the background level.

By using the construct of the PA-Tet-ON system, Dox-dependent inhibition of the transcriptional activity of the PA-Tet-ON system in brain neurons was analyzed in the same manner. The measurement results are shown in FIG. 26. In mouse brain neurons ("Light+Dox" in FIG. 26) subjected to the light irradiation treatment 1 hour after the Dox treatment (0.1 mg/g (body weight)), luciferase expression was activated, and the luminescence signal intensity increased. On the other hand, in the brain neurons that were subjected to the light irradiation treatment without the Dox treatment ("Light" in FIG. 26), the activation of luciferase expression was not observed as in the mouse brain neurons that were not subjected to the light irradiation treatment 1 hour after the Dox treatment ("Dark+Dox" in FIG. 26). That is, blue light-dependent transcription was observed only in the presence of Dox.

Furthermore, the restoration of light-inducible transcriptional activity after removal of Dox was analyzed in cells transfected with the PA-Tet-OFF system. Specifically, mice that had been subjected to AAV transduction within 1 day after birth were subjected to the Dox treatment (0.1 mg/g (body weight)) on the 12th to 15th day after birth. Then, the mice were subjected to a blue light pulse irradiation treatment 1 hour, 1 day, 2 days, 3 days, 4 days, and 5 days after the Dox treatment. The luminescence signal intensity induced by the luciferase expression in the brain cells after the light irradiation treatment was measured. The Dox treatment, the blue light pulse irradiation treatment, and the measurement of luminescence signal intensity induced by luciferase expression were carried out in the same manner as described above. The measurement results are shown in FIG. 27. The inhibition of light-induced luciferase expression persisted for 4 days after the single dosing of Dox, and on the 5th day, the luciferase reporter activity was restored substantially to the same level as the luciferase reporter activity in Dox-untreated cells. These results indicate that the PA-Tet-OFF/ON system is capable of controlling gene expression by both light and Tet even *in vivo*.

Example 8

The PA-Tet-OFF/ON system in the mouse subcutaneous tissue was verified.

First, the PA-Tet-OFF stable strain (Ub-NLS-luc2 reporter) (Eph4 cells stably transduced with the PA-Tet-OFF system by using a lentiviral vector) obtained in Example 4 was transplanted into the subcutaneous tissue of the dorsal skin of adult mice. A Dox treatment was performed 24 hours after cell transplantation, and 1 hour after the Dox treatment, a blue light irradiation treatment (200 W/m^2 ; 1 minute) was performed on the transplantation region of the dorsal skin of the anesthetized mice. After the blue light irradiation treatment, the mice were imaged with a CCD camera so that the dynamic change of luciferase signals was visualized.

FIG. 28 shows the average of the luminescence signal intensity in the Dox-untreated subcutaneous tissue under dark conditions ("Dark" in FIG. 28) and the average of the luminescence signal intensity in the same tissue measured for 30 to 60 minutes after the blue light irradiation ("Light" in FIG. 28). Furthermore, FIG. 29 shows the average of the luminescence signal intensity measured in the Dox-untreated subcutaneous tissue ("Light" in FIG. 29) after the blue light irradiation and the average of the luminescence signal intensity measured in the Dox-treated subcutaneous tissue ("Light+Dox" in FIG. 29) after the blue light irradiation. As a result, it was confirmed that in the absence of Dox, the luciferase signals do not increase in the subcutaneous

tissue under dark conditions but increase in the subcutaneous tissue irradiated with blue light (FIG. 28). In addition, the luciferase signals activated by blue light irradiation completely disappeared by the Dox treatment (FIG. 29). From these results, it was confirmed that the PA-Tet-OFF/ON system also functions in tissues including subcutaneous tissue other than the brain.

Example 9

As an attempt to construct a PA-Tet-OFF system that induces the expression of target genes by light irradiation and a Tet-based compound, a Bphp1/Q-PAS1-PA binding switch was incorporated into the Tet-OFF system. For constructing the system, HEK293T cells were used, and the PA-Tet gene expression system optimal for mammalian cells was investigated.

Specifically, a reporter plasmid (pTREtight-Ub-ELuc reporter), a plasmid containing an expression cassette for a

fusion protein in which TetR is fused with one of Bphp1 and Q-PAS1, and a plasmid containing an expression cassette for a fusion protein in which p65AD protein is fused with the remaining other one of Bphp1 and Q-PAS1 were introduced into HEK293T cells seeded in a 24-well plate coated with poly L-lysine, thereby obtaining transformed cells. These cells were irradiated with near-infrared light in the absence of a Tet-based compound, and a relative expression level of Ub-ELuc was investigated. After the plasmid transfection, 10 luciferase assay was performed in the same manner as in “Functional screening of PA-Tet-OFF candidate constructs” described above, except that the medium was replaced with a 25 μ M BV-containing medium 6 hours after the transfection, the cells were irradiated with near-infrared light (750 nm, 4.0 mW/cm²) for 42 hours by being exposed to light for 15 30 seconds every 180 seconds, and a 750 nm LED (SMBB750D-1100, manufactured by Ushio Inc.) was used as a light source. All experiments were performed in 3 independent trials (3 batches) to obtain consistent results.

TABLE 7

Construct	Element #1				Element #2				An initial construct screening result			Three independent data sets to confirm reproducibility	
	ID	N-terminus	Linker	C-terminus	N-terminus	Linker	C-terminus	Dark	Light	Dark	ratio	Average of the	S.D. of the
Negative control	I194T	SPKKK-HMEF	None	p65AD	HMEF	None		1.0	0.9	1.0	1.2	0.2	
QT1	I194T	SPKKK-HMEF	RpBph	Q-PAS1	TSTR	p55AD		52.8	58.8	1.1	0.9	0.2	
QT2	I194T	SPKKK-HMEF	RpBph	Q-PAS1	TSTR	p65AD-HMEF	2xNLS	22.6	33.4	1.6	1.5	0.3	
QT3	I194T	SPKKK-HMEF	RpBph	p65AD		Q-PAS1		0.7	1.7	2.4	2.7	0.9	
QT4	I194T	SPKKK-HMEF	RpBph	2xNLS-p65AD	HMEF	Q-PAS1		0.8	16.4	19.9	18.4	2.0	
QT5	RpBph	TSTR	I194T	Q-PAS1	TSTR	p65AD		287.7	478.7	1.9	1.4	0.5	
QT6	RpBph	TSTR	I194T	Q-PAS1	TSTR	p65AD-2xNLS		73.4	145.1	2.1	2.3	0.6	
QT7	RpBph	TSTR	I194T	p65AD	HMEF	Q-PAS1		1.0	9.6	9.9	10.2	0.3	
QT8	RpBph	TSTR	I194T	2xNLS-p65AD	HMEF	Q-PAS1		6.4	106.3	16.7	20.2	4.7	
QT9	I194T	SPKKK-HMEF	RpBph	RpBph	TSTR	p65AD		2017.1	3297.3	1.8	1.8	0.1	
QT10	I194T	SPKKK-HMEF	RpBph	RpBph	TSTR	p65AD-2xNLS		638.9	905.1	1.6	1.6	0.1	
QT11	I194T	SPKKK-HMEF	RpBph	p65AD	HMEF	RpBph	P1	1297.1	2819.0	2.2	2.4	0.3	
QT12	I194T	SPKKK-HMEF	RpBph	2xNLS-p65AD	HMEF	RpBph	P1	2625.3	5480.7	2.1	2.2	0.1	
QT13	RpBph	TSTR	I194T	RpBph	TSTR	p65AD		235.9	422.5	1.8	1.9	0.3	
QT14	RpBph	TSTR	I194T	RpBph	TSTR	p65AD-2xNLS		533.4	1143.9	2.2	1.6	0.6	
QT15	RpBph	TSTR	I194T	p65AD	HMEF	RpBph	P1	137.8	209.9	1.6	1.5	0.2	
QT16	RpBph	TSTR	I194T	2xNLS-p65AD	HMEF	RpBph	P1	1449.2	1377.9	1.0	0.8	0.1	
No transfection	—	—	—	—	—	—		0.6	0.8	1.3	1.6	0.8	

The results are shown in Table 7. In Table 7, "I194T" in the column of "Element #1" represents TetR (I194T, 1-206). Furthermore, "Dark", "Light", and "Light/Dark" in the column of "An initial construct screening result" and "Average of the Light/Dark ratio", "Light/Dark", and "S.D. of the Light/Dark ratio" in the column of "Three independent data sets to confirm reproducibility" have the same definitions as those in Table 1 or the like. As shown in Table 7, the constructs with ID QT4, QT7, and QT8 had a Light/Dark ratio of 10 or higher and brought about PA-Tet-controlled expression efficiency markedly higher than PA-Tet-controlled expression efficiency in other candidate constructs. As a result, it was revealed that the combination of the fusion protein in which BphP1 is linked to the N-terminal side or C-terminal side of TetR and the fusion protein in which Q-PAS1 is linked to the C-terminal side of p65AD brings about excellent PA-Tet-controlled expression efficiency, and that the PA-Tet-controlled expression efficiency is further improved particularly in a case where 2 nuclear localization signals are linked in tandem to the N-terminal side of p65AD.

The same constructs were created by changing the trans-activation domain of p65 to the transactivation domain of VP16 or VP64 widely used in the Tet system, and the Light/Dark ratio was investigated. As a result, all of these constructs brought about PA-Tet-controlled expression efficiency lower than the PA-Tet-controlled expression efficiency of the construct using p65. It was revealed that in the PA-Tet system, the combination of TetR or rTetR and the transactivation domain of p65 brings about the highest PA-Tet-controlled expression efficiency.

For the constructs with ID QT4 (Element #1: SEQ ID NO: 26, Element #2: SEQ ID NO: 27), QT7 (Element #1: SEQ ID NO: 28, Element #2: SEQ ID NO: 29), and QT8 (Element #1: SEQ ID NO: 28, Element #2: SEQ ID NO: 27), the PA-Tet-controlled expression efficiency was investigated by replacing the medium with a 25 μ M BV-containing medium or a BV-free medium 6 hours after transfection. The results are shown in Table 8. In the table, "HEK293T(-)BV" represents the result obtained from the cells for which the medium was replaced with the BV-free medium, and "HEK293T(+)BV" represents the result obtained from the cells for which the medium was replaced with the B V-containing medium. It was revealed that the PA-Tet-controlled expression efficiency is improved in the cells that are cultured in the BV-containing medium and transfected with exogenous BV.

Next, for QT4, QT7 and QT8 constructs, the relationship between Dox concentration and gene expression induction was investigated. Specifically, the relationship was investigated in the same manner as in "Functional screening of PA-Tet-OFF candidate constructs" described above, except that HEK293T cells were seeded in a 24-well plate at 6×10^4 cells/well, the medium was replaced with a medium containing 25 μ M BV and having Dox concentration described in Table 9 6 hours after transfection, the cells were irradiated with near-infrared light (750 nm, 4.0 mW/cm²) for 42 hours by being exposed to light for 30 seconds every 180 seconds, and a 750 nm LED (SMBB750D-1100, manufactured by Ushio Inc.) was used as a light source. All experiments were performed in 3 independent trials (3 batches) to obtain consistent results.

15

TABLE 9

Construct	Dox	An initial construct screening result		
		Dark	Light	Light/Dark
ID	(ng/mL)			
QT4	0.000	0.8	17.7	23.8
	0.025	0.8	20.6	24.9
	0.050	0.7	10.7	16.0
	0.100	0.5	10.1	18.6
	0.200	0.3	2.9	10.3
	0.500	0.2	0.9	4.6
QT7	1.000	0.2	0.2	1.2
	0.000	1.0	1.2	1.2
	0.0	2.8	53.7	20.2
	1.0	2.9	29.9	10.5
	2.0	2.7	34.7	13.1
	3.0	1.9	25.0	13.6
QT8	4.0	1.3	17.6	13.9
	5.0	1.6	16.4	10.9
	10.0	0.3	3.7	11.2
	0.0	1.0	2.3	2.4
	0.0	13.2	152.0	11.6
	1.0	14.5	143.1	10.1
Negative control	2.0	17.1	112.2	6.8
	3.0	16.0	108.7	6.9
	4.0	15.1	86.8	6.0
	5.0	15.2	63.9	4.4
	10.0	3.1	7.2	2.4
	0.0	1.0	0.7	0.7

40

45

The results are shown in Table 9. In all three constructs, the Light/Dark ratio decreased in a Dox concentration-dependent manner even after the near-infrared light irradiation. From these results, it was revealed that these three constructs are useful as a PA-Tet-OFF system in which gene expression is induced by near-infrared light irradiation in the absence of Dox.

TABLE 8

Construct	An initial construct screening result						Three independent data sets to confirm reproducibility			
	HEK293T(-)BV			HEK293T(+)BV			Average of the	S.D. of the	Average of the	S.D. of the
	Dark	Light	Light/Dark	Dark	Light	Light/Dark				
ID							Light/Dark	ratio	Light/Dark	ratio
Negative control	1.0	1.4	1.5	1.0	0.7	0.7	1.2	0.3	1.2	0.4
QT4	5.6	33.8	6.0	1.3	36.6	28.7	4.9	0.9	28.1	5.9
QT7	9.3	30.6	3.3	2.2	29.8	13.9	2.8	0.5	17.7	4.5
QT8	71.9	196.4	2.8	14.4	162.0	11.2	2.0	0.6	13.2	2.5

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 29

<210> SEQ ID NO 1

<211> LENGTH: 206

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: TetR

<400> SEQUENCE: 1

Met	Ser	Arg	Leu	Asp	Lys	Ser	Lys	Val	Ile	Asn	Ser	Ala	Leu	Glu	Leu
1															
														15	

Leu	Asn	Glu	Val	Gly	Ile	Glu	Gly	Leu	Thr	Thr	Arg	Lys	Leu	Ala	Gln
														30	
20								25							

Lys	Leu	Gly	Val	Glu	Gln	Pro	Thr	Leu	Tyr	Trp	His	Val	Lys	Asn	Lys
														45	
35								40							

Arg	Ala	Leu	Leu	Asp	Ala	Leu	Ala	Ile	Glu	Met	Leu	Asp	Arg	His	His
														60	
50								55							

Thr	His	Phe	Cys	Pro	Leu	Glu	Gly	Glu	Ser	Trp	Gln	Asp	Phe	Leu	Arg
														80	
65								70							

Asn	Asn	Ala	Lys	Ser	Phe	Arg	Cys	Ala	Leu	Leu	Ser	His	Arg	Asp	Gly
														95	
85								90							

Ala	Lys	Val	His	Leu	Gly	Thr	Arg	Pro	Thr	Glu	Lys	Gln	Tyr	Glu	Thr
														110	
100								105							

Leu	Glu	Asn	Gln	Leu	Ala	Phe	Leu	Cys	Gln	Gln	Gly	Phe	Ser	Leu	Glu
														125	
115								120							

Asn	Ala	Leu	Tyr	Ala	Leu	Ser	Ala	Val	Gly	His	Phe	Thr	Leu	Gly	Cys
														140	
130								135							

Val	Leu	Glu	Asp	Gln	Glu	His	Gln	Val	Ala	Lys	Glu	Glu	Arg	Glu	Thr
														160	
145								150							

Pro	Thr	Thr	Asp	Ser	Met	Pro	Pro	Leu	Leu	Arg	Gln	Ala	Ile	Glu	Leu
														175	
165								170							

Phe	Asp	His	Gln	Gly	Ala	Glu	Pro	Ala	Phe	Leu	Phe	Gly	Leu	Glu	Leu
														190	
180								185							

Ile	Ile	Cys	Gly	Leu	Glu	Lys	Gln	Leu	Lys	Cys	Glu	Ser	Gly		
														205	
195								200							

<210> SEQ ID NO 2

<211> LENGTH: 267

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: p65AD

<400> SEQUENCE: 2

Glu	Phe	Gln	Tyr	Leu	Pro	Asp	Thr	Asp	Asp	Arg	His	Arg	Ile	Glu	Glu
1															
														15	

Lys	Arg	Lys	Arg	Thr	Tyr	Glu	Thr	Phe	Lys	Ser	Ile	Met	Lys	Lys	Ser
														30	
20								25							

Pro	Phe	Ser	Gly	Pro	Thr	Asp	Pro	Arg	Pro	Pro	Arg	Arg	Ile	Ala	
														45	
35								40							

Val	Pro	Ser	Arg	Ser	Ser	Ala	Ser	Val	Pro	Lys	Pro	Ala	Pro	Gln	Pro
														60	
50								55							

Tyr	Pro	Phe	Thr	Ser	Ser	Leu	Ser	Thr	Ile	Asn	Tyr	Asp	Glu	Phe	Pro
														80	
65								70							

Thr	Met	Val	Phe	Pro	Ser	Gly	Gln	Ile	Ser	Gln	Ala	Ser	Ala	Leu	Ala
														95	
85								90							

-continued

Pro Ala Pro Pro Gln Val Leu Pro Gln Ala Pro Ala Pro Ala
 100 105 110

Pro Ala Met Val Ser Ala Leu Ala Gln Ala Pro Ala Pro Val Pro Val
 115 120 125

Leu Ala Pro Gly Pro Pro Gln Ala Val Ala Pro Pro Ala Pro Lys Pro
 130 135 140

Thr Gln Ala Gly Glu Gly Thr Leu Ser Glu Ala Leu Leu Gln Leu Gln
 145 150 155 160

Phe Asp Asp Glu Asp Leu Gly Ala Leu Leu Gly Asn Ser Thr Asp Pro
 165 170 175

Ala Val Phe Thr Asp Leu Ala Ser Val Asp Asn Ser Glu Phe Gln Gln
 180 185 190

Leu Leu Asn Gln Gly Ile Pro Val Ala Pro His Thr Thr Glu Pro Met
 195 200 205

Leu Met Glu Tyr Pro Glu Ala Ile Thr Arg Leu Val Thr Gly Ala Gln
 210 215 220

Arg Pro Pro Asp Pro Ala Pro Ala Pro Leu Gly Ala Pro Gly Leu Pro
 225 230 235 240

Asn Gly Leu Leu Ser Gly Asp Glu Asp Phe Ser Ser Ile Ala Asp Met
 245 250 255

Asp Phe Ser Ala Leu Leu Ser Gln Ile Ser Ser
 260 265

<210> SEQ ID NO 3
 <211> LENGTH: 612
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Cry2
 <400> SEQUENCE: 3

Met Lys Met Asp Lys Lys Thr Ile Val Trp Phe Arg Arg Asp Leu Arg
 1 5 10 15

Ile Glu Asp Asn Pro Ala Leu Ala Ala Ala His Glu Gly Ser Val
 20 25 30

Phe Pro Val Phe Ile Trp Cys Pro Glu Glu Glu Gly Gln Phe Tyr Pro
 35 40 45

Gly Arg Ala Ser Arg Trp Trp Met Lys Gln Ser Leu Ala His Leu Ser
 50 55 60

Gln Ser Leu Lys Ala Leu Gly Ser Asp Leu Thr Leu Ile Lys Thr His
 65 70 75 80

Asn Thr Ile Ser Ala Ile Leu Asp Cys Ile Arg Val Thr Gly Ala Thr
 85 90 95

Lys Val Val Phe Asn His Leu Tyr Asp Pro Val Ser Leu Val Arg Asp
 100 105 110

His Thr Val Lys Glu Lys Leu Val Glu Arg Gly Ile Ser Val Gln Ser
 115 120 125

Tyr Asn Gly Asp Leu Leu Tyr Glu Pro Trp Glu Ile Tyr Cys Glu Lys
 130 135 140

Gly Lys Pro Phe Thr Ser Phe Asn Ser Tyr Trp Lys Lys Cys Leu Asp
 145 150 155 160

Met Ser Ile Glu Ser Val Met Leu Pro Pro Pro Trp Arg Leu Met Pro
 165 170 175

Ile Thr Ala Ala Ala Glu Ala Ile Trp Ala Cys Ser Ile Glu Glu Leu
 180 185 190

-continued

Gly Leu Glu Asn Glu Ala Glu Lys Pro Ser Asn Ala Leu Leu Thr Arg
 195 200 205
 Ala Trp Ser Pro Gly Trp Ser Asn Ala Asp Lys Leu Leu Asn Glu Phe
 210 215 220
 Ile Glu Lys Gln Leu Ile Asp Tyr Ala Lys Asn Ser Lys Lys Val Val
 225 230 235 240
 Gly Asn Ser Thr Ser Leu Leu Ser Pro Tyr Leu His Phe Gly Glu Ile
 245 250 255
 Ser Val Arg His Val Phe Gln Cys Ala Arg Met Lys Gln Ile Ile Trp
 260 265 270
 Ala Arg Asp Lys Asn Ser Glu Gly Glu Glu Ser Ala Asp Leu Phe Leu
 275 280 285
 Arg Gly Ile Gly Leu Arg Glu Tyr Ser Arg Tyr Ile Cys Phe Asn Phe
 290 295 300
 Pro Phe Thr His Glu Gln Ser Leu Leu Ser His Leu Arg Phe Phe Pro
 305 310 315 320
 Trp Asp Ala Asp Val Asp Lys Phe Lys Ala Trp Arg Gln Gly Arg Thr
 325 330 335
 Gly Tyr Pro Leu Val Asp Ala Gly Met Arg Glu Leu Trp Ala Thr Gly
 340 345 350
 Trp Met His Asn Arg Ile Arg Val Ile Val Ser Ser Phe Ala Val Lys
 355 360 365
 Phe Leu Leu Leu Pro Trp Lys Trp Gly Met Lys Tyr Phe Trp Asp Thr
 370 375 380
 Leu Leu Asp Ala Asp Leu Glu Cys Asp Ile Leu Gly Trp Gln Tyr Ile
 385 390 395 400
 Ser Gly Ser Ile Pro Asp Gly His Glu Leu Asp Arg Leu Asp Asn Pro
 405 410 415
 Ala Leu Gln Gly Ala Lys Tyr Asp Pro Glu Gly Glu Tyr Ile Arg Gln
 420 425 430
 Trp Leu Pro Glu Leu Ala Arg Leu Pro Thr Glu Trp Ile His His Pro
 435 440 445
 Trp Asp Ala Pro Leu Thr Val Leu Lys Ala Ser Gly Val Glu Leu Gly
 450 455 460
 Thr Asn Tyr Ala Lys Pro Ile Val Asp Ile Asp Thr Ala Arg Glu Leu
 465 470 475 480
 Leu Ala Lys Ala Ile Ser Arg Thr Arg Glu Ala Gln Ile Met Ile Gly
 485 490 495
 Ala Ala Pro Asp Glu Ile Val Ala Asp Ser Phe Glu Ala Leu Gly Ala
 500 505 510
 Asn Thr Ile Lys Glu Pro Gly Leu Cys Pro Ser Val Ser Ser Asn Asp
 515 520 525
 Gln Gln Val Pro Ser Ala Val Arg Tyr Asn Gly Ser Lys Arg Val Lys
 530 535 540
 Pro Glu Glu Glu Glu Glu Arg Asp Met Lys Lys Ser Arg Gly Phe Asp
 545 550 555 560
 Glu Arg Glu Leu Phe Ser Thr Ala Glu Ser Ser Ser Ser Ser Val
 565 570 575
 Phe Phe Val Ser Gln Ser Cys Ser Leu Ala Ser Glu Gly Lys Asn Leu
 580 585 590
 Glu Gly Ile Gln Asp Ser Ser Asp Gln Ile Thr Thr Ser Leu Gly Lys
 595 600 605
 Asn Gly Cys Lys

US 12,338,443 B2

59

60

-continued

610

<210> SEQ ID NO 4
 <211> LENGTH: 335
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: CIBI
 <400> SEQUENCE: 4

Met	Asn	Gly	Ala	Ile	Gly	Gly	Asp	Leu	Leu	Leu	Asn	Phe	Pro	Asp	Met
1				5				10			15				
Ser	Val	Leu	Glu	Arg	Gln	Arg	Ala	His	Leu	Lys	Tyr	Leu	Asn	Pro	Thr
	20				25				30						
Phe	Asp	Ser	Pro	Leu	Ala	Gly	Phe	Phe	Ala	Asp	Ser	Ser	Met	Ile	Thr
	35				40				45						
Gly	Gly	Glu	Met	Asp	Ser	Tyr	Leu	Ser	Thr	Ala	Gly	Leu	Asn	Leu	Pro
	50				55			60							
Met	Met	Tyr	Gly	Glu	Thr	Thr	Val	Glu	Gly	Asp	Ser	Arg	Leu	Ser	Ile
65				70				75			80				
Ser	Pro	Glu	Thr	Thr	Leu	Gly	Thr	Gly	Asn	Phe	Lys	Ala	Ala	Lys	Phe
	85				90			95							
Asp	Thr	Glu	Thr	Lys	Asp	Cys	Asn	Glu	Ala	Ala	Lys	Lys	Met	Thr	Met
	100				105			110							
Asn	Arg	Asp	Asp	Leu	Val	Glu	Glu	Glu	Glu	Lys	Ser	Lys	Ile		
	115				120			125							
Thr	Glu	Gln	Asn	Asn	Gly	Ser	Thr	Lys	Ser	Ile	Lys	Lys	Met	Lys	His
	130				135			140							
Lys	Ala	Lys	Lys	Glu	Glu	Asn	Asn	Phe	Ser	Asn	Asp	Ser	Ser	Lys	Val
145				150			155			160					
Thr	Lys	Glu	Leu	Glu	Lys	Thr	Asp	Tyr	Ile	His	Val	Arg	Ala	Arg	Arg
	165				170			175							
Gly	Gln	Ala	Thr	Asp	Ser	His	Ser	Ile	Ala	Glu	Arg	Val	Arg	Arg	Glu
	180				185			190							
Lys	Ile	Ser	Glu	Arg	Met	Lys	Phe	Leu	Gln	Asp	Leu	Val	Pro	Gly	Cys
	195				200			205							
Asp	Lys	Ile	Thr	Gly	Lys	Ala	Gly	Met	Leu	Asp	Glu	Ile	Ile	Asn	Tyr
	210				215			220							
Val	Gln	Ser	Leu	Gln	Arg	Gln	Ile	Glu	Phe	Leu	Ser	Met	Lys	Leu	Ala
225				230				235			240				
Ile	Val	Asn	Pro	Arg	Pro	Asp	Phe	Asp	Met	Asp	Asp	Ile	Phe	Ala	Lys
	245				250			255							
Glu	Val	Ala	Ser	Thr	Pro	Met	Thr	Val	Val	Pro	Ser	Pro	Glu	Met	Val
	260				265			270							
Leu	Ser	Gly	Tyr	Ser	His	Glu	Met	Val	His	Ser	Gly	Tyr	Ser	Ser	Glu
	275				280			285							
Met	Val	Asn	Ser	Gly	Tyr	Leu	His	Val	Asn	Pro	Met	Gln	Gln	Val	Asn
	290				295			300							
Thr	Ser	Ser	Asp	Pro	Leu	Ser	Cys	Phe	Asn	Asn	Gly	Glu	Ala	Pro	Ser
305				310				315			320				
Met	Trp	Asp	Ser	His	Val	Gln	Asn	Leu	Tyr	Gly	Asn	Leu	Gly	Val	
	325				330			335							

<210> SEQ ID NO 5
 <211> LENGTH: 384
 <212> TYPE: PRT

-continued

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Element #1 of T86 construct

<400> SEQUENCE: 5

Met Ala Arg Leu Asp Lys Ser Lys Val Ile Asn Ser Ala Leu Glu Leu
 1 5 10 15

Leu Asn Glu Val Gly Ile Glu Gly Leu Thr Thr Arg Lys Leu Ala Gln
 20 25 30

Lys Leu Gly Val Glu Gln Pro Thr Leu Tyr Trp His Val Lys Asn Lys
 35 40 45

Arg Ala Leu Leu Asp Ala Leu Ala Ile Glu Met Leu Asp Arg His His
 50 55 60

Thr His Phe Cys Pro Leu Glu Gly Ser Trp Gln Asp Phe Leu Arg
 65 70 75 80

Asn Asn Ala Lys Ser Phe Arg Cys Ala Leu Leu Ser His Arg Asp Gly
 85 90 95

Ala Lys Val His Leu Gly Thr Arg Pro Thr Glu Lys Gln Tyr Glu Thr
 100 105 110

Leu Glu Asn Gln Leu Ala Phe Leu Cys Gln Gln Gly Phe Ser Leu Glu
 115 120 125

Asn Ala Leu Tyr Ala Leu Ser Ala Val Gly His Phe Thr Leu Gly Cys
 130 135 140

Val Leu Glu Asp Gln Glu His Gln Val Ala Lys Glu Glu Arg Glu Thr
 145 150 155 160

Pro Thr Thr Asp Ser Met Pro Pro Leu Leu Arg Gln Ala Ile Glu Leu
 165 170 175

Phe Asp His Gln Gly Ala Glu Pro Ala Phe Leu Phe Gly Leu Glu Leu
 180 185 190

Ile Thr Cys Gly Leu Glu Lys Gln Leu Lys Cys Glu Ser Gly Ser Pro
 195 200 205

Lys Lys Lys His Met Glu Phe Asn Gly Ala Ile Gly Gly Asp Leu Leu
 210 215 220

Leu Asn Phe Pro Asp Met Ser Val Leu Glu Arg Gln Arg Ala His Leu
 225 230 235 240

Lys Tyr Leu Asn Pro Thr Phe Asp Ser Pro Leu Ala Gly Phe Ala
 245 250 255

Asp Ser Ser Met Ile Thr Gly Gly Glu Met Asp Ser Tyr Leu Ser Thr
 260 265 270

Ala Gly Leu Asn Leu Pro Met Met Tyr Gly Glu Thr Thr Val Glu Gly
 275 280 285

Asp Ser Arg Leu Ser Ile Ser Pro Glu Thr Thr Leu Gly Thr Gly Asn
 290 295 300

Phe Lys Ala Ala Lys Phe Asp Thr Glu Thr Lys Asp Cys Asn Glu Ala
 305 310 315 320

Ala Lys Lys Met Thr Met Asn Arg Asp Asp Leu Val Glu Glu Gly Glu
 325 330 335

Glu Glu Lys Ser Lys Ile Thr Glu Gln Asn Asn Gly Ser Thr Lys Ser
 340 345 350

Ile Lys Lys Met Lys His Lys Ala Lys Glu Glu Asn Asn Phe Ser
 355 360 365

Asn Asp Ser Ser Lys Val Thr Lys Glu Leu Glu Lys Thr Asp Tyr Ile
 370 375 380

-continued

```

<210> SEQ ID NO 6
<211> LENGTH: 784
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Element #2 of T86 construct

<400> SEQUENCE: 6

Met Lys Met Asp Lys Lys Thr Ile Val Trp Phe Arg Arg Asp Leu Arg
1           5           10          15

Ile Glu Asp Asn Pro Ala Leu Ala Ala Ala His Glu Gly Ser Val
20          25          30

Phe Pro Val Phe Ile Trp Cys Pro Glu Glu Gly Gln Phe Tyr Pro
35          40          45

Gly Arg Ala Ser Arg Trp Trp Met Lys Gln Ser Leu Ala His Leu Ser
50          55          60

Gln Ser Leu Lys Ala Leu Gly Ser Asp Leu Thr Leu Ile Lys Thr His
65          70          75          80

Asn Thr Ile Ser Ala Ile Leu Asp Cys Ile Arg Val Thr Gly Ala Thr
85          90          95

Lys Val Val Phe Asn His Leu Tyr Asp Pro Val Ser Leu Val Arg Asp
100         105         110

His Thr Val Lys Glu Lys Leu Val Glu Arg Gly Ile Ser Val Gln Ser
115         120         125

Tyr Asn Gly Asp Leu Leu Tyr Glu Pro Trp Glu Ile Tyr Cys Glu Lys
130         135         140

Gly Lys Pro Phe Thr Ser Phe Asn Ser Tyr Trp Lys Lys Cys Leu Asp
145         150         155         160

Met Ser Ile Glu Ser Val Met Leu Pro Pro Trp Arg Leu Met Pro
165         170         175

Ile Thr Ala Ala Ala Glu Ala Ile Trp Ala Cys Ser Ile Glu Glu Leu
180         185         190

Gly Leu Glu Asn Glu Ala Glu Lys Pro Ser Asn Ala Leu Leu Thr Arg
195         200         205

Ala Trp Ser Pro Gly Trp Ser Asn Ala Asp Lys Leu Leu Asn Glu Phe
210         215         220

Ile Glu Lys Gln Leu Ile Asp Tyr Ala Lys Asn Ser Lys Lys Val Val
225         230         235         240

Gly Asn Ser Thr Ser Leu Leu Ser Pro Tyr Leu His Phe Gly Glu Ile
245         250         255

Ser Val Arg His Val Phe Gln Cys Ala Arg Met Lys Gln Ile Ile Trp
260         265         270

Ala Arg Asp Lys Asn Ser Glu Gly Glu Ser Ala Asp Leu Phe Leu
275         280         285

Arg Gly Ile Gly Leu Arg Glu Tyr Ser Arg Tyr Ile Cys Phe Asn Phe
290         295         300

Pro Phe Thr His Glu Gln Ser Leu Leu Ser His Leu Arg Phe Phe Pro
305         310         315         320

Trp Asp Ala Asp Val Asp Lys Phe Lys Ala Trp Arg Gln Gly Arg Thr
325         330         335

Gly Tyr Pro Leu Val Asp Ala Gly Met Arg Glu Phe Trp Ala Thr Gly
340         345         350

Trp Met His Asn Arg Ile Arg Val Ile Val Ser Ser Phe Ala Val Lys
355         360         365

Phe Leu Leu Leu Pro Trp Lys Trp Gly Met Lys Tyr Phe Trp Asp Thr

```

US 12,338,443 B2

65**66**

-continued

370	375	380
Leu	Leu	Asp
Leu	Asp	Ala
Leu	Asp	Leu
Glu	Cys	Asp
385	390	395
Tyr	Ile	Gly
		Trp
		Gln
		Tyr
		Ile
Ser	Gly	Ser
Ile	Pro	Asp
Gly	His	Glu
405	410	415
Leu	Asp	Arg
Leu	Asp	Leu
Gly	Arg	Asn
420	425	430
Ala	Leu	Pro
Gln	Gly	Ala
Lys	Tyr	Lys
435	440	445
Asp	Pro	Pro
Leu	Ala	Arg
Thr	Pro	Thr
Glu	Leu	Glu
		Trp
		Ile
		His
		His
		Pro
Trp	Asp	Ala
Asp	Leu	Thr
Leu	Thr	Val
		Leu
Lys	Ala	Ser
Gly	Gly	Gly
450	455	460
Thr	Asn	Tyr
Ala	Lys	Pro
Lys	Pro	Ile
465	470	475
Tyr	Val	Asp
Ala	Asp	Ile
Arg	Glu	Arg
485	490	495
Thr	Ser	Arg
Arg	Glu	Gln
500	505	510
Phe	Gln	Tyr
Leu	Tyr	Leu
Pro	Asp	Pro
Asp	Asp	Asp
Arg	Arg	Arg
515	520	525
Asp	Glu	Lys
Glu	Lys	Arg
530	535	540
Arg	Ile	Ala
545	550	555
Val	Pro	Ser
Pro	Ser	Arg
Ser	Ser	Ser
565	570	575
Ala	Pro	Gln
Pro	Tyr	Pro
Phe	Thr	Ser
580	585	590
Ser	Leu	Ser
Asp	Asp	Thr
595	600	605
Pro	Ala	Pro
Ala	Pro	Ala
610	615	620
Pro	Val	Pro
Val	Leu	Ala
625	630	635
Pro	Gly	Pro
Gly	Pro	Gln
640	645	650
Ala	Pro	Lys
Pro	Thr	Gln
Gln	Ala	Gly
660	665	670
Leu	Gln	Leu
Gln	Phe	Asp
Leu	Asp	Glu
		Ala
		Leu
		Gly
		Asn
Ser	Thr	Asp
Asp	Pro	Ala
Ala	Val	Phe
675	680	685
Thr	Asp	Leu
Ala	Ala	Ser
690	695	700
Glu	Phe	Gln
Gln	Gln	Leu
Leu	Leu	Asn
		Gln
		Gly
		Ile
		Pro
		Val
		Ala
		Pro
		His
		Thr
705	710	715
Thr	Glu	Pro
Pro	Met	Leu
Met	Glu	Tyr
Tyr	Pro	Glu
720	725	730
Ala	Ile	Ile
Ile	Thr	Arg
		Leu
		Val
Thr	Gly	Ala
Gly	Gln	Arg
735	740	745
Pro	Gly	Leu
Leu	Pro	Asn
Asn	Gly	Leu
750	755	760
Leu	Leu	Ser
Gly	Asp	Glu
Asp	Glu	Asp
Phe	Ser	Ser
Ile	Ile	Ser
Ala	Asp	Ser
Asp	Met	Phe
Phe	Ser	Ala
765	770	775
Ala	Leu	Leu
Gln	Val	Val
780	785	790
Lys	Lys	Arg
Arg	Lys	Lys
Lys	Val	Val
795	800	805

-continued

<211> LENGTH: 215
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Element #1 of Negative control construct

<400> SEQUENCE: 7

Met Ala Arg Leu Asp Lys Ser Lys Val Ile Asn Ser Ala Leu Glu Leu
 1 5 10 15

Leu Asn Glu Val Gly Ile Glu Gly Leu Thr Thr Arg Lys Leu Ala Gln
 20 25 30

Lys Leu Gly Val Glu Gln Pro Thr Leu Tyr Trp His Val Lys Asn Lys
 35 40 45

Arg Ala Leu Leu Asp Ala Leu Ala Ile Glu Met Leu Asp Arg His His
 50 55 60

Thr His Phe Cys Pro Leu Glu Gly Glu Ser Trp Gln Asp Phe Leu Arg
 65 70 75 80

Asn Asn Ala Lys Ser Phe Arg Cys Ala Leu Leu Ser His Arg Asp Gly
 85 90 95

Ala Lys Val His Leu Gly Thr Arg Pro Thr Glu Lys Gln Tyr Glu Thr
 100 105 110

Leu Glu Asn Gln Leu Ala Phe Leu Cys Gln Gln Gly Phe Ser Leu Glu
 115 120 125

Asn Ala Leu Tyr Ala Leu Ser Ala Val Gly His Phe Thr Leu Gly Cys
 130 135 140

Val Leu Glu Asp Gln Glu His Gln Val Ala Lys Glu Glu Arg Glu Thr
 145 150 155 160

Pro Thr Thr Asp Ser Met Pro Pro Leu Leu Arg Gln Ala Ile Glu Leu
 165 170 175

Phe Asp His Gln Gly Ala Glu Pro Ala Phe Leu Phe Gly Leu Glu Leu
 180 185 190

Ile Thr Cys Gly Leu Glu Lys Gln Leu Lys Cys Glu Ser Gly Ser Pro
 195 200 205

Lys Lys Lys His Met Glu Phe
 210 215

<210> SEQ ID NO 8
 <211> LENGTH: 272
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Element #2 of Negative control construct

<400> SEQUENCE: 8

Met Glu Phe Gln Tyr Leu Pro Asp Thr Asp Asp Arg His Arg Ile Glu
 1 5 10 15

Glu Lys Arg Lys Arg Thr Tyr Glu Thr Phe Lys Ser Ile Met Lys Lys
 20 25 30

Ser Pro Phe Ser Gly Pro Thr Asp Pro Arg Pro Pro Arg Arg Ile
 35 40 45

Ala Val Pro Ser Arg Ser Ser Ala Ser Val Pro Lys Pro Ala Pro Gln
 50 55 60

Pro Tyr Pro Phe Thr Ser Ser Leu Ser Thr Ile Asn Tyr Asp Glu Phe
 65 70 75 80

Pro Thr Met Val Phe Pro Ser Gly Gln Ile Ser Gln Ala Ser Ala Leu
 85 90 95

Ala Pro Ala Pro Pro Gln Val Leu Pro Gln Ala Pro Ala Pro

-continued

100	105	110
Ala Pro Ala Met Val Ser Ala Leu Ala Gln Ala Pro Ala Pro Val Pro		
115	120	125
Val Leu Ala Pro Gly Pro Pro Gln Ala Val Ala Pro Pro Ala Pro Lys		
130	135	140
Pro Thr Gln Ala Gly Glu Gly Thr Leu Ser Glu Ala Leu Leu Gln Leu		
145	150	155
Gln Phe Asp Asp Glu Asp Leu Gly Ala Leu Leu Gly Asn Ser Thr Asp		
165	170	175
Pro Ala Val Phe Thr Asp Leu Ala Ser Val Asp Asn Ser Glu Phe Gln		
180	185	190
Gln Leu Leu Asn Gln Gly Ile Pro Val Ala Pro His Thr Thr Glu Pro		
195	200	205
Met Leu Met Glu Tyr Pro Glu Ala Ile Thr Arg Leu Val Thr Gly Ala		
210	215	220
Gln Arg Pro Pro Asp Pro Ala Pro Leu Gly Ala Pro Gly Leu		
225	230	235
Pro Asn Gly Leu Leu Ser Gly Asp Glu Asp Phe Ser Ser Ile Ala Asp		
245	250	255
Met Asp Phe Ser Ala Leu Leu Ser Gln Ile Ser Ser His Met Glu Phe		
260	265	270

<210> SEQ ID NO 9
 <211> LENGTH: 1203
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: TetR(I194T,1-206)-CIB1(-NLS)-T2A-Cry2
 PHR(L348F)-p65AD-NLS~2 fusion construct

<400> SEQUENCE: 9

Met Asp Tyr Lys Asp Asp Asp Asp Lys Ala Arg Leu Asp Lys Ser Lys		
1	5	10
15		
Val Ile Asn Ser Ala Leu Glu Leu Leu Asn Glu Val Gly Ile Glu Gly		
20	25	30
Leu Thr Thr Arg Lys Leu Ala Gln Lys Leu Gly Val Glu Gln Pro Thr		
35	40	45
Leu Tyr Trp His Val Lys Asn Lys Arg Ala Leu Leu Asp Ala Leu Ala		
50	55	60
Ile Glu Met Leu Asp Arg His His Thr His Phe Cys Pro Leu Glu Gly		
65	70	75
80		
Glu Ser Trp Gln Asp Phe Leu Arg Asn Asn Ala Lys Ser Phe Arg Cys		
85	90	95
Ala Leu Leu Ser His Arg Asp Gly Ala Lys Val His Leu Gly Thr Arg		
100	105	110
Pro Thr Glu Lys Gln Tyr Glu Thr Leu Glu Asn Gln Leu Ala Phe Leu		
115	120	125
Cys Gln Gln Gly Phe Ser Leu Glu Asn Ala Leu Tyr Ala Leu Ser Ala		
130	135	140
Val Gly His Phe Thr Leu Gly Cys Val Leu Glu Asp Gln Glu His Gln		
145	150	155
160		
Val Ala Lys Glu Glu Arg Glu Thr Pro Thr Thr Asp Ser Met Pro Pro		
165	170	175
Leu Leu Arg Gln Ala Ile Glu Leu Phe Asp His Gln Gly Ala Glu Pro		
180	185	190

-continued

Ala Phe Leu Phe Gly Leu Glu Leu Ile Thr Cys Gly Leu Glu Lys Gln
 195 200 205
 Leu Lys Cys Glu Ser Gly Ser Pro Lys Lys Lys His Met Glu Phe Asn
 210 215 220
 Gly Ala Ile Gly Gly Asp Leu Leu Leu Asn Phe Pro Asp Met Ser Val
 225 230 235 240
 Leu Glu Arg Gln Arg Ala His Leu Lys Tyr Leu Asn Pro Thr Phe Asp
 245 250 255
 Ser Pro Leu Ala Gly Phe Phe Ala Asp Ser Ser Met Ile Thr Gly Gly
 260 265 270
 Glu Met Asp Ser Tyr Leu Ser Thr Ala Gly Leu Asn Leu Pro Met Met
 275 280 285
 Tyr Gly Glu Thr Thr Val Glu Gly Asp Ser Arg Leu Ser Ile Ser Pro
 290 295 300
 Glu Thr Thr Leu Gly Thr Gly Asn Phe Lys Ala Ala Lys Phe Asp Thr
 305 310 315 320
 Glu Thr Lys Asp Cys Asn Glu Ala Ala Lys Lys Met Thr Met Asn Arg
 325 330 335
 Asp Asp Leu Val Glu Glu Gly Glu Glu Lys Ser Lys Ile Thr Glu
 340 345 350
 Gln Asn Asn Gly Ser Thr Lys Ser Ile Lys Lys Met Lys His Lys Ala
 355 360 365
 Lys Lys Glu Glu Asn Asn Phe Ser Asn Asp Ser Ser Lys Val Thr Lys
 370 375 380
 Glu Leu Glu Lys Thr Asp Tyr Ile Thr Arg Glu Gly Arg Gly Ser Leu
 385 390 395 400
 Leu Thr Cys Gly Asp Val Glu Glu Asn Pro Gly Pro Ala Thr Thr Thr
 405 410 415
 Ser Ser Arg Met Lys Met Asp Lys Lys Thr Ile Val Trp Phe Arg Arg
 420 425 430
 Asp Leu Arg Ile Glu Asp Asn Pro Ala Leu Ala Ala Ala His Glu
 435 440 445
 Gly Ser Val Phe Pro Val Phe Ile Trp Cys Pro Glu Glu Gly Gln
 450 455 460
 Phe Tyr Pro Gly Arg Ala Ser Arg Trp Trp Met Lys Gln Ser Leu Ala
 465 470 475 480
 His Leu Ser Gln Ser Leu Lys Ala Leu Gly Ser Asp Leu Thr Leu Ile
 485 490 495
 Lys Thr His Asn Thr Ile Ser Ala Ile Leu Asp Cys Ile Arg Val Thr
 500 505 510
 Gly Ala Thr Lys Val Val Phe Asn His Leu Tyr Asp Pro Val Ser Leu
 515 520 525
 Val Arg Asp His Thr Val Lys Glu Lys Leu Val Glu Arg Gly Ile Ser
 530 535 540
 Val Gln Ser Tyr Asn Gly Asp Leu Leu Tyr Glu Pro Trp Glu Ile Tyr
 545 550 555 560
 Cys Glu Lys Gly Lys Pro Phe Thr Ser Phe Asn Ser Tyr Trp Lys Lys
 565 570 575
 Cys Leu Asp Met Ser Ile Glu Ser Val Met Leu Pro Pro Trp Arg
 580 585 590
 Leu Met Pro Ile Thr Ala Ala Ala Glu Ala Ile Trp Ala Cys Ser Ile
 595 600 605
 Glu Glu Leu Gly Leu Glu Asn Glu Ala Glu Lys Pro Ser Asn Ala Leu

US 12,338,443 B2

73

74

-continued

610	615	620
Leu Thr Arg Ala Trp Ser Pro Gly Trp Ser Asn Ala Asp Lys Leu Leu		
625	630	635
640		
Asn Glu Phe Ile Glu Lys Gln Leu Ile Asp Tyr Ala Lys Asn Ser Lys		
645	650	655
655		
Lys Val Val Gly Asn Ser Thr Ser Leu Leu Ser Pro Tyr Leu His Phe		
660	665	670
Gly Glu Ile Ser Val Arg His Val Phe Gln Cys Ala Arg Met Lys Gln		
675	680	685
685		
Ile Ile Trp Ala Arg Asp Lys Asn Ser Glu Gly Glu Glu Ser Ala Asp		
690	695	700
700		
Leu Phe Leu Arg Gly Ile Gly Leu Arg Glu Tyr Ser Arg Tyr Ile Cys		
705	710	715
720		
Phe Asn Phe Pro Phe Thr His Glu Gln Ser Leu Leu Ser His Leu Arg		
725	730	735
735		
Phe Phe Pro Trp Asp Ala Asp Val Asp Lys Phe Lys Ala Trp Arg Gln		
740	745	750
750		
Gly Arg Thr Gly Tyr Pro Leu Val Asp Ala Gly Met Arg Glu Phe Trp		
755	760	765
765		
Ala Thr Gly Trp Met His Asn Arg Ile Arg Val Ile Val Ser Ser Phe		
770	775	780
780		
Ala Val Lys Phe Leu Leu Pro Trp Lys Trp Gly Met Lys Tyr Phe		
785	790	795
800		
Trp Asp Thr Leu Leu Asp Ala Asp Leu Glu Cys Asp Ile Leu Gly Trp		
805	810	815
815		
Gln Tyr Ile Ser Gly Ser Ile Pro Asp Gly His Glu Leu Asp Arg Leu		
820	825	830
830		
Asp Asn Pro Ala Leu Gln Gly Ala Lys Tyr Asp Pro Glu Gly Glu Tyr		
835	840	845
845		
Ile Arg Gln Trp Leu Pro Glu Leu Ala Arg Leu Pro Thr Glu Trp Ile		
850	855	860
860		
His His Pro Trp Asp Ala Pro Leu Thr Val Leu Lys Ala Ser Gly Val		
865	870	875
880		
Glu Leu Gly Thr Asn Tyr Ala Lys Pro Ile Val Asp Ile Asp Thr Ala		
885	890	895
895		
Arg Glu Leu Leu Ala Lys Ala Ile Ser Arg Thr Arg Glu Ala Gln Ile		
900	905	910
910		
Met Ile Gly Thr Ser Thr Arg Glu Phe Gln Tyr Leu Pro Asp Thr Asp		
915	920	925
925		
Asp Arg His Arg Ile Glu Glu Lys Arg Lys Arg Thr Tyr Glu Thr Phe		
930	935	940
940		
Lys Ser Ile Met Lys Lys Ser Pro Phe Ser Gly Pro Thr Asp Pro Arg		
945	950	955
960		
Pro Pro Pro Arg Arg Ile Ala Val Pro Ser Arg Ser Ser Ala Ser Val		
965	970	975
975		
Pro Lys Pro Ala Pro Gln Pro Tyr Pro Phe Thr Ser Ser Leu Ser Thr		
980	985	990
990		
Ile Asn Tyr Asp Glu Phe Pro Thr Met Val Phe Pro Ser Gly Gln Ile		
995	1000	1005
1005		
Ser Gln Ala Ser Ala Leu Ala Pro Ala Pro Pro Gln Val Leu Pro Gln		
1010	1015	1020
1020		
Ala Pro Ala Pro Ala Pro Ala Met Val Ser Ala Leu Ala Gln		
1025	1030	1035
1040		

-continued

Ala Pro Ala Pro Val Pro Val Leu Ala Pro Gly Pro Pro Gln Ala Val
 1045 1050 1055

Ala Pro Pro Ala Pro Lys Pro Thr Gln Ala Gly Glu Gly Thr Leu Ser
 1060 1065 1070

Glu Ala Leu Leu Gln Leu Gln Phe Asp Asp Glu Asp Leu Gly Ala Leu
 1075 1080 1085

Leu Gly Asn Ser Thr Asp Pro Ala Val Phe Thr Asp Leu Ala Ser Val
 1090 1095 1100

Asp Asn Ser Glu Phe Gln Gln Leu Leu Asn Gln Gly Ile Pro Val Ala
 1105 1110 1115 1120

Pro His Thr Thr Glu Pro Met Leu Met Glu Tyr Pro Glu Ala Ile Thr
 1125 1130 1135

Arg Leu Val Thr Gly Ala Gln Arg Pro Pro Asp Pro Ala Pro Ala Pro
 1140 1145 1150

Leu Gly Ala Pro Gly Leu Pro Asn Gly Leu Leu Ser Gly Asp Glu Asp
 1155 1160 1165

Phe Ser Ser Ile Ala Asp Met Asp Phe Ser Ala Leu Leu Ser Gln Ile
 1170 1175 1180

Ser Ser Pro Pro Lys Lys Lys Arg Lys Val Val Pro Pro Lys Lys Lys
 1185 1190 1195 1200

Arg Lys Val

<210> SEQ ID NO 10
 <211> LENGTH: 2632
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: TetR(I194T, 1-206)-CIB1(-NLS) fusion construct
 <220> FEATURE:
 <221> NAME/KEY: promoter
 <222> LOCATION: (1)..(1207)
 <223> OTHER INFORMATION: hEF1a promoter
 <220> FEATURE:
 <221> NAME/KEY: mat_peptide
 <222> LOCATION: (1236)..(1868)
 <223> OTHER INFORMATION: TetR
 <220> FEATURE:
 <221> NAME/KEY: CDS
 <222> LOCATION: (1881)..(2387)
 <223> OTHER INFORMATION: Human optimized CIBN -ATG-stop NO NLS
 <220> FEATURE:
 <221> NAME/KEY: polyA_site
 <222> LOCATION: (2408)..(2632)
 <223> OTHER INFORMATION: pA

<400> SEQUENCE: 10

tctaggctt gaaaggagt ggaattggct ccgggtcccc tcagtgggca gagcgcacat 60
 cggccacagt ccccgagaag ttggggggag gggtcgccaa ttgaaccggt gcctagagaa 120
 ggtggcgccg ggtaaactgg gaaagtgtatc tcgtgtactg gtcggccctt tttcccgagg 180
 gtgggggaga accgtataata agtgcagtag tcgcccgtaa cgttctttt cgcaacgggt 240
 ttgccgcag aacacaggta agtgccgtgt gtggttcccg cggccctggc ctcttacgg 300
 gttatggccc ttgcgtgcct tgaattactt ccacctggct gcaagtacgtg attcttgatc 360
 ccgagcttcg gtttggaaat ggggggaga gttcgaggcc ttgcgtttaa ggagccctt 420
 ccctcgatc ttgagtttag gctggccctg ggcgtgggg cggccgcgtg cgaatctgg 480
 ggcacacctcg cgcctgtctc gctgtttcg ataagtctct agccatttaa aattttgat 540
 gacctgtgc gacgctttt ttctggcaag atagtcttg aatgcgggc caagatctgc 600

-continued

acaactggtat	ttcggtttttt	ggggccgcgg	gcggcgacgg	ggcccggtcg	tcccagcgca	660
catgttggc	gaggcggggc	ctgctggcgc	ggccacccgg	aatcgacgg	gggttagtctc	720
aagctggccg	gcctgtctg	gtgctggcc	tcgctggcc	gtgtatcgcc	ccgcctggg	780
cgccaaggct	ggcccggtcg	gcaccagtt	cgtgagcgg	aagatggccg	cttccggcc	840
ctgctgcagg	gagctcaaaa	tggaggacgc	ggcgctcggg	agagcggcg	ggtagtac	900
ccacacaaaag	gaaaaggggcc	tttccgtct	cagccgtcg	tccatgtac	tccacggagt	960
accgggggcc	gtccaggcac	ctcgattagt	tctcgagctt	ttggagtagc	tcgtcttag	1020
gttgggggg	ggggttttat	gcatggagt	ttcccccac	ttagtgggt	gagactgaag	1080
ttaggccagc	ttggcacttg	atgttaattct	ccttggaaatt	tgcctttttt	gagtttggat	1140
cttgggttcat	tctcaagcct	cagacagtgg	ttcaagttt	ttttcttcca	tttcagggt	1200
cgtgagttaa	ttaattatcg	atacgtcgac	ccaccatggc	tagattagat	aaaagtaag	1260
tgattaacag	cgcattagag	ctgcttaatg	aggtcggaa	cgaaggttt	acaacccgta	1320
aactcgccca	gaagcttagt	gtagagcago	ctacattgt	ttggcatgt	aaaaataagc	1380
gggccttgct	cgacgcctta	gccattgaga	tgttagatag	gcaccatact	cactttgcc	1440
ctttagaagg	ggaaagctgg	caagatttt	tacgtataaa	cgctaaaagt	tttagatgt	1500
ctttactaag	tcatcgcat	ggagcaaaag	tacatttagg	tacacggcct	acagaaaaac	1560
agtatgaaac	tctcgaaaat	caattagct	ttttatgcca	acaaggtttt	tcactagaga	1620
atgcattata	tgcactcagc	gctgtggggc	atttacttt	aggttgcgt	ttggaaagatc	1680
aagagcatca	agtcgctaaa	gaagaaaggg	aaacacctac	tactgtatgt	atgcccgcatt	1740
tattacgaca	agctatcgaa	ttatttgatc	accaagggtc	agagccagcc	ttcttattcg	1800
gccttgaatt	gatcacatgc	ggattagaaa	aacaacttaa	atgtgaaagt	gggtcgccaa	1860
aaaagaagca	tatggaaattc	aatggggcaa	taggaggtg	tctgttgc	aacttcccg	1920
acatgagcgt	gctcgaaagg	caacgcgcac	atctgaagta	cctgaatccc	acctttgaca	1980
gtccattggc	aggcttctc	gccgacagca	gcatgatcac	aggaggcgag	atggacagtt	2040
atctgagcac	tgctgggctc	aacttgc	tgtgtacgg	tgaacaact	gtcgagggt	2100
attccaggct	ttccatctca	ccggaaacga	cccttggaa	tggcaatttt	aaggctgcga	2160
agtttgacac	cgagactaaa	gattgcaacg	aggcagccaa	gaagatgacc	atgaatcg	2220
acgatctgg	ggaagaaggg	gaagaggaga	aatccaagat	taccgaacag	aacaatggca	2280
gtaccaagtc	aatcaagaag	atagaacaca	aagccaagaa	ggaagaaaac	aacttcagca	2340
atgactctag	caaagtgaca	aaagagctgg	agaaaacgg	ctacatctaa	ggatccatcg	2400
cggccgc	gacatgataa	gatacattga	ttagttgg	caaaccacaa	ctagaatgca	2460
gtgaaaaaaa	tgcttattt	gtgaaattt	tgtgtctatt	gttttattt	taaccattat	2520
aagctgcaat	aaacaagtta	acaacaacaa	ttgcattcat	tttatgtttc	aggttcaggg	2580
ggaggtgtgg	gaggttttt	aaagcaagta	aaacctctac	aaatgtggta	tg	2632

<210> SEQ ID NO 11
 <211> LENGTH: 3829
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Cry2 PHR(L348F) -p65AD-NLS?~2 fusion construct
 <220> FEATURE:
 <221> NAME/KEY: promoter
 <222> LOCATION: (1)..(1207)
 <223> OTHER INFORMATION: hEF1a promoter

-continued

```

<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (1239)..(2723)
<223> OTHER INFORMATION: Human optimized Cry2 PHR L348F -ATG-stop
<220> FEATURE:
<221> NAME/KEY: mat_peptide
<222> LOCATION: (2736)..(3536)
<223> OTHER INFORMATION: Human p65 AD
<220> FEATURE:
<221> NAME/KEY: sig_peptide
<222> LOCATION: (3537)..(3560)
<223> OTHER INFORMATION: NLS
<220> FEATURE:
<221> NAME/KEY: sig_peptide
<222> LOCATION: (3564)..(3587)
<223> OTHER INFORMATION: NLS
<220> FEATURE:
<221> NAME/KEY: polyA_site
<222> LOCATION: (3605)..(3829)
<223> OTHER INFORMATION: pA

<400> SEQUENCE: 11

tctaggtctt gaaaggagtg ggaattggct ccgggtcccc tcagtgggca gagcgcacat      60
cgcccacagt ccccgagaag ttggggggag gggtcggcaa ttgaacccgt gcctagagaa     120
ggtggcgccgg ggtaaaactgg gaaagtgtatc tcgtgtactg gtcggccctt tttcccgagg     180
gtgggggaga accgtatata agtgcgttag tcggcgtgaa cgttctttt cgcaacgggt     240
ttggccgcac aacacaggta agtgcgtgt gtgggtcccc cgggcctggc ctctttacgg     300
gttatggccc ttgcgtgcct tgaattactt ccacctggct gcagtaacgtt attcttgatc     360
ccgagcttcg ggttggaaat ggggtggaga gttcgaggcc ttgcgtttaa ggagccccctt     420
cgccctcgat ttgatgttgc gcctggcctg ggcgcgtggg cggccgcgtg cgaatctgg     480
ggcaccttcg cgcctgtctc gctgtttcg ataagtctct agccatttaa aatttttgc     540
gacctgtgc gacgttttt ttctggcaag atagtctgtt aaatgcgggc caagatctgc     600
acactggat ttccggttttt gggccgcgg gccgcggcgg ggcccggtgc tcccgccca     660
catgttcggc gaggccgggc ctgcgagcgc ggcacccggg aatcgacgg gggtagtctc     720
aaactggccgc gcctgtctg gtgcgtggcc tcgcgcggc gtgtatcgcc cgcgcctggg     780
cgcaaggct ggcccggtcg gcaccaggta cgtgacgggaa aagatggccg cttccggcc     840
ctgtgcagg gagctaaaa tggaggacgc ggcgcgtggg agagcggggc ggttagtac     900
ccacacaaag gaaaaggcc ttccgtctc cagccgtgc ttcatgtgac tccacggagt     960
accggggccgc gtccaggcac ctgcattgt tctcgatgtt ttggagttacg tcgttttag     1020
gttggggggaa ggggtttat gcgatggagt ttccccacac tgagtggtt gagaactgaag    1080
ttaggccagc ttggcacttg atgtaattct ctttggaaat tggccctttt gagttggat    1140
cttgggttcat tctcaagcct cagacagtgg ttcaagttt ttttcttcca tttcagggtgt    1200
cgtagttaa ttaattatcg atacgtcgac ccaccatgaa aatggacaag aaaaccatcg    1260
tgtgggttcag gagggatctg agaatcgagg ataatccgc ctcgcggca gctgtcactg    1320
aaggaggatgt gtttccgggtt ttcattttgtt gtcacaggaa agagggggcag ttctaccctg    1380
gacgagcaag tgcgtgggtt atgaaacagt ccctggccca tctgtctcag agcctcaagg    1440
cccttggctc tgcgttcacc ctgcgtcaaga cgcataatac aatctccgc aatctcgatt    1500
gcatttcgcgt cacagggtcg acgaaagggtt tttcaaccca cctgtatgtt ccagtttac    1560
tggtccgtga tcacaccgtt aaagagaaac tggtagagag aggcatttagt gtgcagagct    1620
acaacggggaa tctgcgttac gaaccctggg agatttactg cgaaaagggt aagccatata    1680

```

-continued

ctagcttcaa ttccttattgg aagaaatgtc tggacatgtc aatcgagagc gtgatgctgc	1740
ctccaccatg gcgactcatg cccataactg ctgctgtga agcgattttgg gcctgctcca	1800
ttgaggagtt gggcctttag aatgaggcgg agaagcccag taatgtctg ctgaccaggg	1860
catggagtcc aggatggtca aatgccgaca aactcctgaa ttagttcata gagaaacagc	1920
tgattgacta tgccaaagaac tccaaagaagg ttgtgggtaa ctcaacctct cttctcagcc	1980
cctatctgca ctttggggag ataagcgtcg ggcattgtgtt ccagtggtcg cggatgaagc	2040
agatcatttgc ggcgaggat aagaacagcg agggagagga atccgcagac ttgttcctgc	2100
ggggcatcg gctccgcga tatagccgtt atatctgtt taacttccct tttactcactg	2160
agcagagcct tctgagccat ctgcgttctt ttcccttggg tgcagacgtg gacaaattta	2220
aggcttggcg tcaaggtagg accggctatc cactggtca tgccggcatg agagaatttt	2280
gggcaactgg gtggatgcac aaccggattt gggtgatcgt atcttcctt gccgtcaagt	2340
ttctgttgtt gcccggaaa tggggcatga agtacttttgg gataaccctg ttggacgccc	2400
atcttggaaatg cgacatcctt gggtggcaat acataagtgg ctcaataccccc gacggccatg	2460
agctggatag acttgacaat ccggctctgc aaggggctaa gtacgacccccc gaaggagaat	2520
acatcagaca gtggctcccc gaattggcca gactcccccac agagtggatt caccaccctt	2580
gggacgcacc tctgacagtt ctcaaagcca gcggagtaga actggggact aactacgcca	2640
agccgatagt ggacatttgc acagctcggg aactgttggc caaagcaatc tctcgacac	2700
gagaagccca gatcatgatc ggaacttagta cgctgtgagg ccagtagctt cccgacaccg	2760
acgaccggca ccggatcgag gaaaagcgg agcggaccta cgagacattc aagagcatta	2820
tgaagaagtc ccccttcagc ggccccacccg accccagacc cccacctaga agaatcgccg	2880
tgcccagcag atccagcgcc agcgtgccaa agcctgcccc ccagccctac cccttcacca	2940
gcagcctgag caccatcaac tacgtatgtt tccccacaat ggtgttcccc agcggccaga	3000
tttctcaggc ctctgtctg gccccagccc ctccacaggt gctgccacag gccccgtc	3060
cagtcctgc ccctgtatgtt gtgtgtgccc tggcccaggc tccagtcctt gtgcctgtgc	3120
tggctcctgg acctccacag gccgtggccc ctccagcccc aaaacctaca caggccggcg	3180
agggcacact gagcgaagcc ctgtccagg tccagttcga cgacgaggat ctggccgccc	3240
tgctggccaa cagcaccgac cctgtgtgt tcaaccgttcc ggcgcgtg gacaacagcg	3300
agttccagca gtcctgaac cagggcatcc ccgtggctcc acacaccacc gagcccatgc	3360
tgatggaata ccccgaggcc atcaccggc tggcacagg cgctcagagg ccttcgtatc	3420
ctgccccagc tccactggga gccccgtggc tgcataatgg cctgtgtgac ggcgcacgagg	3480
acttcagtc tatacgccac atggacttctt ccgcctgtt gtcggatc agcagccctc	3540
caaaaaaagaa gagaaaggta gtacatccaa aaaagaagag aaaggtaaa aagcttgcgg	3600
ccgccccagac atgataagat acattgtga gtttggacaa accacaacta gaatgcagtg	3660
aaaaaaaaatgc ttatgttgc aaatttgc tgcattgtt ccattataag	3720
ctgcaataaa caagtttaca acaacaattt cattttt atgtttcagg ttcaggggga	3780
ggtgtggag gttttttaaa gcaagtaaaa cctctacaaa tgcgtatgt	3829

<210> SEQ ID NO 12
 <211> LENGTH: 5086
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: TetR(I194T,1-206)-CIB1(-NLS)-T2A-Cry2

-continued

```

PHR(L348F)-p65AD-NLS?~2 fusion construct
<220> FEATURE:
<221> NAME/KEY: promoter
<222> LOCATION: (1)..(1207)
<223> OTHER INFORMATION: hEF1a promoter
<220> FEATURE:
<222> LOCATION: (1236)..(1238)
<223> OTHER INFORMATION: initiation codon
<220> FEATURE:
<221> NAME/KEY: mat_peptide
<222> LOCATION: (1239)..(1262)
<223> OTHER INFORMATION: FLAG tag
<220> FEATURE:
<221> NAME/KEY: mat_peptide
<222> LOCATION: (1263)..(1892)
<223> OTHER INFORMATION: TetR (no AD) + I194T + SPKKK
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (1905)..(2411)
<223> OTHER INFORMATION: Human optimized CIBN -ATG-stop NO NLS
<220> FEATURE:
<221> NAME/KEY: sig_peptide
<222> LOCATION: (2418)..(2471)
<223> OTHER INFORMATION: T2A
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (2493)..(3980)
<223> OTHER INFORMATION: Human optimized Cry2 PHR L348F -ATG-stop
<220> FEATURE:
<221> NAME/KEY: mat_peptide
<222> LOCATION: (3998)..(4793)
<223> OTHER INFORMATION: Human p65 AD
<220> FEATURE:
<221> NAME/KEY: sig_peptide
<222> LOCATION: (4794)..(4817)
<223> OTHER INFORMATION: NLS
<220> FEATURE:
<221> NAME/KEY: sig_peptide
<222> LOCATION: (4821)..(4844)
<223> OTHER INFORMATION: NLS
<220> FEATURE:
<222> LOCATION: (4845)..(4847)
<223> OTHER INFORMATION: STOP codon
<220> FEATURE:
<221> NAME/KEY: polyA_site
<222> LOCATION: (4862)..(5086)
<223> OTHER INFORMATION: pA

<400> SEQUENCE: 12

tctagggtctt gaaaggagtg ggaattggct cgggtgcccc tcagtgggca gagcgcacat      60
cgccccacagt ccccagaagat ttggggggag gggtcggcaa ttgaaccgggt gccttagagaa     120
ggtggcgccgg ggtaaactgg gaaagtgtatc tcgtgtactg gtcggccctt tttcccgagg     180
gtgggggaga accgtatata agtgcagtag tcgcccgtgaa cgttttttt cgcaacgggt     240
ttggccggccag aacacaggta agtgcgtgt gtgggtcccg cgggcctggc ctcttacgg     300
gttatggcccc ttgcgtgcct tgaattactt ccacctggct gcagatcgtg atttttgatc     360
ccgagcttcg gggttggaaat ggggtggaga gttcgaggcc ttgcgtttaa ggagccccctt     420
cgcctcgtgc ttgagttgag gcctggccctg ggccgtgggg cccggcggctg cgaatctgg     480
ggcaccttcg cgcctgtctc gctgtttcg ataaatctct agccattaa aatttttgtatc     540
gacctgtgc gacgcttttt ttctggcaag atatgtttgtt aaatgcgggc caagatctgc     600
acactggat ttccgtttttt gggggccggcgg gcccggacgg ggccctgtcg tcccgccgca     660
catgttcggc gaggcgcccc ctgcgagcgc ggccaccggag aatcgacgg gggtagtctc     720
aagctggccg gcctgtctg gtgcgtggcc tcgcggccggc gtgtatcgcc cccggccctggg     780
cgccaaaggct ggccgggtcg gcaccagttg cgtgagcggaa aagatggccg cttccggcc     840
ctgctgcagg gagctaaaaa tggaggacgc ggcgcgtcg ggtgagtcac     900

```

-continued

ccacacaaaag gaaaagggcc tttccgtcct cagccgtcgc ttcatgtgac tccacggagt 960
 accgggggcc gtcaggcac ctcgattagt tctcgagctt ttggagtacg tcgtcttttag 1020
 gttgggggga ggggtttat gcgatggagt ttccccacac tgagtgggtg gagactgaag 1080
 tttaggccagc ttggcacttg atgtaattct ctttggaaatt tgccctttt gagtttggat 1140
 cttggttcat tctcaagcct cagacagtgg ttcaaaagttt ttttcttcca tttcagggtgt 1200
 cgtgagttaa ttaattatcg atacgtcgac ccaccatggaa ctacaaggac gacgtgaca 1260
 aggcttagatt agataaaaagt aaagtgatta acagcgcatt agagctgctt aatgaggctg 1320
 gaatcgaagg ttaacaacc cgtaaactcg cccagaagct aggtgttagag cagcctacat 1380
 tgtattggca tgtaaaaaat aagcgggctt tgctcgacgc cttagccatt gagatgttag 1440
 ataggcacca tactcacttt tgcccttttag aaggggaaaat ctggcaagat tttttacgta 1500
 ataacgctaa aagttttaga tggctttac taagtcatcg cgatggagca aaagtacatt 1560
 taggtacacg gcctacagaa aaacagtatgaa aactctcgaa aaatcaatttta 1620
 gccaacaagg ttttcaacta gagaatgcat tatatgcact cagcgtgtg gggcattttta 1680
 cttaggttg cgtattggaa gatcaagago atcaagtgcgc taaagaagaa agggaaacac 1740
 ctactactga tagtatgccc ccattattac gacaagctat cgaattattt gatcaccac 1800
 gtgcagagcc agccttctta ttccggcttg aattgatcac atgcggatataa 1860
 ttaaatgtga aagtgggtcg ccaaaaaaga agcatatggaa attcaatggg gcaataggag 1920
 gtgtatctttt gctcaactttt cccgacatga gcgtgctcgaa aaggcaacgc gcacatctga 1980
 agtacctgaa tcccacctt gacagtccat tggcaggctt cttcggcgcac agcagcatga 2040
 tcacaggagg cgagatggac agttatctga gcactgtgg gctcaacttgc cccatgtgt 2100
 acgggtgaaac aactgtcgag ggtgattcca ggtttccat ctcacccggaa acgaccctt 2160
 gaaactggcaat tttaaggctt gcgagatggaa acaccggagac taaagattgc aacgaggcag 2220
 ccaagaagat gaccatgaat cgggacgatcg tggtggaaat agggaaagag gagaatcca 2280
 agattaccga acagaacaat ggcagatccaa agtcaatcaa gaagatgaag cacaaggcca 2340
 agaaggaaga aaacaacttc agcaatgact ctagcaaagt gacaaaagag ctggagaaaa 2400
 cggactacat cacgcgtgag ggcagaggaa gtctgctaaat atgcgggtgac gtcgaggaga 2460
 atcctggccc agccacaacc actagttcta gaatgaaaat ggacaagaaa accatcgatgt 2520
 gggttcaggag ggatctgaga atcgaggata atcccgccctt cgcgcagct gtcacac 2580
 ggaggtgtgtt tccgggttca atttgggttc cagaggaaga ggggcagttc taccctggac 2640
 gagcaagtgc ctgggtggatg aaacagtccc tggcccatct gtctcagagc ctcacggccc 2700
 ttggctctga ttcacccctt atcaagacgc ataatacaat ctccgcattt ctcgattgca 2760
 ttccgcgtcac aggtgcgcacg aaagtggttt tcaaccacccatgtt gtttactgg 2820
 tccgtgtatca caccgtgaaa gagaactgg tagagagagg cattagtgatc cagagctaca 2880
 acggggatct gctgtacgaa ccctgggaga tttactgcga aaaggtaag ccatttacta 2940
 gcttcaatttccat tattggaaat aaatgtctgg acatgtcaat cgagagctg atgctgcctc 3000
 caccatggcg actcatgccc ataactgtcg ctgctgaacg gatggggcc tgctccattt 3060
 aggagttggg ctttggaaat gaggcggaga agcccaatggatc tgcgtgtgc accaggccat 3120
 ggaggtccagg atggtcaat gccgacaaac ttctgaatga gttcatagag aaacagctga 3180
 ttgactatgc caagaactcc aagaagggtt tgggtactt aacctctt ctcagccct 3240

-continued

atctgcactt	tggggagata	agcgtccggo	atgtgttcca	gtgtgcgcgg	atgaagcaga	3300
tcattttggc	gagggataag	aacagcgagg	gagaggaatc	cgcagacttgc	ttcctgcggg	3360
gcacatgggct	ccgcgaatat	agccggata	tctgctttaa	cttccctttt	actcacgagc	3420
agagccttct	gagccatctg	cgcttcttcc	cttggatgc	agacgtggac	aaatttaagg	3480
cttggcgtca	aggtaggacc	ggctatccac	tggtcgatgc	ggcatgaga	gaattttggg	3540
ccactgggtg	gatgcacaac	cggatttaggg	tgatcgtatc	tcccttgcc	gtcaagttc	3600
tgttgttgcc	ctggaaatgg	ggcatgaatg	acttttggg	taccctgttgc	gacgcccgtc	3660
tggaatgcga	catccttgg	tggcaataca	taagtggctc	aatacccgac	ggccatgagc	3720
tggatagact	tgacaatccg	gctctgcaag	gggctaagta	cgaccccgaa	ggagaataca	3780
tcagacatgt	gctcccgaa	ttggccagac	tccccacaga	gtggattcac	cacccttggg	3840
acgcacccct	gacagttctc	aaagccagcg	gagtagaact	gggcactaac	tacgccaagc	3900
cgatagtgg	cattgacaca	gctcgggaaac	tgttggccaa	agcaatctct	cgcacacgag	3960
aagccccat	catgatcgga	actagtagcgt	gtgagttcca	gtacctgccc	gacaccgacg	4020
accggcaccg	gatcgaggaa	aagcggaago	ggacctacga	gacattcaag	agcattatga	4080
agaagttcccc	cttcagcggc	cccacccgacc	ccagacccccc	acctagaaga	atcgccgtgc	4140
ccagcagatc	cagcgccagc	gtgccaaagc	ctggccccc	gcccttacccc	ttcaccagca	4200
gcctgagcac	catcaactac	gatgagttcc	ccacaatgg	gttccccc	ggccagattt	4260
ctcaggcctc	tgctctggcc	ccagccccc	cacaggtgt	gccacaggcc	cctgctccag	4320
ctcctgcccc	tgctatggt	tctggccctgg	cccaggctcc	agctcctgt	cctgtgctgg	4380
ctcctggacc	tccacaggcc	gtggccccc	cagcccaaa	acctacacag	gccggcgagg	4440
gcacactgag	cgaaaggccctg	ctccagctcc	agttcgcacg	cgaggatctg	ggcgccctgc	4500
tgggcaacag	caccgaccct	gccgtgttca	ccgacctggc	cagcgtggac	aacagcgagt	4560
tccagcagct	cctgaaccag	ggcatccccc	tggctccaca	caccacccgag	cccatgctga	4620
tggaataaccc	cgaggccatc	acccggctgg	tcacaggcgc	tcagaggct	cctgatctg	4680
ccccagctcc	actggggagcc	cctggccctgc	ctaatggcc	gctgagcggc	gacgaggact	4740
tcagctctat	cggcgacatg	gacttctccg	ccctgctgtc	ccagatcagc	agccctccaa	4800
aaaaagaagag	aaaggtagta	cctccaaaaaa	agaagagaaa	ggtataaaag	tttgcggccg	4860
cccagacatg	ataagataca	tttgatgagtt	tggacaaacc	acaactagaa	tgcagtgaaa	4920
aaaaatgtttt	atttgtgaaa	tttggatgt	tattgctta	tttggtaacca	ttataagctg	4980
caataaaacaa	gttaacaaca	acaattgcat	tcattttatg	tttcaggttc	agggggaggt	5040
gtggggaggtt	ttttaaagca	agtaaaacct	ctacaaatgt	ggtatg		5086

<210> SEQ ID NO 13

<211> LENGTH: 5

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Linker

<400> SEQUENCE: 13

Ser Pro Lys Lys Lys

5

<210> SEQ ID NO 14

<211> LENGTH: 24

<212> TYPE: PRT

-continued

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Linker

<400> SEQUENCE: 14

Thr Gly Asn Ser Ala Asp Gly Gly Gly Ser Gly Gly Ser Gly Gly
1 5 10 15Ser Gly Gly Ser Thr Gln Gly
20

<210> SEQ ID NO 15

<211> LENGTH: 16

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Linker

<400> SEQUENCE: 15

Leu Glu Ala Ser Pro Ser Asn Pro Gly Ala Ser Asn Gly Ser Gly Thr
1 5 10 15

<210> SEQ ID NO 16

<211> LENGTH: 10

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Linker

<400> SEQUENCE: 16

Gly Tyr Pro Ser His Trp Arg Pro Leu Glu
1 5 10

<210> SEQ ID NO 17

<211> LENGTH: 10

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Linker

<400> SEQUENCE: 17

Leu Glu Ala Ser Thr Gly Gly Ser Gly Thr
1 5 10

<210> SEQ ID NO 18

<211> LENGTH: 4350

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: CAG-FLAG-TetR-CIBN(-NLS) -T2A-mCherryNLS
construct (Virus 1)

<220> FEATURE:

<222> LOCATION: (1) .. (133)

<223> OTHER INFORMATION: ITR

<220> FEATURE:

<221> NAME/KEY: promoter

<222> LOCATION: (196) .. (1132)

<223> OTHER INFORMATION: pCAG

<220> FEATURE:

<222> LOCATION: (1186) .. (1188)

<223> OTHER INFORMATION: initiation codon

<220> FEATURE:

<221> NAME/KEY: mat_peptide

<222> LOCATION: (1189) .. (1212)

<223> OTHER INFORMATION: FLAG tag

<220> FEATURE:

<221> NAME/KEY: mat_peptide

<222> LOCATION: (1213) .. (1842)

<223> OTHER INFORMATION: TetR (no AD) + I194T + SPKKK

<220> FEATURE:

<221> NAME/KEY: CDS

-continued

```

<222> LOCATION: (1855)..(2361)
<223> OTHER INFORMATION: Human optimized CIBN -ATG-stop NO NLS
<220> FEATURE:
<221> NAME/KEY: sig_peptide
<222> LOCATION: (2368)..(2421)
<223> OTHER INFORMATION: T2A
<220> FEATURE:
<221> NAME/KEY: mat_peptide
<222> LOCATION: (2437)..(3141)
<223> OTHER INFORMATION: mCherry (no STOP)
<220> FEATURE:
<221> NAME/KEY: sig_peptide
<222> LOCATION: (3142)..(3165)
<223> OTHER INFORMATION: NLS
<220> FEATURE:
<221> NAME/KEY: sig_peptide
<222> LOCATION: (3169)..(3192)
<223> OTHER INFORMATION: NLS
<220> FEATURE:
<222> LOCATION: (3196)..(3198)
<223> OTHER INFORMATION: STOP codon
<220> FEATURE:
<222> LOCATION: (3293)..(3901)
<223> OTHER INFORMATION: WPRE
<220> FEATURE:
<221> NAME/KEY: polyA_site
<222> LOCATION: (3931)..(4050)
<223> OTHER INFORMATION: SV40 early pA
<220> FEATURE:
<222> LOCATION: (4217)..(4350)
<223> OTHER INFORMATION: ITR

<400> SEQUENCE: 18

cagctgcgcg ctcgctcgct cactgaggcc gccccggcaa agccccggcg tcggggcgacc      60
tttggtcgcc cggcctcagt gagcgagcga gcgcgcagag agggagtgcc caactccatc      120
actaggggtt cctttagttt aatgattaac ccggccatgtc acttatctac gtggccatgc      180
tcttagaaga tcgttaccatt gacgtcaata atgacgtatg ttcccatatgt aacgccaata      240
gggactttcc attgacgtca atgggtggag tatttacggt aaactgccc cttggcagta      300
catcaagtgt atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc      360
gcctggcatt atgcccagta catgacctta tgggactttc ctacttggca gtacatctac      420
gtatttagtca tcgttattac catggtcag gtgagccca cgttctgcctt cactctcccc      480
atctcccccc cctcccccacc cccaaatttt tatttattta ttttttaattt attttgca      540
gcgtatgggggg cgggggggggg gggggggggc ggcgcaggcg gggcgggggcg gggcgagggg      600
cgggggcgggg cggggcggag aggtgcggcg gcagccaatc agagcggcgc gctccgaaag      660
tttcctttta tggcgaggcg gggggggcg cggccctata aaaagcgaag cgccggggcg      720
gcggggagtgc ctgcgacgct gccttcgccc cgtgccccgc tccgcggcg cctcgcccg      780
cccgccccgg ctctgactga ccgcgttact cccacaggtg agcggggggg acggcccttc      840
tcctccgggc tgtaatttgc gcttggttt aatgacggctt gtttctttc tggctgcg      900
tggaaaggcctt gggggggccc tttgtgggg gggagggctt cggggctgtc      960
cgccgggggg cggctgcctt cggggggggac ggggcaggcg ggggttccgc ttctggcg      1020
tgaccggcg cttctagagcc tctgtcaacc atgttcatgc cttttcttt ttcctacagc      1080
tcctggggca cgtgctgggtt attgtgctgt ctcatcattt tggcaaaagaa ttggatcctt      1140
aattaagcta gcctcgaggt cgacgtatcg ataccttaag ccaccatgga ctacaaggac      1200
gacgatgaca aggtagatt agataaaagt aaagtgatta acagcgcatt agagctgtt      1260
aatgaggtcg gaatcgaagg tttacaacc cgtaaactcg cccagaagct aggtgttagag      1320
cagcctacat tggatggca tggaaaaat aagcgggctt tgctcgacgc cttagccatt      1380

```

-continued

gagatgttag ataggcacca tactcacttt tgcccttag aaggggaaag ctggcaagat 1440
 ttttacgta ataacgctaa aagttttaga tgcgtttac taagtcatcg cgatggagca 1500
 aaagtacatt taggtacacg gcctacagaa aaacagtatg aaactctcgaa aatcaatta 1560
 gccttttat gccaacaagg ttttcaacta gagaatgcat tatatgact cagcgctgt 1620
 gggcattta cttagttg cgtattggaa gatcaagagc atcaagtgc taaagaagaa 1680
 agggaaacac ctactactga tagtatgccc ccattattac gacaagctat cgaattattt 1740
 gatcaccaag gtgcagagcc agccttcta ttccggcttg aattgatcac atgcggatta 1800
 gaaaaacaac ttaaatgtga aagtgggtcg ccaaaaaaga agcatatgga attcaatggg 1860
 gcaataggag gtgatctgtt gctcaactt cccgacatga gctgtctcgaa aaggcaacgc 1920
 gcacatctga agtacactgaa tccccctt gacagtccat tggcaggcctt ctccggac 1980
 agcagcatga tcacaggagg cgagatggac agttatctga gcaactgtgg gctcaactt 2040
 cccatgtgt acggtaaac aactgtcgag ggtgattccaa ggctttccat ctcaccggaa 2100
 acgaccctt gaaactggcaa ttttaaggct gcgaagtttgc acaccgagac taaagattgc 2160
 aacgaggcg ccaagaagat gaccatgaat cgggacgatc tggtggaaaga agggaaagag 2220
 gagaatcca agattaccga acagaacaat ggcagttacca agtcaatcaa gaagatgaag 2280
 cacaagccaa agaaggaaaga aaacaacttc agcaatgact ctagcaaagt gacaaaagag 2340
 ctggagaaaa cggactacat cacgctgtgg ggcagaggaa gtcgtctaac atgcgggtac 2400
 gtgcaggaga atccctggccc agccacaacc actagtgtga gcaaggcgcgaa ggaggataac 2460
 atggccatca tcaaggagtt catgcgttca aaggtgcaca tggagggctc cgtaaacggc 2520
 cacgagttcg agatcgaggg cgaggcgag ggccggccct acgaggcgcac ccagaccggc 2580
 aagctgaagg tgaccaaggg tggcccccctg cccttcgccc gggacatcct gtccctcag 2640
 ttcatgtacg gtcacccaggc ctacgtgaag cccccccgcg acatccccgcg ctacttgc 2700
 ctgtccctcc cccaggcgctt caagtggagcg cgcgtgtga acttcgaggaa cggccggcgt 2760
 gtgaccgtga cccaggactc ctccctgcag gacggcgagt tcatactacaa ggtgaagctg 2820
 cgcggccacca acttccctc cgaaggcccc gtaatgcaga agaagaccat gggctggag 2880
 gcccctccg acggatgtt ccccgaggac ggcggccgtt agggcgagat caagcagagg 2940
 ctgaagctga aggaaggccgg ccactacgc gctgagggtca agaccaccta caaggccaa 3000
 aagcccggtc agctgccccg cgcctacaac gtcaacatca agttggacat cacctccac 3060
 aacgaggact acaccatcgat ggaacagttac gaaacgcgcg aggccgcac ccacccggc 3120
 ggcacatggacg agctgtacaa gcctccaaaa aagaagagaa aggttagtacc tccaaaaaaag 3180
 aagagaaagg tagtctaggc ggccgaaagc ttgataagta atgtcgaggaa cgcgggtggc 3240
 gcccctgata tcacggcccg ccaccggcggtt ggagctcccgat attcgatatc aagcttac 3300
 ataatcaacc tctggattac aaaatttgcgaa aagattgac tggatttctt aactatgtt 3360
 ctccctttac gctatgttgc tacgtgttca taatgcctt gtatcatgtt attgttccc 3420
 gtatggctttt cattttctcc tccttgcata aatcttgcgtt gtcgttctt tatgaggagt 3480
 tggcccggtt tgcaggccaa cgtggcggtt tgcgtgttgc gcaacccca 3540
 ctgggtgggg cattggccacc acctgtcgac tccttccgg gactttcgctt ttcccccctcc 3600
 ctattggccac ggcggaaactc atcgccgcctt gccttgcggc ctgctggacca ggggctggc 3660
 tggggccac tgacaattcc gttgtttgtt cggggaaatc atcgcttccctt cttgggtgc 3720

-continued

tcgcctgtgt	tgccacctgg	attctgcgcg	ggacgtcctt	ctgctacgtc	ccttcggccc	3780
tcaatccagc	ggaccttcct	tcccgccggc	tgcgtccggc	tctcgccgct	cttcggcgtc	3840
ttcgccctcg	ccctcagacg	agtcggatct	ccctttggc	cgccctcccg	catcgatacc	3900
gtcgaccggg	gcccggcgtt	cgagcagaca	tgataagata	cattgtatgag	tttggacaaa	3960
ccacaactag	aatgcagtga	aaaaaatgct	ttatggatgt	aattttgtat	gttattgttt	4020
tattttgtaac	cattataagc	tgcaataaac	aagtttaacaa	caacaattgc	attcatat	4080
tgtttcaggt	tcagggggag	atgtgggagg	ttttttaaag	caagtaaaac	ctctacaaat	4140
gtggtaaaat	cgataaggat	cttccttagag	catggctacg	tagataagta	gcatggccgg	4200
ttaatcatta	actacaagga	acccttagtgc	atggagttgg	ccactccctc	tctgcgcgct	4260
cgctcgctca	ctgaggccgg	gcccggcgtt	gtcgccggcgt	gcccgggctt	tgccggccgg	4320
gcctcagtga	gctgagcgcg	gcgcagctgc				4350

<210> SEQ_ID NO 19
<211> LENGTH: 4578
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: CAG-NLS-attached Cry2 PHR(L348F)-p65AD N
terminal fusion construct (Virus 2)
<220> FEATURE:
<222> LOCATION: (1)..(133)
<223> OTHER INFORMATION: ITR
<220> FEATURE:
<221> NAME/KEY: promoter
<222> LOCATION: (196)..(1132)
<223> OTHER INFORMATION: pCAG
<220> FEATURE:
<222> LOCATION: (1164)..(1166)
<223> OTHER INFORMATION: initiation codon
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (1167)..(2651)
<223> OTHER INFORMATION: Human optimized Cry2 PHR L348F -ATG-stop
<220> FEATURE:
<221> NAME/KEY: mat_peptide
<222> LOCATION: (2664)..(3464)
<223> OTHER INFORMATION: Human p65 AD
<220> FEATURE:
<221> NAME/KEY: sig_peptide
<222> LOCATION: (3465)..(3488)
<223> OTHER INFORMATION: NLS
<220> FEATURE:
<221> NAME/KEY: sig_peptide
<222> LOCATION: (3492)..(3515)
<223> OTHER INFORMATION: NLS
<220> FEATURE:
<222> LOCATION: (3516)..(3518)
<223> OTHER INFORMATION: STOP codon
<220> FEATURE:
<222> LOCATION: (3525)..(4129)
<223> OTHER INFORMATION: WPRE
<220> FEATURE:
<221> NAME/KEY: polyA_site
<222> LOCATION: (4159)..(4278)
<223> OTHER INFORMATION: SV40 early pA
<220> FEATURE:
<222> LOCATION: (4445)..(4578)
<223> OTHER INFORMATION: ITR

<400> SEQUENCE: 19

cagctgcgcg	ctcgctcgct	cactgaggcc	gcccgggcaa	agcccccggc	tcggggcgacc	60
tttggctcgcc	cgccctcgat	gagcgagcga	gcccggcgtt	caactccatc		120
actagggtt	ccttgcgttt	aatgatataac	ccggccatgt	acttatctac	gtggccatgc	180
tcttaggaaga	tcgttaccatt	gacgtcaata	atgacgtatg	ttcccatagt	aacgccaata	240

-continued

gggactttcc	attgacgtca	atgggtggag	tatttacggt	aaactgccc	cttggcagta	300	
catcaagtgt	atcatatgcc	aagtacgccc	cctattgacg	tcaatgacgg	taaatggccc	360	
gcctggcatt	atgcccagta	catgaccccta	tgggacttcc	ctacttgcc	gtacatctac	420	
gtatttagtca	tcgcttattac	catggtcag	gtgagccca	cgttctgc	tt cactctccc	480	
atctcccccc	cctccccacc	cccaattttg	tatttat	tttttaatt	attttgtca	540	
gcatgggggg	cggggggggg	ggggggggc	gcccaggcg	ggggggggc	ggggcgagggg	600	
cggggggggg	cgaggcgagg	agggtcgccg	gcagccaatc	agagcggcgc	gtccgaaag	660	
tttccttta	tgcccgaggcg	gccccctata	aaaagcgaag	cgccggcg	cgccggcg	720	
gcgggagtcg	ctgcgacgct	gccttcgccc	cgtgccccgc	tecgccgc	cctcgcccg	780	
ccggcccccgg	ctctgactga	ccgcgttact	cccacaggtg	agcgggggg	acggcccttc	840	
tcctccgggc	tgtaatttagc	gcttggttta	atgacggc	tttgc	tgtggctgcg	900	
tgaaagcctt	gaggggctcc	gggagggccc	tttgtgcggg	gggagggc	ctggggctgtc	960	
cgcgggggga	cggtgcctt	cgggggggac	ggggcagggc	ggggttcggc	ttctggcgtg	1020	
tgaccggcg	ctctagagcc	tctgtcaacc	atgttcatgc	cttcttctt	ttcttacagc	1080	
tcctggc	ca	attgtgtt	attgtgt	ctcatcatt	tggcaaagaa	ttggatcctt	1140
aattaagcta	gcctcgaccc	accataaaa	tggacaagaa	aaccatcgt	tggttcagga	1200	
gggatctgag	aatcgaggat	aatcccgccc	tcgcccgc	tgctcacgaa	gggagtgtgt	1260	
ttccgggtt	catttgggt	ccagaggaag	aggggc	ctaccctgga	cgagcaagtc	1320	
gctgggtggat	gaaacagtcc	ctggccatc	tgtctcagag	cctcaaggcc	cttggctctg	1380	
atctcaccc	gatcaagacg	cataatacaa	tctccgaat	tctcgattc	attcgcgtca	1440	
caggtgc	gaaagtgg	ttcaaccacc	tgtatgatcc	agtttca	ctggtgatc	1500	
acaccgtgaa	agagaaactg	gtagagagag	gcatttagt	gcagagctac	aacggggatc	1560	
tgctgtcga	accctggag	atttactgc	aaaaggtaa	gccattact	agcttcaatt	1620	
cctattggaa	gaaatgtctg	gacatgtca	tcgagagcgt	gatgctgc	ccaccatggc	1680	
gactcatgcc	cataactgct	gctgctgaag	cgatttggc	ctgctcatt	gaggagttgg	1740	
gccttgagaa	tgagggggag	aageccagta	atgctctgc	gaccagg	ttggagtccag	1800	
gatggtaaa	tgccgacaaa	ctctgaat	agttcataga	gaaacagct	attgactat	1860	
cacaagaactc	caagaagg	ttgtgtact	caacctct	tctcagcccc	tatctgcact	1920	
ttggggagat	aagcgtccgg	catgtgttcc	agtgtgc	gatgaagcag	atcatttgg	1980	
cgagggataa	gaacacgc	ggagaggaat	ccgcagact	gttcctgc	ggcatcg	2040	
tccgcgaaata	tagccgtat	atctgc	tttactc	cacgc	gagcc	2100	
tgagccatct	gcttctt	ccttggat	cagacgtgg	caaattt	ag	2160	
aaggtaggac	cggctatcca	ctggcgtat	ccggcatg	agaatttgg	gccactgg	2220	
ggatgcacaa	ccggattt	gtgatcgtat	cttc	ttgc	ctgttgc	2280	
cctggaaat	gggcatgaa	tactttgg	ataccctgtt	ggacgc	cgatgc	2340	
acatcc	tggcaatac	ataagtgg	caatacc	cgccatg	ctggatagac	2400	
ttgacaatcc	ggctctgaa	ggggcta	acgaccc	aggagaatac	atcagac	2460	
ggctccccga	attggccaga	ctccccacag	agtggattca	ccacc	ttgg	2520	
tgacagttct	caaagcc	aggtagaa	tggcactaa	ctacgcca	ccgatagtgg	2580	

US 12,338,443 B2

99

100

-continued

acattgtacac agctcgccaa ctgttgccca aagcaatctc tcgcacacga gaagcccaga	2640
tcatgtatcg aactagtacg cgtgagttcc agtacacctc cgacaccgac gaccggcacc	2700
ggatcgagga aaagcggaag cgggacccatcg agacattcaa gaggattatg aagaagtccc	2760
ccttcagcgg ccccacccgac cccagacccc cacctagaag aatcgccgtg cccagcagat	2820
ccagcgccag cgtgccaaag cctgcccccc ageccctaccc ctccaccagc agcctgagca	2880
ccatcaacta cgatgagttc cccacaatgg tggccccccag cggccagat tctcaggccct	2940
ctgctctggc cccagccctt ccacagggtc tgccacaggc ccctgtccca gtcctgtccc	3000
ctgctatggt gtctgcccctg gcccaggctc cagtcctgtt gctgtgtc gtcctggac	3060
ctccacaggc cgtggccctt ccagccccaa aacctacaca ggccggcgag ggcacactga	3120
gcaagccct gtcctcgcctc cagttcgacg acgaggatctt gggccggccctg ctgggcaaca	3180
gcaccgaccc tgccgtgtc accgacctgg ccagcgtgga caacagcgag ttccagcagc	3240
tcctgaacca gggcatcccc ttggctccac acaccacccg gcccattgtc atggaaatacc	3300
ccgaggccat caccggcgtc gtcacaggcg ctcagaggcc tcctgtatccct gccccagctc	3360
cactgggagc ccctggccctg cctaatggcc ttgtcgagcg ccacgaggac ttcaagctcta	3420
tcgcccacat ggacttctcc gcccgtctgtt cccagatcg cagccctccca aaaaagaaga	3480
gaaaggtagt acctccaaaa aagaagagaa aggtataaaa gcttatcgat aatcaacctc	3540
tggattacaa aatttgtgaa agattgactg gtattcttaa ctatgttgct ccttttacgc	3600
tatgtggata cgctgtttta atgcctttgt atcatgtat tgctttccgt atgggtttca	3660
ttttctcctc ttgtataaaa tcctgggtc ttgtctttta tgaggagttg tggcccggtt	3720
tcaggcaacg tggcgtgggtg tgcactgtgt ttgtcgacgc aaccccccact gggtggggca	3780
ttgccaccac ctgtcagctc cttccggga ctttcgtt cccctccctt attgccacgg	3840
cggaactcat cgccgcctgc cttggccgtc gctggacagg ggctcggtg ttggcaactg	3900
acaattccgt ggtgttgc gggaaatcat cgtccttcc ttggctgtc gcctgttttgc	3960
ccacctggat tctcgccggg acgtccttct gctacgtccc ttggcccttc aatccagcg	4020
accttccttc cggcgccctg ctggccgtc tgccgcctct tccgcgtt cgccttcgccc	4080
ctcagacgag tggatctcc ctttggccgc cttcccccgc tgcataaccgt cgaccggcgc	4140
ggccgcttcg agcagacatg ataagataca ttgtatggatt tggacaaacc acaactagaa	4200
tgcagtgaaa aaaatgtctt atttgtgaaa ttgtgtatgc tattgtttta tttgttaacc	4260
ttataagctg caataaacaaca gttaacaaca acaattgtcat tcattttatg tttcaggttc	4320
agggggagat gtggggagggtt tttaaagca agtaaaaacctt ctacaaatgtt ggtaaaatcg	4380
ataaggatct tccttagagca tggctacgtt gataagtgc atggccgggtt aatcattaac	4440
tacaaggaaac cccttagtgc gggatggcc actcccttc tgcgcgtcg ctcgcgtcact	4500
gaggccgggc gaccaaagggt cggccgcgc cccgggttttgc cccggggggc ctcagtgagc	4560
gagcgcgcgc gcagctgc	4578

```
<210> SEQ ID NO 20
<211> LENGTH: 2977
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: TRE3G-Ub-NLS-luc2-Hes1 3?f UTR reporter (Virus
 3)
<220> FEATURE:
<222> LOCATION: (1)..(141)
<223> OTHER INFORMATION: ITR
```

-continued

```

<220> FEATURE:
<222> LOCATION: (191)..(558)
<223> OTHER INFORMATION: TRE3Gs
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (569)..(2221)
<223> OTHER INFORMATION: luc2
<220> FEATURE:
<221> NAME/KEY: 3'UTR
<222> LOCATION: (2227)..(2758)
<223> OTHER INFORMATION: Hes1 3'UTR
<220> FEATURE:
<222> LOCATION: (2837)..(2977)
<223> OTHER INFORMATION: ITR

<400> SEQUENCE: 20

cctgcaggca gctgcgcgtc cgctcgctca ctgaggccgc cggggcaaaag cccgggcgtc      60
ggcgacgtt tggtegcccc gcctcagtga gcgagcgagc gcgagagag ggagtggcca      120
actccatcac taggggttcc ttgttagttaa tgattaaccc gccatgtac ttatctacat      180
cgcgccgcgc gaggtaactc cctatcgtg atagagaacg tatgaagagt ttactcccta      240
tcagtgatag agaacgtatg cagactttac tccctatcag tgatagagaa cgtataagga      300
gtttactccc tattcgtatc agagaacgtt tgaccagttt actccctatc agtgatagag      360
aacgtatcta cagtttactc cctatcgtg atagagaacg tatatccagt ttactcccta      420
tcagtgatag agaacgtata agcttgctt atgtaaacca gggcgcctat aaaagagtgc      480
tgatttttt agttaacttc aattccacaa cactttgtc ttataccaac tttccgtacc      540
acttcctacc ctcgtaaagc tagccaccat ggaagatgcg aaaaacattha agaaggccc      600
agcgccatcc tacccactcg aagacggac cgcggcgag cagctgcaca aagccatgaa      660
gcgcgtacgc ctgggtcccc gcaccatcg ctttaccgac gcacatatcg aggtggacat      720
tacctaegcc gagtaactcg agatgagcgt tcggctggca gaagctatga agcgtatgg      780
gctgaataca aaccatcgga tcgtgggtgtc cagcggaaat agcttgcgt tcttcatgcc      840
cggtttgggt gcccgttca tcgggtgtgc tggtggccca gctaaacgaca tctacaacga      900
gcgcgagctc ctgaacagca tgggcatcg ccagccacc gtcgtattcg tgagcaagaa      960
agggctgaa aagatcctca acgtgaaaaa gaagctaccg atcataaaaa agatcatcat      1020
catggatagc aagacggact accagggctt ccaaagcatg tacacccatcg tgacttccca      1080
tttgcaccc ggcttcaacg agtacgactt cgtgccccag agcttgcacc gggacaaaac      1140
catcgccctg atcatgaaca gtatggcag taccggattt cccaaaggccg tagccctacc      1200
gcacccgacc gcttgcgtcc gattcgtca tgcccgccac cccatccatcg gcaaccagat      1260
catccccgac accgctatcc tcagcgtgtt gccatccatcg cacggcttcg gcatgttcc      1320
cacgctggc taccgtatct gcccgttcc ggtcgtcgtc atgtaccgt tcgaggagga      1380
gctatttttgc cgcagcttgc aagactataa gattcaatct gcccgttcc tgcccacact      1440
attagcttc ttgcgttcaaga gcactctcat cgacaagtgac gacctaagca acttgcacga      1500
gatcgccagc ggcggggcgc cgctcagcaa ggaggttaggt gaggccgtgg ccaaacgcctt      1560
ccaccttacca ggcatacgcc agggatcgg cctgacagaa acaaccagcg ccattctgtat      1620
caccggccaa ggggacgaca agcctggcgc agtaggcag gtgggtccct tcttcggggc      1680
taagggtggc gacttggaca cccgttaagac actgggtgtc aaccagcgcg gcgagctgt      1740
cgccgttgc cccatgtca tgagcggcta cgtaacaac cccgaggctt caaacgcctt      1800
catcgacaag gacggctggc tgacacagcg cgacatcgcc tactgggacg aggacgagca      1860

```

-continued

ctttttcatac gtggaccggc tgaagagcct gatcaaatac aagggttacc aggttagcccc 1920
 agccgaaactg gagagcatcc tgctgcaaca ccccaacatc ttgcacgccc gggtcgcgg 1980
 cctgccccac gacgatgccg gcgagctgcc cgccgcagtc gtcgtgtgg aacacggtaa 2040
 aaccatgacc gagaaggaga tcgtggacta tgtggccagc caggttacaa ccgccaagaa 2100
 gctgcgcgggt ggtgttgtgt tcgtggacga ggtgcctaaa ggactgaccg gcaagtttga 2160
 cgcccgcaag atcccgagaga ttctcattaa ggccaagaag ggccgcaaga tcgcgtgtta 2220
 aacgcgtctt caggccactg ctacccgtaa agtcccttagc ccacctctt cttctgacgg 2280
 acactaaaaa cgaacttgg atttaggaga gactttata atttgggtt tatttttttg 2340
 ctttttttaa ttctaaaaag ttactttttg tagagagctg tattaagtga ctgaccatgc 2400
 actgcatttg tatatatttt atatgttcat attggattgc gcctttgtat tataaaagtt 2460
 gagatgacat ttcgtttttt acacgagatt tctttttta tgtgtatgcca aagatgtttg 2520
 aaaaatgtct taaaatatct tccttgggg aagtttattt gagaaaatat aataaaagag 2580
 tgaaggctttt tattgtcttag aactgattat ttcaaaaattt gtaaaaaaaaaaa 2640
 gggcttgaaa ttcatgttagt ttggcaattc agaaatagga tgtatttttt aaagttttaa 2700
 acaggaacca tcaaaccctt cagcaacact caatgatcta agaagaccta atttatgaga 2760
 attcgtttcg aagcgtcgac tctccggatt aattaagatg tagataagta gcatggccgg 2820
 ttaatcatta actacaagga accccttagtg atggagttgg ccactccctc tctgcgcgct 2880
 cgctcgctca ctgaggccgc ccgggcaaag ccggggcgctc gggcgacctt tggtcgcgg 2940
 gcctcagtga gcgagcggc gcgagctgc ctgcagg 2977

<210> SEQ_ID NO 21

<211> LENGTH: 731

<212> TYPE: PRT

<213> ORGANISM: Rhodopseudomonas palustris

<220> FEATURE:

<223> OTHER INFORMATION: RpBphP1

<400> SEQUENCE: 21

Met Val Ala Gly His Ala Ser Gly Ser Pro Ala Phe Gly Thr Ala Asp
 1 5 10 15

Leu Ser Asn Cys Glu Arg Glu Glu Ile His Leu Ala Gly Ser Ile Gln
 20 25 30

Pro His Gly Ala Leu Leu Val Val Ser Glu Pro Asp His Arg Ile Ile
 35 40 45

Gln Ala Ser Ala Asn Ala Ala Glu Phe Leu Asn Leu Gly Ser Val Leu
 50 55 60

Gly Val Pro Leu Ala Glu Ile Asp Gly Asp Leu Leu Ile Lys Ile Leu
 65 70 75 80

Pro His Leu Asp Pro Thr Ala Glu Gly Met Pro Val Ala Val Arg Cys
 85 90 95

Arg Ile Gly Asn Pro Ser Thr Glu Tyr Asp Gly Leu Met His Arg Pro
 100 105 110

Pro Glu Gly Gly Leu Ile Ile Glu Leu Glu Arg Ala Gly Pro Pro Ile
 115 120 125

Asp Leu Ser Gly Thr Leu Ala Pro Ala Leu Glu Arg Ile Arg Thr Ala
 130 135 140

Gly Ser Leu Arg Ala Leu Cys Asp Asp Thr Ala Leu Leu Phe Gln Gln
 145 150 155 160

Cys Thr Gly Tyr Asp Arg Val Met Val Tyr Arg Phe Asp Glu Gln Gly

US 12,338,443 B2

105

106

-continued

165	170	175	
His Gly Val Phe Ser Glu Arg His Val Pro Gly Leu Glu Ser Tyr			
180	185	190	
Phe Gly Asn Arg Tyr Pro Ser Ser Asp Ile Pro Gln Met Ala Arg Arg			
195	200	205	
Leu Tyr Glu Arg Gln Arg Val Arg Val Leu Val Asp Val Ser Tyr Gln			
210	215	220	
Pro Val Pro Leu Glu Pro Arg Leu Ser Pro Leu Thr Gly Arg Asp Leu			
225	230	235	240
Asp Met Ser Gly Cys Phe Leu Arg Ser Met Ser Pro Ile His Leu Gln			
245	250	255	
Tyr Leu Lys Asn Met Gly Val Arg Ala Thr Leu Val Val Ser Leu Val			
260	265	270	
Val Gly Gly Lys Leu Trp Gly Leu Val Ala Cys His His Tyr Leu Pro			
275	280	285	
Arg Phe Ile His Phe Glu Leu Arg Ala Ile Cys Glu Leu Leu Ala Glu			
290	295	300	
Ala Ile Ala Thr Arg Ile Thr Ala Leu Glu Ser Phe Ala Gln Ser Gln			
305	310	315	320
Ser Glu Leu Phe Val Gln Arg Leu Glu Gln Arg Met Ile Glu Ala Ile			
325	330	335	
Thr Arg Glu Gly Asp Trp Arg Ala Ala Ile Phe Asp Thr Ser Gln Ser			
340	345	350	
Ile Leu Gln Pro Leu His Ala Asp Gly Cys Ala Leu Val Tyr Glu Asp			
355	360	365	
Gln Ile Arg Thr Ile Gly Asp Val Pro Ser Thr Gln Asp Val Arg Glu			
370	375	380	
Ile Ala Gly Trp Leu Asp Arg Gln Pro Arg Ala Ala Val Thr Ser Thr			
385	390	395	400
Ala Ser Leu Gly Leu Asp Val Pro Glu Leu Ala His Leu Thr Arg Met			
405	410	415	
Ala Ser Gly Val Val Ala Ala Pro Ile Ser Asp His Arg Gly Glu Phe			
420	425	430	
Leu Met Trp Phe Arg Pro Glu Arg Val His Thr Val Thr Trp Gly Gly			
435	440	445	
Asp Pro Lys Lys Pro Phe Thr Met Gly Asp Thr Pro Ala Asp Leu Ser			
450	455	460	
Pro Arg Arg Ser Phe Ala Lys Trp His Gln Val Val Glu Gly Thr Ser			
465	470	475	480
Asp Pro Trp Thr Ala Ala Asp Leu Ala Ala Arg Thr Ile Gly Gln			
485	490	495	
Thr Val Ala Asp Ile Val Leu Gln Phe Arg Ala Val Arg Thr Leu Ile			
500	505	510	
Ala Arg Glu Gln Tyr Glu Gln Phe Ser Ser Gln Val His Ala Ser Met			
515	520	525	
Gln Pro Val Leu Ile Thr Asp Ala Glu Gly Arg Ile Leu Leu Met Asn			
530	535	540	
Asp Ser Phe Arg Asp Met Leu Pro Ala Gly Ser Pro Ser Ala Val His			
545	550	555	560
Leu Asp Asp Leu Ala Gly Phe Phe Val Glu Ser Asn Asp Phe Leu Arg			
565	570	575	
Asn Val Ala Glu Leu Ile Asp His Gly Arg Gly Trp Arg Gly Glu Val			
580	585	590	

-continued

Leu Leu Arg Gly Ala Gly Asn Arg Pro Leu Pro Leu Ala Val Arg Ala
 595 600 605
 Asp Pro Val Thr Arg Thr Glu Asp Gln Ser Leu Gly Phe Val Leu Ile
 610 615 620
 Phe Ser Asp Ala Thr Asp Arg Arg Thr Ala Asp Ala Ala Arg Thr Arg
 625 630 635 640
 Phe Gln Glu Gly Ile Leu Ala Ser Ala Arg Pro Gly Val Arg Leu Asp
 645 650 655
 Ser Lys Ser Asp Leu Leu His Glu Lys Leu Leu Ser Ala Leu Val Glu
 660 665 670
 Asn Ala Gln Leu Ala Ala Leu Glu Ile Thr Tyr Gly Val Glu Thr Gly
 675 680 685
 Arg Ile Ala Glu Leu Leu Glu Gly Val Arg Gln Ser Met Leu Arg Thr
 690 695 700
 Ala Glu Val Leu Gly His Leu Val Gln His Ala Ala Arg Thr Ala Gly
 705 710 715 720
 Ser Asp Ser Ser Ser Asn Gly Ser Gln Asn Lys
 725 730

<210> SEQ ID NO 22
 <211> LENGTH: 177
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: RpQ-PAS1
 <400> SEQUENCE: 22

Met Pro Glu Phe Gly Lys Asn Met Gln Ala Val Thr Glu Leu His Ser
 1 5 10 15
 Arg Leu Ile Ala Ala Gln Gln Ala Met Glu Arg Asp Tyr Trp Arg Leu
 20 25 30
 Arg Glu Leu Glu Thr Arg Tyr Arg Leu Val Phe Asp Ala Ala Ala Asp
 35 40 45
 Ala Val Met Ile Val Ser Ala Gly Asp Met Arg Ile Val Glu Ala Asn
 50 55 60
 Arg Ala Ala Val Asn Ala Ile Ser Arg Val Glu Arg Gly Asn Asp Asp
 65 70 75 80
 Leu Ala Gly Arg Asp Phe Leu Ala Glu Val Ala Ala Ala Asp Arg Asp
 85 90 95
 Ala Val Arg Asp Met Leu Ala Gln Val Arg Gln Arg Gly Thr Ala Leu
 100 105 110
 Ser Val Leu Val His Leu Gly Arg Tyr Asp Arg Ala Trp Met Leu Arg
 115 120 125
 Gly Ser Leu Met Ser Ser Glu Arg Arg Gln Val Phe Leu Leu His Phe
 130 135 140
 Thr Pro Val Thr Thr Pro Ala Ile Asp Asp Asp Asp Lys Gly Val
 145 150 155 160
 Val Ala Ser Ala Ala Asp Gly Ala Glu Gly Ala Ser Asp Asp Ala Glu
 165 170 175

Asp

<210> SEQ ID NO 23
 <211> LENGTH: 4
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:

-continued

<223> OTHER INFORMATION: Linker

<400> SEQUENCE: 23

His Met Glu Phe

<210> SEQ ID NO 24

<211> LENGTH: 4

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Linker

<400> SEQUENCE: 24

Thr Ser Thr Arg

<210> SEQ ID NO 25

<211> LENGTH: 9

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Linker

<400> SEQUENCE: 25

Ser Pro Lys Lys Lys His Met Glu Phe

1 5

<210> SEQ ID NO 26

<211> LENGTH: 2838

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: TetR(I194T,1-206)-SPKKKHMEF-codon humanized BphP1 -ATG+Stop fusion construct

<220> FEATURE:

<221> NAME/KEY: mat_peptide

<222> LOCATION: (1)..(618)

<223> OTHER INFORMATION: TetR(I194T,1-206)

<220> FEATURE:

<221> NAME/KEY: CDS

<222> LOCATION: (619)..(645)

<223> OTHER INFORMATION: SPKKKHMEF

<220> FEATURE:

<221> NAME/KEY: CDS

<222> LOCATION: (646)..(2835)

<223> OTHER INFORMATION: codon humanized BphP1 -ATG

<220> FEATURE:

<222> LOCATION: (2836)..(2838)

<223> OTHER INFORMATION: STOP codon

<400> SEQUENCE: 26

atggctagat tagataaaag taaaagtgatt aacagcgcatt tagagctgct taatgaggc 60

ggaatcgaag gtttaacaac ccgttaaactc gcccagaagc taggtgtaga gcagcctaca 120

ttgttattggc atgtaaaaaa taagcgggtt ttgctcgacg ctttagccat tgagatgtt 180

gataggcacc atactcaattt ttgccttta gaagggaaa gctggcaaga tttttacgt 240

aataacgcta aaagttttag atgtgcttta ctaagtcattt gcgtatggagc aaaagtacat 300

tttaggtacac ggcctacaga aaaacagtat gaaactctcg aaaatcaattt agcctttta 360

tgccaacaag gtttttcaact agagaatgc ttatatgcac tcagcgctgtt ggggcatttt 420

acttttagttt gctgtatttggaa agatcaagag catcaagtcg ctaaagaaga aaggaaaca 480

ccttactactg atatgtatgcc gccatttattt cgacaagctt tcgaatttt tgatcacca 540

gggtcagagc cagccttctt attcggcattt gaattgtatca catgcggatt agaaaaacaa 600

cttaaatgtt aaagtgggtc gccaaaaaaag aagcatatgg aattcgttgc tggcatgtt 660

-continued

tctggtagcc	cggtttcg	gacggcggat	cttagtaact	gtgaacggga	agaaattcat	720
cttgctggct	ctattcagcc	tcacggagcc	ttgctggtc	tttcagagcc	tgatcacagg	780
attatccagg	cgtctgctaa	cgccggccag	ttctcaacc	tcggatcagt	gctggggtt	840
cccttgcgt	agatagacgg	agacttgctc	attaagatcc	tcctcatct	ggacccgaca	900
gccgaaggaa	tgccagttgc	agttagatgt	cgaataggca	atccgtcaac	cgagtagcgc	960
gggctcatgc	atcggecgcc	agaggggagc	ctcatcattg	aactttagag	agcaggggca	1020
ccgattgatt	tgtctggta	actggcgccg	gcgctggagc	ggataaggac	cgccggatca	1080
ttgcgagctt	tgtgcgacga	tacggccctt	ctcttccagc	agtgcactgg	ctacgatcg	1140
gtaatggtat	atagggtcga	tgaacaagga	cacggggagg	tgttagcga	aaggcatgtt	1200
ccgggcctcg	aatcttactt	cggcaaccgc	tatccaagct	cagatatacc	ccagatggca	1260
cgagagactgt	acgaaagaca	gagggtgcgc	gtattggtcg	atgtgtccct	tcagccgctc	1320
ccttggagc	ctcgactgtc	tccccctgacc	ggacgggacc	tcgacatgag	cggtatgttt	1380
ctgcggtaa	tgtcaccaat	ccatcttcag	tacttgaaga	atatggagt	gagagccacc	1440
ctcgctgtct	ctctgggtgg	cggagggaaag	ctgtggggct	tggttgcctg	ccatcaactac	1500
cttccccggt	tcattcaactt	cgaactgcgc	gctatttgcg	aactgttgc	tgaggccata	1560
gccacaagaa	ttactgcctt	ggagagtttt	gctcaatccc	aaagttagct	gttcgtacag	1620
aggcttgaac	agcgaatgtat	tgaagcaatc	accagagagg	gcgattggcg	ggcagcgata	1680
ttcgacacat	ccccaaagcat	cctcgagcca	ctgcacgcgc	acgggtgcgc	tcttgtatat	1740
gaggatcaga	ttcggacaat	tggcgacgtg	ccaagcgcgc	aggatgtaa	ggaaatcgct	1800
gggtggcttg	accgacaacc	acggggcgct	gtgacaagta	ccgcaagcct	gggacttgac	1860
gtccccagagc	tggcgcatct	gactagaatg	gcatccggtg	tcgtagcgcc	accatattca	1920
gatcataggg	gagagtttct	gatgtggttc	cgacctgaaa	gagttcacac	cgtgacgtgg	1980
ggcggcgcacc	cgaagaaacc	cttcaactatg	ggagatacc	cgccgcaccc	cagtccgcga	2040
agatcattcg	ctaaatggca	ccaggttgct	gaggcacta	gcgcattctg	gactgcggca	2100
gatttggctg	cgccacggac	tattggacag	actgtggccg	atatagtact	gcaattcagg	2160
gcggtcagga	ccctcatagc	gagagagcag	tatgacaaat	ttagtagtca	gttcatgcc	2220
agcatcaac	ctgtccat	aaccgtatgc	gaaggtcgca	ttcttcgtat	gaacgactca	2280
tttcgagata	tgctgcctgc	aggctcacca	tcagccgtcc	acctcgatga	tctggcaggc	2340
ttcttcgtag	agtccaaacga	ttttccgc	aactcattga	tcatggccgc	2400	
gggtggagag	gcgaggtctt	cttgcggggc	gccggaaaca	gaccttgc	attggcagtc	2460
cgggcagacc	cagttacacg	aacggaaagac	caaagcctgg	ggtttgcct	tatatttca	2520
gatgcaacgg	accgacgcac	ggcggatgca	gctcgacta	gattccagga	aggaataactg	2580
cccagcgcacc	ccccgggggt	tagactcgat	tctaaatgc	atctgttca	tgagaagctc	2640
ttgtctgcac	tcgtcgagaa	tgcgcaattt	gcggctttgg	aaatcactt	cggggtggaa	2700
acaggcagaa	tagctgaact	gctggaaaggc	gtcagacaga	gcatgttgc	aacagctgag	2760
gttcttggac	atctggtgca	gcacgcggct	cgactgcgg	gtagcgatc	ttcttccaat	2820
ggctcacaga	ataagtga					2838

<210> SEQ ID NO 27

<211> LENGTH: 1401

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

-continued

```

<220> FEATURE:
<223> OTHER INFORMATION: NLSx2 p65 AD - HMEF - Q-PAS1 +Stop fusion
construct
<220> FEATURE:
<221> NAME/KEY: sig_peptide
<222> LOCATION: (7)..(30)
<223> OTHER INFORMATION: NLS
<220> FEATURE:
<221> NAME/KEY: sig_peptide
<222> LOCATION: (34)..(57)
<223> OTHER INFORMATION: NLS
<220> FEATURE:
<221> NAME/KEY: mat_peptide
<222> LOCATION: (58)..(858)
<223> OTHER INFORMATION: Human p65 AD
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (859)..(870)
<223> OTHER INFORMATION: HMEF
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (871)..(1398)
<223> OTHER INFORMATION: codon humanized Q-PAS1 -ATG
<220> FEATURE:
<222> LOCATION: (1399)..(1401)
<223> OTHER INFORMATION: STOP codon

<400> SEQUENCE: 27

atggtaacctc caaaaaagaa gagaaaggta gtacacctcaa aaaagaagag aaaggtagag      60
ttccagttacc tgcccgacac cgacgaccgg caccggatcg agggaaagcg gaageggacc      120
tacgagacat tcaagagcat tatgaagaag tcccccttca gggccccac cgaccccaga      180
cccccaccta gaagaatcgc cgtgcccagc agatccagcg ccagcgtgcc aaagectgcc      240
cccccagecct accccttac cagcagcctg agcaccatca actacgtga gttccccaca      300
atggtgttcc ccagcggcca gatttctcgat gcctctgtcc tggcccccagc ccctccacag      360
gtgctgccac aggccccctgc tccagctctt gcccctgtta tggtgtctgc cctggccag      420
gttccagtc ctgtgectgt gctggctctt ggaccccttc acggccgtggc ccctccagcc      480
ccaaaaccta cacaggccgg cgagggcaca ctgagcgaag ccctgtccca gctccaggcc      540
gacgacgagg atctggggcgc cctgtgggc aacagcaccc accctggccgt gttcaccgac      600
ctggccagcg tggacaacag cgagttccag cagctcttgc accagggcat cccctggct      660
ccacacacca ccgagcccat gctgtatggaa tccccggagg ccattaccccg gctggtcaca      720
ggcgctcaga ggcctcttgc tcctggccca gctccactgg gagccccctgg cctgcttaat      780
ggcctgtgc gggcgacgc ggacttcgc tctatcggcc acatggactt ctccgcctg      840
ctgtcccaga tcagcagccca tatggaaattt cccgagtttg gtaagaacat gcaggctgtt      900
acagagttgc actcaagatt gattgcggctt caacaggcca tggaaacgcga ttactggagg      960
ctgcgcgaat tggaaaactcg ataccgcctg gtctttatcg cagcggctgc cgccgtatg      1020
attgtgtccg cagggcgcacat gaggattgtg gaagccaaatc gagctggccgt taacgcgtt      1080
tccagagttgg aacggggaaa tgatgacattt gcagggaggat ttttctcgc cgaagtgcgc      1140
gctgccgaca gggacgcggcgtt ccgggacatg cttggccagg ttcggcagcg gggAACGCC      1200
ctgtcactgc tggtccacccgtt gggggatc gacccgcgcgtt ggatgtcgag aggccgcctg      1260
atgtcttcgtt agagaagaca agtgttccctg ctgcacttca ccccaactgac cacaacacca      1320
gcaatagacg atgacgataa aggtgtggtg gccagcgcagc cagacggagc cgagggcgcc      1380
agtgtatgtt ccgaggattt a                                              1401

```

-continued

```

<211> LENGTH: 2838
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: codon humanized BphP1-stop - TSTR -
TetR(I194T,1-206)-ATG +Stop fusion construct
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (1)..(2193)
<223> OTHER INFORMATION: codon humanized Q-PAS1 -ATG
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (2194)..(2205)
<223> OTHER INFORMATION: TSTR
<220> FEATURE:
<221> NAME/KEY: mat_peptide
<222> LOCATION: (2206)..(2835)
<223> OTHER INFORMATION: TetR(I194T,1-206)
<220> FEATURE:
<222> LOCATION: (2836)..(2838)
<223> OTHER INFORMATION: STOP codon

<400> SEQUENCE: 28

atggttgtcgtc tggtagcccg gctttcgaaa cggcggtatct tagtaactgt      60
gaacggaaag aaattcatct tgctggctctt attcagcctc acggagccctt gctggtcgtt      120
tcagagcctg atcacaggat tatecaggcg tctgctaaacg ccggcgagtt cctcaacctc      180
ggatcagtgc tcggggttcc ccttgcttag atagacggag acttgctcat taagatcctc      240
cctcatctgg acccgacagc cgaaggaatg ccagttgcag tgagatgtcg aataggcaat      300
ccgtcaaccc agtacgacgg gctcatgcat cggccgccc agggaggcct catcattgaa      360
cttgagagag cagggccacc gattgatttg tctggtagac tggcgccggc gctggagcgg      420
ataaggaccc ccggatcatt gcgagctttg tgcgacgata cggcccttctt cttccagcag      480
tgcactggct acgatcggtt aatggtatat aggttcgtat aacaaggaca cggggaggtg      540
tttagcgaaa ggcatgttcc gggcctcgaa tcttacttcg gcaaccgcta tccaagctca      600
gatatacccc agatggcacg gagactgtac gaaagacaga gggtgcgcgtt attggtcgtat      660
gtgtcctatac agcccgcccc tttggagcct cgactgtctc ccctgaccgg acgggacctc      720
gacatgagcg gatgtttctt cgggtcaatcg tcaccaatcc atcttcagat cttgaagaat      780
atgggagtgaa gagccacccct cgtcgatctt ctgggtggcg gagggaaatgt gtggggctcg      840
gttgcctgcc atcaactaccc tccccgggttcc attcaacttcg aactgcgcgc tattttcgaa      900
ctgcttgcgtt agggccatagc cacaagaatt actgccttgg agagtttgc tcaatccaa      960
agtgagctgt tcgtacagag gcttgcacag cgaatgatgg aagcaatcac cagagaggc      1020
gattggcgcc cagcgatatt cgacacatcc caaagcatcc tgcagccact gcatgccgac      1080
gggtgcgcgtc ttgttatatgaa ggatcaggatt cggacaatttgc ggcacgtgcc aagcacgcg      1140
gatgtaaaggaa aatcgctgg gtgggttcgc cggacaaccac gggccgtgtt gacaagtacc      1200
gcaaggctgg gacttgcgtt cccagagctg ggcacatgcg ttagaatggc atccgggttc      1260
gtacggcac caatttcaga tcatagggaa gagtttctgaa tgggttcgc acctgaaaga      1320
gttcacaccg tgacgtgggg cggcgaccgg aagaaaccct tcactatggg agatacccg      1380
ggcgacctca gtccgcgaag atcattcgat aaatggcacc aggttgcga gggcactagc      1440
gatccttggaa ctgcggcaga tttggctgcg gcacggacta ttggacagac tgggtccgt      1500
atagtaactgc aattcgaggc ggtcaggacc ctcatagcgaa gagacgatgtt gtagcaattt      1560
agtagtcagg ttcatgcccag catgcaaccc tgcctcataa ccgatgcga aggtcgcatt      1620
cttctgtgaa acgactcatt tcgagatatg ctgcctgcag gtcaccatc agccgtccac      1680

```

ctcgatgatc tggcaggctt cttcgtagag tccaacgatt ttctccgcaa cgttgccaa	1740
ctcattgatc atggccgcgg gtggagaggc gaggtccctc tgccgggcgc cggaaacaga	1800
ccttgcctat tggcagtccg ggcagaccca gttacacgaa cggaagacca aagcctgggg	1860
tttgtccta tattttcaga tgcaacggac cgacgcacgg cggatgcagc tcggactaga	1920
ttccaggaag gaatactggc cagcgccgc cccgggtta gactcgattc taagtccgat	1980
ctgcttcatg agaagcttt gtctgcactc gtcgagaatg cgcaattggc ggcttggaa	2040
atcaacttacg ggggtggaaac aggccagaata gctgaactgc tggaaggcgt cagacagagc	2100
atgttgagaa cagctgaggt tcttggacat ctgggtgcagg acgcggctcg gactgcgggt	2160
agcgattttt cttccaatgg ctcacagaat aagacttagta cgcgtgttagt attagataaa	2220
agtaaagtga ttaacacgcg attagagctg cttaatgggg tcggaatcga aggtttaaca	2280
acccgtaaac tcgcccagaa gcttaggtgta gagcagccta cattgtatgg gcatgtaaaa	2340
aataaggcggg ctttgcgcga cgccttagcc attgagatgt tagataggca ccatactcac	2400
ttttgcctt tagaaggggaa aagctggcaa gatttttac gtaataacgc taaaagttt	2460
agatgtgtt tactaagtca tcgcgcgtt gcaaaagtac atttaggtac acggcttaca	2520
aaaaaaacagt atgaaactct cggaaatcaa ttagccttt tatgccaaca aggttttca	2580
ctagagaatg cattatatgc actcagcgtt gtggggcatt ttacttttagg ttgcgtattg	2640
gaagatcaag agcatcaagt cgctaaagaa gaaaggaaa cacctactac tgatagtatg	2700
ccgcccattt tacgacaagc tategaatta tttgatcacc aaggtgcaga gccagccttc	2760
ttattcggcc ttgaattgtat cacatgcgga tttagaaaaac aacttaatg tgaaagtggg	2820
tcgccccaaa agaagtaa	2838

<210> SEQ ID NO 29
 <211> LENGTH: 1347
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: p65 AD - HMEF - Q-PAS1 -ATG+Stop fusion
 construct
 <220> FEATURE:
 <221> NAME/KEY: mat_peptide
 <222> LOCATION: (1)..(804)
 <223> OTHER INFORMATION: Human p65 AD
 <220> FEATURE:
 <221> NAME/KEY: CDS
 <222> LOCATION: (805)..(816)
 <223> OTHER INFORMATION: HMEF
 <220> FEATURE:
 <221> NAME/KEY: CDS
 <222> LOCATION: (817)..(1344)
 <223> OTHER INFORMATION: codon humanized Q-PAS1 -ATG
 <220> FEATURE:
 <222> LOCATION: (1345)..(1347)
 <223> OTHER INFORMATION: STOP codon

<400> SEQUENCE: 29

atggagttcc agtacctgcc cgacacccgac gaccggcacc ggatcgagga aaagcggaaag	60
cggacctacg agacattcaa gaggcattatg aagaagtccc cttcagcggg cccacccgac	120
cccaagacccc cacctagaag aatcgccgtg cccagcagat ccagcgccag cgtgccaag	180
cctggccccc agccctaccc ctccaccago agcctgagca ccatcaacta cgatgagttc	240
cccacaaatgg tggcccccaag cggccagatt tctcaggcct ctgcgttggc cccagccct	300
ccacaggtgc tgccacaggc ccctgctcca gtcctgccc ctgctatggt gtctgcctg	360

-continued

gccaggctc cagctctgt gcctgtgctg gctcctggac ctccacaggc cgtggccct	420
ccagcccaa aacctacaca ggccggcgag ggcacactga gccaaggccct gctccagctc	480
cagttcgacg acgaggatct gggegcctg ctggcaaca gcaccgaccc tgccgtttc	540
accgacatgg ccagcgtgga caacagcgag ttccagcgcg tccatggacca gggcatcccc	600
gtggctccac acaccaccga gccccatgtg atgaaatacc cccggccat caccggctg	660
gtcacaggcg ctcagaggcc tcctgtatct gccccagetc cactggggc ccctggctg	720
cctaattggcc tgctgagcgg cgacgaggac ttccatgtcta tcgcccacat ggacttctcc	780
ccctgtgtt cccagatcg cagccatatg gaattcccc agttttgtaa gaacatgcag	840
gctgttacag agttgcactc aagattgatt gcccgtcaac aggccatgga acgcgattac	900
tgagggtgc gcaattggg aactcgatad cccctggctt ttgtatgcgc ggctgacgcg	960
gtaatgattt tgcccgagg cgacatgagg attgtggaa ccaatcgagc tgccgttaac	1020
gcgatattcca gagttggaaac gggaaatgtat gacccatcgag gaaggatatt tctcgccgaa	1080
gtcgccgctg cccgacaggga cccgggtccgg gacatgttgc cccagggttcg gcagcgggaa	1140
acggccctgt cagtgctggg ccacctgggg agatacgacc gcgcgtggat gctgagaggc	1200
aggctgtatgt cttctgagag aagacaagtgt ttccatgtc acccatcccc agtgaccaca	1260
acaccagcaa tagacgatga cgataaagggt gtgggtggcca ggcgcacgaga cggagccgag	1320
ggcgccagtg atgatgcccga ggattga	1347

What is claimed is:

1. A photoactivatable tetracycline gene expression control system, comprising:
 - a target gene expression cassette including a tetracycline response element having a TetO sequence, a promoter which is positioned downstream of the tetracycline response element and controlled by the tetracycline response element, and a target gene which is positioned downstream of the promoter and of which expression is controlled by the promoter;
 - a first fusion protein expression cassette including a gene which encodes a first fusion protein containing a Tet repressor protein or a reverse Tet repressor protein and a first protein; and
 - a second fusion protein expression cassette including a gene which encodes a second fusion protein containing a transactivation domain of a transactivation element p65 and a second protein,
 wherein the first protein and the second protein bind to each other and form a heterodimer only in a state of being irradiated with light at a specific wavelength, and wherein the first protein is CIB1 or a variant thereof and the second protein is Cry2 or a variant thereof, or wherein the first protein is Cry2 or a variant thereof and the second protein is CIB1 or a variant thereof, and wherein the Tet repressor protein or the reverse Tet repressor protein has a threonine residue as an amino acid residue corresponding to the 194th isoleucine of a wild-type Tet repressor protein of *Escherichia coli*.
2. The photoactivatable tetracycline gene expression control system according to claim 1, wherein in the first fusion protein, the Tet repressor protein or the reverse Tet repressor protein is linked to the first protein through a peptide linker consisting of an amino acid sequence represented by SPKKK.
3. The photoactivatable tetracycline gene expression control system according to claim 1, wherein the first protein is CIB1 or a variant thereof, and the second protein is Cry2 or a variant thereof.
4. The photoactivatable tetracycline gene expression control system according to claim 3, wherein Cry2 or a variant thereof contained in the second fusion protein is a C-terminal deletion variant having an N-terminal photolyase homology region or a variant obtained by substituting an amino acid residue in the C-terminal deletion variant with phenylalanine, and the amino acid residue corresponds to the 348th leucine of wild-type Cry2 of *Arabidopsis thaliana*.
5. The photoactivatable tetracycline gene expression control system according to claim 1, wherein in the first fusion protein, CIB1 or a variant thereof is linked to a C-terminal side of the Tet repressor protein or the reverse Tet repressor protein.
6. The photoactivatable tetracycline gene expression control system according to claim 1, wherein the CIB1 or a variant thereof contained in the first fusion protein is a C-terminal deletion variant of CIB1 that consists of a partial protein corresponding to a region consisting of the 1st to 170th amino acids of wild-type CIB1 of *Arabidopsis thaliana* or a variant that is obtained by deleting a nuclear localization signal from the C-terminal deletion variant of CIB1.
7. The photoactivatable tetracycline gene expression control system according to claim 6, wherein CIB1 or a variant thereof contained in the first fusion protein is a variant obtained by deleting a nuclear localization signal from a C-terminal deletion variant of CIB1 consisting of a partial protein corresponding to a region consisting of the 1st to 170th amino acids of wild-type CIB1 of *Arabidopsis thaliana*, and

121

the second fusion protein contains a nuclear localization signal on the N-terminal or the C-terminal.

8. The photoactivatable tetracycline gene expression control system according to claim 1, further comprising, in addition to the target gene expression cassette:

an expression cassette for a protein in which the first fusion protein and the second fusion protein are linked to each other through a T2A self-cleaving peptide; or an expression cassette for bicistronically expressing the first fusion protein and the second fusion protein.

9. The photoactivatable tetracycline gene expression control system according to claim 1, wherein the target gene is a gene that encodes a protein modified with ubiquitin.

10. A method for controlling target gene expression, comprising:

controlling expression of the target gene in a cell comprising the photoactivatable tetracycline gene expression control system according to claim 1 by adjusting conditions so that the cell is irradiated or not irradiated with blue light or near-infrared light and treated or not treated with a tetracycline-based compound.

11. A kit for a photoactivatable tetracycline gene expression control system, comprising:

a target gene expression vector including a tetracycline response element having a TetO sequence, a promoter which is positioned downstream of the tetracycline response element and controlled by the tetracycline response element, and a multicloning site which is positioned downstream of the promoter and into which a target gene will be inserted, and

an expression vector including an expression cassette for a protein in which the first fusion protein and the second fusion protein are linked to each other through a T2A self-cleaving peptide, or an expression cassette

122

for bicistronically expressing the first fusion protein and the second fusion protein,

wherein the first fusion protein in which a Tet repressor protein or a reverse Tet repressor protein is linked to CIB1 or a variant thereof, and

wherein the second fusion protein in which a transactivation domain of a transactivation element p65 is linked to Cry2 or a variant thereof, and

wherein the Tet repressor protein or the reverse Tet repressor protein has a threonine residue as an amino acid residue corresponding to the 194th isoleucine of a wild-type Tet repressor protein of *Escherichia coli*.

12. A kit for a photoactivatable tetracycline gene expression control system, comprising:

a target gene expression vector including a tetracycline response element having a TetO sequence, a promoter which is positioned downstream of the tetracycline response element and controlled by the tetracycline response element, and a multicloning site which is positioned downstream of the promoter and into which a target gene will be inserted;

a first expression vector including a first fusion protein expression cassette containing a gene that encodes a first fusion protein in which a Tet repressor protein or a reverse Tet repressor protein is linked to CIB1 or a variant thereof, and

a second expression vector including a second fusion protein expression cassette containing a gene that encodes a second fusion protein in which a transactivation domain of a transactivation element p65 is linked to Cry2 or a variant thereof,

wherein the Tet repressor protein or the reverse Tet repressor protein has a threonine residue as an amino acid residue corresponding to the 194th isoleucine of a wild-type Tet repressor protein of *Escherichia coli*.

* * * * *