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(57) ABSTRACT

The present invention provides a device, method, and pro-
gram for detection of a biomarker candidate that may be
used in a diagnosis of a pre-disease state indicating a
transition from a healthy state to a disease state. Biological
samples are collected from a subject to be measured at
different times. Statistical data is obtained by aggregating
measurement data obtained in measurement on collected
biological samples. Thereafter, a process of obtaining high-
throughput data (s1), a process of choosing differential
biological molecules (s2), a process of clustering (s3), a
process of choosing a DNB candidate (s4), and a process of
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Figure.4
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Figure.6
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1
DEVICE FOR DETECTING A DYNAMICAL
NETWORK BIOMARKER, METHOD FOR
DETECTING SAME, AND PROGRAM FOR
DETECTING SAME

TECHNICAL FIELD

The present invention relates to devices, methods, and
programs for detecting a biomarker candidate that could be
an index for a symptom of a biological object based on
measurement data on a plurality of factors obtained by
measurement on the biological object.

BACKGROUND ART

It has been identified that a sudden change of a system
state exists widely in ecosystems, climate systems, econom-
ics and global finance. Such a change often occurs at a
critical threshold, or the so-called “tipping point”, at which
the system shifts abruptly from one state to another. Evi-
dence has been found suggesting that the similar phenomena
exist in clinical medicine, that is, during the progression of
many complex diseases, e.g., in chronical diseases such as
cancer, the deterioration is not necessarily smooth but abrupt
(see, for example, non-patent documents 1 to 5). In other
words, there exists a sudden catastrophic shift during the
process of gradual health deterioration that results in a
drastic transition from a healthy state to a disease state. In
order to describe the underlying dynamical mechanism of
complex diseases, their evolutions are often modeled as
time-dependent nonlinear dynamical systems, in which the
abrupt deterioration is viewed as the phase transition at a
bifurcation point, e.g., for cancer and, asthma attacks.

FIG. 1 is a schematic illustration of the dynamical features
of disease progression from a normal state to a disease state
through a pre-disease state. Portions (b), (¢), and (d) of FIG.
1 are graphs of a potential function representing the stability
of the aforementioned modeled system during the progres-
sion process by means of the location of black dots with the
elapsed time on the horizontal axis and the values of the
potential function on the vertical axis.

(a) Deterioration progress of disease.

(b) The normal state is a steady state or a minimum of a
potential function, representing a relatively healthy stage.

(c) The pre-disecase state is situated immediately before
the tipping point and is the limit of the normal state but with
a lower recovery rate from small perturbations. At this stage,
the system is sensitive to external stimuli and still reversible
to the normal state when appropriately interfered with, but
a small change in the parameters of the system may suffice
to drive the system into collapse, which often implies a large
phase transition to the disease state.

(d) The disease state is the other stable state or a minimum
of the potential function, where the disease has seriously
deteriorated and thus the system is usually irreversible to the
normal state.

(e)-(g) The three states are schematically represented by
a molecular network where the correlations and deviations
of different species are described by the thickness of edges
and the colors of nodes respectively.

Therefore, if the pre-disease state is detected, and the
patient is notified of the progression process being in a
transition to the disease state before the disease state actually
arrives, it is likely that the patient can recover from the
pre-disease state to the normal state if appropriately treated.
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2

In other words, if the tipping point (critical threshold) is
detected, a critical transition can be predicted, which enables
an early diagnosis of a disease.

Biomarkers have been conventionally used for the diag-
nosis of disease state. Typical traditional biomarkers include
body fluids, such as serum and urine, that are collected from
a biological object; and molecular-level DNA, RNA, pro-
tein, metabolites, etc. that are contained in tissues and can be
indices through which one can quantitatively know biologi-
cal changes in a biological object. A disease has been
conventionally diagnosed using a biomarker by comparing a
biomarker extracted from a normal sample (collected in a
healthy state) and a biomarker extracted from an abnormal
sample (collected in a disease state).

CITATION LIST
Non-Patent Literature

Non-patent Document 1: “Self-organized patchiness in
asthma as a prelude to catastrophic shifts” (U.K.), by Ven-
egas, I. G., et al., Nature, Nature Publishing Group, 2005,
Vol. 434, pp. 777-782.

Non-patent Document 2: “Prediction of epileptic seizures:
are nonlinear methods relevant?” (U.K.), by McSharry, P. E.,
Smith, L. A., and Tarassenko, L, Nature Medicine, Nature
Publishing Group, 2003, Vol. 9, pp. 241-242.

Non-patent Document 3: “Transition models for change-
point estimation in logistic regression” (U.S.A.), by
Roberto, P. B., Eliseo, G., and Josef, C., Statistics in Medi-
cine, Wiley-Blackwell, 2003, Vol. 22, pp. 1141-1162.

Non-patent Document 4: “Hearing preservation after
gamma knife stereotactic radiosurgery of vestibular schwan-
noma” (U.S.A)), by Paek, S., et al., Cancer, Wiley-Black-
well, 2005, Vol. 1040, pp. 580-590.

Non-patent Document 5: “Pituitary Apoplexy” (U.S.A.),
by Liu, J. K., Rovit, R. L., and Couldwell, W. T., Seminars
in neurosurgery, Thieme, 2001, Vol. 12, pp. 315-320.

Non-patent Document 6: “Bifurcation analysis on a
hybrid systems model of intermittent hormonal therapy for
prostate cancer” (U.S.A.), by Tanaka, G., Tsumoto, K., Tsuji,
S., and Aihara, K., Physical Review, American Physical
Society, 2008, Vol. 237, pp. 2616-2627.

SUMMARY OF THE INVENTION
Problems to be Solved by the Invention

However, in the case of complex diseases, it is notably
hard to predict such critical transitions for the following
reasons.

First, because a pre-disease state is a limit of the normal
state, the state of the system may show little apparent change
before the tipping point is reached. Thus, the diagnosis by
traditional biomarkers and snapshot static measurements
may not be effective to distinguish those two states (FIGS.
15, ¢).

Second, despite considerable research efforts, no reliable
disease model has been developed to accurately detect the
early-warning signals. In particular, deterioration processes
may be considerably different even for the same subtype of
a disease, depending on individual variations, which makes
model-based prediction methods fail for many cases.

Third and most importantly, detecting the pre-disease
state must be an individual-based prediction, however, usu-
ally there are only a few of samples available for each
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individual, unlike many other complex systems that are
measured over a long term with a large number of samples.

Besides, the conventional diagnosis of diseases by tradi-
tional biomarkers involves a comparison of the normal state
and the disease state. The patient is already in the disease
state at the time of diagnosis, and it is difficult to reverse the
disease process to the preceding normal state.

In contrast, the present invention has an object of provid-
ing a device, method, and program capable of detecting a
pre-disease state which precedes a transition to a disease
state and also of providing, for example, a detection device
that does not require a disease model and that is capable of
assisting diagnosis based only on a small number of bio-
logical samples.

Solution to Problem

A device in accordance with the present invention, to
achieve the object, is a device for detecting a candidate for
a biomarker based on measurement data on a plurality of
factors obtained in measurement on a biological object to be
measured, the biomarker being an index of a symptom of the
biological object, the device including: classification means
for classifying factors into clusters based on a correlation of
time-dependent changes of measurement data for each fac-
tor; choosing means for choosing one of the clusters that
satisfies choice conditions that are predetermined based on
a correlation of time-dependent changes of measurement
data for each factor and time-dependent changes of mea-
surement data among different factors; and detection means
for detecting a factor in the chosen cluster as a candidate for
a biomarker.

A detection device with these features is capable of
detecting a biomarker candidate that serves as an early-
warning signal indicating a pre-disease state that precedes a
transition from a normal state to a disease state. If a
biomarker is identified, the pre-disease state is detected by
collecting only a small number of samples from the object
to be detected.

The device in accordance with the present invention is
such that the choosing means includes: means for calculat-
ing, as a first index, an average of values representing a
correlation of measurement data for each factor in a cluster;
means for calculating, as a second index, an average of
values representing a correlation of measurement data on a
factor inside the cluster with measurement data on a factor
outside the cluster; and means for calculating, as a third
index, an average standard deviation of measurement data
for each factor in a cluster, the device choosing one of the
clusters that contains a factor to be a biomarker based on the
first, second, and third indices.

Therefore, the features of each cluster can be quantita-
tively evaluated using the first index, the second index, and
the third index. That enables easy choice of a biomarker.

The device in accordance with the present invention is
such that the choosing means chooses one of the clusters that
has a maximum composite index based on a product of the
first index, the second index, and a reciprocal of the third
index.

Therefore, choice of a cluster based on the composite
index increases the reliability of the factor that is a bio-
marker candidate.

The device in accordance with the present invention
further includes difference verification means for verifying
whether or not the measurement data for each factor has
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significantly changed with time, wherein the classification
means classifies factors that are verified to have changed
significantly with time.

Therefore, choice of a factor that has chronologically
noticeably changed enables efficient detection of a bio-
marker candidate from huge measurement data.

The device in accordance with the present invention is
such that the difference verification means verifies, based on
a comparison of the measurement data for each factor and
reference data that is predetermined for each factor and each
time series, whether or not the measurement data for each
factor has significantly changed with time.

Therefore, obtaining, as reference data, a biological
sample that serves as a reference in addition to the mea-
surement data on a plurality of factors that are objects to be
detected enables comparison of the measurement data and
the reference data and detection free from external distur-
bance.

The device in accordance with the present invention
further includes: means for calculating, for each factor, a
reference standard deviation representing an average stan-
dard deviation of corresponding reference data and a refer-
ence correlation value representing an average of values
representing a correlation among different factors, wherein
the detection means detects an item in one of the clusters as
a candidate for a biomarker if the first index has increased
significantly over the reference standard deviation, the sec-
ond index has decreased significantly over the reference
correlation value, and the third index has increased signifi-
cantly over the reference standard deviation.

Therefore, it may be determined whether or not the
chosen factor can be a suitable biomarker.

The device in accordance with the present invention is
such that the detection means includes means for verifying
significance of a plurality of factors in a cluster based on a
statistical value of measurement data and if the significance
is verified, detects an item in that cluster as a candidate for
a biomarker.

The verification minimizes detection error.

The device in accordance with the present invention is
such that the plurality of factors include a gene-related
measured item, a protein-related measured item, a metabo-
lite-related measured item, or a measured item related to an
image obtained from the biological object.

Therefore, by using a gene-, protein-, or metabolite-
related measured item as a factor, biological changes in a
biological object can be quantitatively known, and the
reliability of detection results can be improved.

A method in accordance with the present invention is a
detection method using a device for detecting a candidate for
a biomarker based on measurement data on a plurality of
factors obtained in measurement on a biological object to be
measured, the biomarker being an index of a symptom of the
biological object, the device implementing: the classification
step of classifying factors into clusters based on a correlation
of time-dependent changes of measurement data for each
factor; the choosing step of choosing one of the clusters that
satisfies choice conditions that are predetermined based on
a correlation of time-dependent changes of measurement
data for each factor and time-dependent changes of mea-
surement data among different factors; and the detection step
of detecting a factor in the chosen cluster as a candidate for
a biomarker.

Another method in accordance with the present invention
is a method for detecting a candidate for a biomarker based
on measurement data on a plurality of factors obtained in
measurement on a biological object to be measured, the
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biomarker being an index of a symptom of the biological
object, the method including: the molecular screening step
of calculating differential biological molecules from high-
throughput data obtained from individual biological samples
collected at different times; the clustering step of classifying
the differential biological molecules chosen in the molecular
screening step into clusters so that closely correlated bio-
logical molecules are in a single cluster; the candidate
choosing step of prefetching, as the candidate of a bio-
marker, one of the clusters obtained in the clustering step in
which there are a maximum increase in a correlation among
biological molecules, a maximum increase in a standard
deviation of biological molecules, and a maximum decrease
in a correlation of a biological molecule with another
biological molecule; and the determination step of deter-
mining by a significance test whether or not the candidate for
a biomarker chosen in the candidate choosing step is the
biomarker.

Detection methods with these features are capable of
detecting a biomarker candidate that serves as an early-
warning signal indicating a pre-disease state that precedes a
transition from a normal state to a disease state. If a
biomarker is identified, the pre-disease state is detected by
collecting only a small number of samples from the object
to be detected.

A program in accordance with the present invention is a
detection program for causing a computer to implement a
process of detecting a candidate for a biomarker based on
measurement data on a plurality of factors obtained in
measurement on a biological object to be measured, the
biomarker being an index of a symptom of the biological
object, the program causing a computer to implement: the
classification step of classifying factors into clusters based
on a correlation of time-dependent changes of measurement
data for each factor; the choosing step of choosing one of the
clusters that satisfies choice conditions that are predeter-
mined based on a correlation of time-dependent changes of
measurement data for each factor and time-dependent
changes of measurement data among different factors; and
the detection step of detecting a factor in the chosen cluster
as a candidate for a biomarker.

A detection program with these features, when run on a
computer, enables the computer to operate as a detection
device in accordance with the present invention. Therefore,
the detection program is capable of detecting a biomarker
candidate that serves as an early-warning signal indicating a
pre-disease state that precedes a transition from a normal
state to a disease state. If a biomarker is identified, the
pre-disease state is detected by collecting only a small
number of samples from the object to be detected.

Advantageous Effects of the Invention

The present invention enables diagnosis as to whether or
not the subject to be diagnosed is in a pre-disease state, by
collecting a biological sample from the subject to be diag-
nosed and examining whether or not there exists a biomarker
that serves as an early-warning signal indicating a pre-
disease state that immediately precedes a disease state in the
collected biological sample. Therefore, the invention
requires neither disease deterioration modeling nor identi-
fying of a driving factor for the disease deterioration. The
invention enables early diagnosis of a disease in a pre-
disease state.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a schematic illustration of the progression
process of a disease.
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FIG. 2 is a schematic illustration of exemplary dynamical
features of a DNB in accordance with a detection method of
the present invention.

FIG. 3 is a flow chart depicting an exemplary method for
detecting a DNB in accordance with an embodiment.

FIG. 4 is a flow chart depicting an exemplary process of
choosing differential biological molecules in accordance
with an embodiment.

FIG. 5 is a flow chart depicting an exemplary process of
choosing a DNB candidate in accordance with an embodi-
ment.

FIG. 6 is a flow chart depicting an exemplary process of
identifying a DNB in accordance with an embodiment.

FIG. 7 is a diagram representing an exemplary diagnosis
schedule by a DNB-based early diagnosis of a disease in
accordance with an embodiment.

FIG. 8 is a flow chart depicting an exemplary DNB-based
early diagnosis of a disease in accordance with an embodi-
ment.

FIG. 9 is an exemplary graphic showing a disease risk in
proportion to composite index I.

FIG. 10 is an exemplary graphic showing a disease risk in
proportion to composite index I.

FIG. 11 is a block diagram illustrating an exemplary
configuration of a detection device in accordance with the
present invention.

FIG. 12 is a flow chart depicting an exemplary process of
detecting a DNB as implemented by a detection device in
accordance with the present invention.

FIG. 13 is a table of data for diagnostic use for a first
validation example.

FIG. 14A is a graph representing exemplary time-depen-
dent changes of the average standard deviation of a DNB
candidate detected in the first validation example.

FIG. 14B is a graph representing exemplary time-depen-
dent changes of the average of the absolute values of
Pearson’s correlation coefficients among cluster members
that are detected DNB candidates in the first validation
example.

FIG. 14C is a graph representing exemplary time-depen-
dent changes of the average of the absolute values of
Pearson’s correlation coefficients of cluster members that
are detected DNB candidates with other genes in the first
validation example.

FIG. 14D is a graph representing exemplary time-depen-
dent changes of the average of composite indices for a
detected DNB candidate in the first validation example.

FIG. 15 is chronological maps of exemplary dynamical
features of a DNB in a network of case group genes in the
first validation example.

FIG. 16 is a table of diagnosis data in a second validation
example.

FIG. 17A is a graph representing exemplary time-depen-
dent changes of the average standard deviation of a detected
DNB candidate in the second validation example.

FIG. 17B is a graph representing exemplary time-depen-
dent changes of the average of the absolute values of
Pearson’s correlation coefficients among cluster members
that are detected DNB candidates in the second validation
example.

FIG. 17C is a graph representing exemplary time-depen-
dent changes of the average of the absolute values of
Pearson’s correlation coefficients of cluster members that
are detected DNB candidates with other genes in the second
validation example.
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FIG. 17D is a graph representing exemplary time-depen-
dent changes of the average of composite indices for a
detected DNB candidate in the second validation example.

DESCRIPTION OF EMBODIMENTS

The inventors of the present invention have constructed a
mathematical model of the chronological progression of a
complex disease in accordance with the bifurcation process
theory by genome high-throughput technology by which
thousands of sets of information (i.e., high-dimensional
data) can be obtained from a single sample, in order to study
deterioration progression mechanisms of a disease at
molecular network level. The study has revealed the exis-
tence of a dynamical network biomarker (DNB) with which
an immediately preceding bifurcation (sudden deterioration)
state before a critical transition can be detected in a pre-
disease state. By using the dynamical network biomarker as
an early-warning signal in a pre-disease state, a small
number of samples enable an early diagnosis of a complex
disease without disease modeling. The following will
describe embodiments to implement the present invention
based on a dynamical network biomarker.

Theoretical Principles

First, the theoretical principles of the present invention
will be described. Assume that the progression of a disease
can be expressed by the following dynamical system.

Ze 1 )=RLK);P) Eq. (1)

Z(K)=(z1(k), . . . , zn(k)) represent observed data, i.e.,
concentrations of molecules (e.g., gene expressions or pro-
tein expressions) at time k (k=0, 1, . . . ), e.g., hours or days,
which are the variables describing the dynamical state of the
system. P are parameters representing slowly changing
factors, including genetic factors (e.g., SNP (single nucleo-
tide polymorphism) and CNV (copy number variation)) and
epigenetic factors (e.g., methylation and acetylation), which
drive the system from one state (or attractor) to another.

The normal and disease states are described by respective
attractors of the state equation Z(k+1)=f(Z(k);P). Since the
progression process of a complex disease has very complex
dynamical features, the function f is a non-linear function
with thousands of variables. Besides, the factor P, which
drives system (1), is difficult to identify. It is therefore very
difficult to formulate a system model for the normal and
disease states for analysis.

To address these problems, the inventors of the present
invention have focused on a critical transition state (i.e., a
pre-disease state) of the system that immediately precedes a
transition from the normal state to the disease state. System
(1) generally has an equilibrium point that has the following
properties:

1. Z* is a fixed point of system (1) such that Z*={(Z*:P)

2. There is a value Pc such that one or a complex-
conjugate pair of the eigenvalues of a Jacobian matrix,
M(Z;Pc)/aZIZ=7%*, equals 1 in modulus when P=Pc. Pc is a
bifurcation threshold for the system.

3. When P=Pc, the eigenvalue of system (1) are generally
not 1 in modulus.

From these properties, the inventors have theoretically
found that when system (1) has reached a critical transition
state, specific features emerge. That is, when system (1) has
reached a critical transition state, there emerges a dominant
group (subnetwork) of some nodes of network (1) in which
each node represents a different one of variables 71, . . ., zn
of system (1). The dominant group that emerges in a critical
transition state ideally has the following specific features.
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(D If both zi and zj are in the dominant group, then

PCC(zi,zj)—>=1;

SD(zi)—>c0; and

SD(zj)—>co.

(II) If zi is in the dominant group, but zj is not, then

PCC(zi,zj)—0;

SD(zi)—>c0; and

SD(zj)—Bounded Value.

(IID) If neither of zi nor zj is a node belonging to the
dominant group,

PCC(7i,7))—a, ae(-1,1\{0};

SD(zi)—>Bounded Value;

SD(zj)—Bounded Value.

PCC(zi,zj) is a Pearson’s correlation coeflicient of zi with
zj. SD(zi) and SD(zj) are standard deviations of zi and zj.

In other words, in network (1), the emerging dominant
group with specific features (I) to (III) can be regarded as an
indicator for a transition of system (1) to the critical tran-
sition state (pre-disease state). Therefore, the critical tran-
sition of system (1) can be detected by detecting the domi-
nant group. In other words, the dominant group can be
regarded as early-warning signals for the critical transition,
that is, the pre-disease state that immediately precedes
deterioration of a disease. In this manner, the pre-disease
state can be identified by detecting only the dominant group
which serves as early-warning signals, without directly
coping with a mathematical model of system (1), no matter
how complex system (1) becomes and even if the driving
factor is unknown. The identifying of the pre-disease state
enables precautionary measures and an early treatment of a
disease.

The dominant group that can be early-warning signals in
a pre-disease state is referred to as the “dynamical network
biomarker” (hereinafter, abbreviated “DNB”) in the present
invention.

DNB Features and Identifying Conditions

As mentioned above, the DNB is a dominant group with
a set of specific features (I) to (III) and emerges as a
subnetwork of some of the nodes of network (1) when
system (1) moves into the pre-disease state. If the nodes (71,
..., 7n) in network (1) are the factors to be measured on
biological molecules (e.g., genes, proteins, metabolites), the
DNB is a group (subnetwork) of factors related to some of
the biological molecules that satisfy specific features (I) to
.

The conditions by which a DNB is identified may be
specified based on specific features (I) to (III) as follows.

Condition (I): There exists a group of molecules, i.e.,
genes, proteins, or metabolites, whose average Pear-
son’s correlation coeflicients (PCCs) of molecules
drastically increase in absolute value.

Condition (II): The average OPCCs of molecules between
this group and any others (i.e., between molecules
inside this group and any other molecules outside this
group) drastically decrease in absolute value.

Condition (II1): The average standard deviations (SDs) of
molecules in this group drastically increase.

The group of biological molecules that simultaneously
satisfy these DNB identifying conditions (I) to (III) are
recognized to be a DNB.

Next, the dynamical features of a DNB in a network will
be described by taking a network of six nodes as an example
to intuitively explain DNB features. FIG. 2 is a schematic
illustration of exemplary dynamical features of a DNB in
accordance with a detection method of the present invention.
Portion a of FIG. 2 shows a normal state, a pre-disease state,
and a disease state in a progression process of a disease.
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Portions b, ¢, and d of FIG. 2 are conceptual graphical
representations of stability of modeled system (1) by means
of a potential function in the normal, pre-disease, and
disease states during the course of disease progression. The
horizontal axis indicates time, and the vertical axis indicates
the value of the potential function. Portions e, f, and g of
FIG. 2 are conceptual diagrams of exemplary states of the
network for the system (1) that correspond respectively to
the normal, pre-disease, and disease states. Portion h of FIG.
2 shows an example of temporal changes of molecule
concentrations that serve as a DNB factor for the pre-disease
state.

Nodes 71 to z6 represent factors for different kinds of
biological molecules, for example, genes, proteins, and
metabolites. The lines linking nodes 71 to z6 indicate
correlations among the nodes. The thickness of the lines
indicates the magnitude of a Pearson’s correlation coeffi-
cient PCC. A pattern (or lack of it) in the circle surrounding
71 to z6 indicates the magnitude of the standard deviation
SD of the node. Specifically, the standard deviation SD is a
minimum when the circle contains no pattern and grows
larger when the circle contains oblique lines in one direction,
and grows even larger when the circle contains oblique lines
in two directions.

The nodes in the normal state, as shown in e of FIG. 2,
have equal and moderate correlations and standard devia-
tion. In the pre-disease state, however, there emerges a group
(21 to z3) with notable specific features in comparison with
the other nodes. Nodes 71 to 73 in the group, as shown in f
of FIG. 2, drastically increase the Pearson’s correlation
coeflicients among them and drastically decrease Pearson’s
correlation coefficients with the other nodes z4 to z6. Nodes
71 to 73 in the group increase the standard deviation among
them. These phenomena are due to nodes z1 to z3 in the
group undergoing drastic changes in concentration at dif-
ferent times (t=1, t=2, t=3) as shown in h of FIG. 2.

However, after a transition to the disease state, as shown
in g of FIG. 2, nodes 71 to z3 in the group slightly increase
the standard deviation among them, but the Pearson’s cor-
relation coefficients among them return uniformly to mod-
erate values. In other words, the group (z1 to z3) has lost the
specific features mentioned above.

As shown conceptually in FIG. 2, in the pre-disease state,
there emerges a dominant group of some nodes with features
unique to the pre-disease state. The emergence of such a
dominant group, termed “DNB,” is an early-warning signal
indicating that the patient is in the pre-disease state and
predicting that the patient could undergo a transition to the
disease state, and may be used as a biomarker for an early
diagnosis of the disease. In addition, unlike static biomark-
ers used in conventional diagnosis of a disease, the DNB is
a subnetwork that emerges in a network in which features
are changing. For these reasons, the dominant group is
referred to as the DNB (dynamical network biomarker) in
the present application.

Early-Warning Signal

As mentioned above, the DNB may be used as an early-
warning signal indicating a pre-disease state for an early
diagnosis of a disease. The strength of the early-warning
signal can be measured by means of, for example, the
average of the absolute values of the Pearson’s correlation
coeflicients PCCs among the nodes in the DNB, the average
of the absolute values of the Pearson’s correlation coeffi-
cients OPCCs of the nodes in the DNB with other nodes, or
the standard deviation SD of the DNB. Composite index I
may be introduced that compositely reflects DNB features.
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Composite index I, expressed by equation (2) below, is
introduced as an example in the present invention.

I=SDdxPCCd/OPCCd Eq. (2)

In equation (2), PCCd is the average Pearson’s correlation
coeflicient of the DNB in absolute value, OPCCd is the
average Pearson’s correlation coefficient of the nodes in the
DNB with other nodes in absolute value, and SDd is the
average standard deviation of the nodes in the DNB. As
could be understood from equation (2), when SDd and PCCd
increase, and OPCCd decreases, composite index I increases
drastically and therefore enables highly sensitive detection
of DNB features. Distance from the disease state can also be
known to some extent from the value of composite index I.
Method for Detecting DNB

FIG. 3 is a flow chart depicting an exemplary method for
detecting a DNB in accordance with an embodiment. In the
method for detecting a DNB in accordance with the present
invention, it is first of all necessary to obtain measurement
data by measurement on a biological object. More than
20,000 genes can be measured on one biological sample by
a DNA chip or like high-throughput technology. For statis-
tical analysis, in the present invention, plural (six or more)
biological samples are collected at different times from an
object to be measured. Measurement is made on the col-
lected biological samples, and the obtained measurement
data is aggregated for statistical data. The method for
detecting a DNB in accordance with the present invention,
as illustrated in FIG. 3, primarily involves a process of
obtaining high-throughput data (s1), a process of choosing
differential biological molecules (s2), a process of clustering
(s3), a process of choosing a DNB candidate (s4), and a
process of identifying a DNB by significance analysis (s5).
Next will be described each of these processes in detail.

Taking samples to be detected as case samples and
reference samples as control samples, the process of obtain-
ing high-throughput data in step s1 yields physiological data
(measurement data (e.g., microarray data) on expressions of
biological molecules) from the samples by high-throughput
technology. A reference sample is, for example, a sample
collected in advance from the patient who will undergo a
medical checkup or a sample collected first during the
course of collecting and is used as a control sample for the
purpose of, for example, calibration of measuring instru-
ments. A control sample is not essential, but useful to
exclude error factors and improve measurement reliability.

The process of choosing differential biological molecules
in step s2 chooses biological molecules whose expressions
have noticeably changed. FIG. 4 is a flow chart depicting an
exemplary process of choosing differential biological mol-
ecules in accordance with an embodiment. FIG. 4 shows in
detail the process of choosing differential biological mol-
ecules in step s2 shown in FIG. 3.

As illustrated in FIG. 4, first, take statistical data obtained
from n case samples based on high-throughput data (expres-
sions of biological molecules) as Dlc¢ and data obtained
from control samples as Dr (s21). Next, the biological
molecules Dlc¢ from the case samples are subjected to a
Student’s t-test to choose biological molecules D2¢ whose
expressions have noticeably changed in comparison to the
high-throughput data Dr obtained from the control samples
(s22). Student’s t-test is an exemplary technique to choose
biological molecules D2¢ whose expressions have notice-
ably changed in step s22; the technique is however by no
means limited in any particular manner. Another test, such as
the Mann-Whitney U test, may be used. Tests by such a
non-parametric technique are especially effective when the
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population D1c¢ does not follow a normal distribution. In
addition, in Student’s t-tests, the significance level a may be
set, for example, to 0.05, 0.01, or another appropriate value.

Next, multiple comparisons or multiple Student’s t-tests
are corrected for the biological molecules D2¢ from the case
samples using a FDR (false discovery rate) to choose
corrected case sample gene or protein data D3¢ (s23). Next,
Dc whose standard deviation SD relatively drastically
changes are chosen as differential biological molecules from
the corrected case sample gene or protein data D3¢ by a
two-fold change method. The chosen differential biological
molecules Dc not only have a noticeable difference from the
biological molecules Dr obtained from the control samples,
but also greatly deviate from their own average value. In
step s23, Student’s t-test is again not the only feasible test
technique.

Next, the process of clustering (s3 in FIG. 3) is carried
out. The process of clustering in this context is a process by
which multiple biological molecules are classified into
groups of mutually closely correlated molecules. Each of the
groups into which biological molecules are classified is
called a cluster. In other words, closely correlated biological
molecules are in a single cluster. The differential biological
molecules Dc chosen in step s24, shown in FIG. 4, are
classified into n clusters. All the obtained clusters are
potential dominant groups, that is, DNB candidates that
should be detected.

Next, the process of choosing a DNB candidate (s4)
shown in FIG. 3 is carried out. FIG. 5 is a flow chart
depicting an exemplary process of choosing a DNB candi-
date in accordance with an embodiment. FIG. 5 shows in
detail the process of choosing a DNB candidate in step s4
shown in FIG. 3. In other words, the process of choosing a
DNB candidate is carried out in accordance with the flow
chart for the process of choosing a DNB candidate shown in
FIG. 5. In the circulation loop shown in FIG. 5, the average
PCCd(k) of the absolute values of Pearson’s correlation
coeflicients among the nodes in the same cluster, the average
OPCCd(k) of the absolute values of Pearson’s correlation
functions of the nodes in each cluster with the other nodes,
the average SDd(k) of standard deviations of the nodes in
each cluster, and the composite index I(k) are calculated for
all clusters (k) (k=1, ..., n) (s41 to s46). A cluster with a
maximum composite index I value is chosen as a DNB
candidate from all the clusters (s47).

Next, the process of identifying a DNB by significance
analysis (s5 in FIG. 3) shown in FIG. 3 is carried out. FIG.
6 is a flow chart depicting an exemplary process of identi-
fying a DNB in accordance with an embodiment. FIG. 6
shows in detail the process of identifying a DNB by sig-
nificance analysis in step s5 in FIG. 3. In other words, it is
determined whether or not the cluster (m) chosen as a DNB
candidate in step s47 is a DNB in accordance with DNB
identifying conditions (I) to (III) explained above. Various
significance analyses are applicable for the identification.
The process is carried out, as an example, in accordance with
the flow chart of the process of identifying a DNB shown in
FIG. 6.

As illustrated in FIG. 6, first, the average PCCdr of the
absolute values of Pearson’s correlation coefficients of data
obtained from the control samples among the nodes and the
average SDdr of standard deviations of the nodes are cal-
culated (s51, s52). It is then determined whether or not the
average PCCd(m) of the absolute values of Pearson’s cor-
relation coeflicients among the nodes in the cluster (m)
chosen in step s47 has significantly increased over the
average PCCdr of the Pearson’s correlation coeflicients of
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the control samples (s53). If it is determined that the average
PCCd(m) has not significantly increased (No), a result that
there exists no DNB is output (s57), and the process is
ended. On the other hand, if it is determined that the average
PCCd(m) has significantly increased (Yes), the process
proceeds to step s54. In step s54, it is determined whether or
not the average OPCCd(m) of Pearson’s correlation coeffi-
cients of the nodes in the cluster (m) with other nodes has
significantly decreased over the average PCCdr of Pearson’s
correlation coefficients of the control samples (s54). If it is
determined that the average OPCCd(m) has not significantly
decreased (No), a result that there exists no DNB is output
(s57), and the process is ended. On the other hand, if it is
determined that the average OPCCd(m) has significantly
decreased (Yes), the process proceeds to step s55. In step
55, it is determined whether or not the average standard
deviation SDd(m) of the nodes in the cluster (m) has
significantly increased over the average standard deviation
SDr of the control samples. If it is determined that the
average standard deviation SDd(m) has not significantly
increased (No), it is determined that there exists no DNB
(s57), and the process is ended. On the other hand, if the
average standard deviation SDd(m) has significantly
increased, the cluster (m) is recognized to be a DNB (s56),
and the process is ended.

Method of Early Diagnosis of Disease by DNB

A desirable diagnosis schedule may include multiple
diagnoses with certain intervals, with a couple of samples
being collected in each diagnosis. FIG. 7 is a diagram
representing an exemplary diagnosis schedule by a DNB-
based early diagnosis of a disease in accordance with an
embodiment. As illustrated in FIG. 7, samples are collected
in multiple periods (period-1, period-2, . . . , and period-T).
Generally, six or more samples are preferably collected in
each period to ensure accuracy of data. The interval between
two consecutive periods may be set to days, weeks, months,
or even longer (e.g., years), depending on the condition of
the disease. In each period, samples are preferably collected
at different points in time in a short period of time. For
example, six samples are collected at six points in time in
one day. The intervals between points in time may be set, for
example, to minutes or hours depending on the situation.

FIG. 8 is a flow chart depicting an exemplary DNB-based
early diagnosis of a disease in accordance with an embodi-
ment. As illustrated in FIG. 8, the method of early diagnosis
of a disease by a DNB primarily involves a process of
collecting samples (s100), a process of choosing differential
biological molecules (s200), a process of choosing a DNB
candidate (s300), a process of identifying a DNB by sig-
nificance analysis (s400), and a process of outputting diag-
nostic results (s500). Next, these processes will be con-
cretely described in detail.

Process of collecting samples (s100): Samples from
which necessary physiological data are to be acquired are
collected according to the disease to be diagnosed in the
same manner as in general disease diagnosis. For example,
in the case of a liver disease, blood and liver tissue samples
are collected.

In a diagnosis, in addition to taking samples collected
from a subject to be diagnosed as case samples, samples
collected from a healthy person who is not a subject to be
diagnosed may be taken as reference samples, and samples
collected first from a subject to be diagnosed may be taken
as control samples.

Process of choosing differential biological molecules
(s200): Differential biological molecules are chosen from
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samples collected in step s100 according to the flow chart for
the process of choosing differential biological molecules
shown in FIG. 4.

Process of choosing DNB candidate (s300): A dominant
group, which would be a DNB candidate, is chosen from the
differential biological molecules chosen in step s200 accord-
ing to the flow chart for DNB candidate choice shown in
FIG. 5.

Process of identifying DNB by significance analysis
(s400): It is determined, according to the flow chart depict-
ing a method of identifying a DNB by significance analysis
shown in FIG. 6, whether or not the DNB candidate chosen
in step s300 is a DNB.

Process of outputting diagnostic results (s500): If it is
determined in step s400 that there exists no DNB, the data
on the DNB candidate chose in step s300 is recorded in a
memory device as reference data for a next diagnosis, and a
diagnostic result that there exists no abnormality is output.
On the other hand, if it is determined in step s400 that there
exists a cluster recognized as a DNB, the biological mol-
ecule data of the recognized cluster is recorded as a member
of a DNB, and a diagnostic result that the patient is in a
pre-disease state is output. In addition, a diagnostic result
related to the detected DNB may be output. The diagnostic
result in this context may be a result that gives useful
information for a physician to diagnose a disease. In other
words, the diagnostic result output in step s500 is not a
diagnosis per se by the physician, but output data that gives
useful information for diagnosis to assist diagnosis by a
physician.

For example, as a diagnostic result, composite index I,
compositely reflecting the DNB features, may be output. A
higher composite index I indicates increasing proximity to a
tipping point. Greater warning effect is achieved if the
output is given in graphic form from which one can intui-
tively see disease risk in proportion to composite index 1.

FIGS. 9 and 10 are exemplary graphics showing disease
risk in proportion to composite index 1. In FIG. 9, the arrow
as a whole represents the pre-disease state, and the flow in
the direction indicated by the arrow represents time-depen-
dent changes of the disease (onset of the disease). The
rhombus sign toward the left inside the arrow is an onset risk
pointer that changes its location depending on the composite
index [ value obtained in a diagnosis. The rhombus sign
approaches the right end of the arrow with a higher com-
posite index 1 value.

If the patient has ever undergone an early diagnosis of a
disease by a DNB, disease risk may be shown in proportion
to composite index I as in FIG. 10, along with the composite
index obtained in the last diagnosis. In FIG. 10, the rhombus
sign drawn in dotted lines indicates the composite index
obtained in a diagnosis on Jul. 1, 2011, while the rhombus
sign drawn in solid lines indicates the composite index
obtained in a diagnosis on Sep. 1, 2011. It is intuitively
determined from the change in location of the rhombus sign
that the patient is approaching the disease state.

Maps (see, e.g., FIG. 15 below) showing the entire
network including the detected DNB or a part of the network
including the DNB may be output as information related to
the DNB.

Alist of biological molecules that are DNB members may
be output. As mentioned above, a DNB emerges in a
pre-disease state when a transition from a normal state to a
disease state occurs. The biological molecules per se, that is,
genes, proteins, or metabolites, detected as a DNB however
are not necessarily pathologic genes, proteins, or metabolites
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that are a disease progression factor. It is known that some
DNB members are related to the disease.

Therefore, if the biological molecules (genes, proteins, or
metabolites), included in the detected DNB members, that
are related to a particular disease are extracted, for example,
a physician can through a diagnosis learn to some extent of
a disease whose symptoms could possibly be developed by
a patient or subject to be diagnosed.

Therefore, subsequent to the output of a diagnostic result
(s500 in FIG. 8), genes, proteins, or metabolites that are
related to a disease may be extracted from the detected DNB
by using a database of correspondence of genes, proteins, or
metabolites and diseases and output as a diagnostic result
which aids a diagnosis.

If, for example, a DNB is detected in the data on genes,
proteins, or metabolites obtained from blood collected from
the person who is to undergo a medical checkup, that output
offers some help in identifying a disease related to the genes,
proteins, or metabolites included in the DNB. Potential
diseases of the patient to be diagnosed can hence be diag-
nosed in an early stage.

Detection Device

The method for detecting a DNB described in detail above
may be implemented by a computer-based detection device,
which is another embodiment of the present invention. FIG.
11 is a block diagram illustrating an exemplary configuration
of a detection device in accordance with the present inven-
tion. A detection device 1 shown in FIG. 11 may be realized
using a personal computer, a client computer connected to a
server computer, or any other kind of computer. The detec-
tion device 1 includes, for example, a control unit 10, a
storage unit 11, a memory unit 12, an input unit 13, an output
unit 14, and an acquisition unit 15.

The control unit 10 is composed using a CPU (central
processing unit) and other circuitry and is a mechanism
controlling the whole detection device 1.

The storage unit 11 is a non-volatile auxiliary storage
mechanism, such as a HDD (hard disk drive) or a like
magnetic storage mechanism or a SSD (solid state disk) or
a like non-volatile semiconductor storage mechanism. The
storage unit 11 stores a detection program 11a in accordance
with the present invention and other various programs and
data.

The memory unit 12 is a volatile main memory mecha-
nism, such as a SDRAM (synchronous dynamical random
access memory) or a SRAM (static random access memory).

The input unit 13 is an input mechanism including hard-
ware (e.g., a keyboard and a mouse) and software (e.g.,
drivers).

The output unit 14 is an output mechanism including
hardware (e.g., a monitor and a printer) and software (e.g.,
drivers).

The acquisition unit 15 is a mechanism that externally
acquires various data: specifically, various hardware, such as
a LAN (local area network) port for acquiring data over a
communications network, parallel cables to be connected to
measuring instruments, and ports to be connected to dedi-
cated lines, and software, such as drivers.

By loading the detection program 1la stored in the
storage unit 11 into the memory unit 12 and running the
detection program 11a under the control of the control unit
10, the computer implements various procedures stipulated
in the detection program 1la to function as the detection
device 1 in accordance with the present invention. The
storage unit 11 and the memory unit 12, despite being
separately provided for the sake of convenience, have simi-
lar functions of storing various information; which of the
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mechanisms should store which information may be deter-
mined in a suitable manner according to device specifica-
tions, usage, etc.

FIG. 12 is a flow chart depicting an exemplary process of
detecting a DNB as implemented by the detection device 1
in accordance with the present invention. The detection
device 1 in accordance with the present invention imple-
ments the aforementioned process of detecting a DNB. The
control unit 10 in the detection device 1 acquires, through
the acquisition unit 15, measurement data on a plurality of
factors obtained by measurement on a biological object
(Scl). Step Scl corresponds to the process of obtaining
high-throughput data indicated by step sl in FIG. 3. Note
that although the term “factor” is used in this context to
indicate that it is an object for computer processing, the
“factor” here refers to a gene-related measured item, a
protein-related measured item, a metabolite-related mea-
sured item, or another measured item that could be a node
for a DNB. An image-related measured item may be used
that is obtained from, for example, a CT scan image of the
interior of the body or a like image output of a measuring
instrument.

The control unit 10 verifies whether or not each measure-
ment data set obtained for a factor has significantly changed
with time and chooses differential biological molecules
based on a result of the verification (Sc2). Step Sc2 corre-
sponds to the process of choosing differential biological
molecules indicated by step s2 in FIG. 3.

Therefore, in step Sc2, the control unit 10 verifies sig-
nificance based on a result of comparison of the measure-
ment data for each factor and the reference data predeter-
mined for each factor and each time series (Sc21) and
chooses a factor that is verified to have significantly changed
with time (Sc22). In other words, the steps shown in FIG. 4
are implemented in step Sc2. The data processed as refer-
ence data by the detection device 1 is control samples. For
example, the detection device 1 is set up to take samples that
are obtained first as control samples to handle the samples as
reference data based on this setup.

The control unit 10 classifies factors into clusters based on
a correlation of the time-dependent changes of measurement
data on each chosen factor (Sc3). Step Sc3 corresponds to
the process of clustering indicated by step s3 in FIG. 3.

The control unit 10 chooses one of the classified clusters
that satisfies choice conditions that are predetermined based
on a correlation of the time-dependent changes of measure-
ment data for each factor and the time-dependent changes of
measurement data among different factors (Sc4). Step Sc4
corresponds to the process of choosing a DNB candidate
indicated by step s4 in FIG. 3.

Therefore, in step Sc4, for each cluster, the control unit 10
calculates, as a first index, the average of values representing
a correlation of the measurement data for each factor in the
cluster (Sc41), calculates, as a second index, the average of
values representing a correlation among measurement data
on a factor inside the cluster and measurement data on a
factor outside the cluster (Sc42), and calculates, as a third
index, the average standard deviation of measurement data
for each factor in the cluster (Sc43). In step Scd, the control
unit 10 further calculates a composite index based on a
product of the first index, the second index, and a reciprocal
of' the third index (Sc44) and chooses one of the clusters that
has a maximum composite index (Sc45). In other words, the
steps shown in FIG. 5 are implemented. The first index, the
second index, the third index, and the composite index may
be, for example, the average PCCd(k) of the absolute values
of Pearson’s correlation coefficients among the nodes in the
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cluster, the average OPPCd(k) of the absolute values of
Pearson’s correlation functions of the nodes in the cluster
with other nodes, the average SDd(k) of standard deviations
of the nodes in the cluster, and the composite index I(k).

The control unit 10 detects a factor included in the chosen
cluster as a biomarker candidate (Sc5). Step Sc5 corresponds
to the process of identifying a DNB indicated by step s5 in
FIG. 3.

Therefore, in step Sc5, for each factor, the control unit 10
calculates a reference standard deviation representing the
average standard deviation of the corresponding reference
data (Sc51) and calculates a reference correlation value
representing the average of values representing correlations
among different factors (Sc52). Also in step Sc5, if the first
index has significantly increased over the reference standard
deviation, the second index has significantly decreased over
the reference correlation value, and the third index has
significantly increased over the reference standard deviation,
the item included in the cluster is detected as a biomarker
(Sc53). In other words, the steps shown in FIG. 6 are
implemented. The reference standard deviation and the
reference correlation value may be, for example, the average
PCCdr of the absolute values of Pearson’s correlation coef-
ficients among the nodes and the average SDdr of standard
deviations of the nodes.

The control unit 10 outputs the factor detected as a
biomarker candidate from the output unit 14 (Sc6), and the
process is ended.

First Validation Example

The accuracy of diagnosis by the method of DNB-based
early diagnosis of a disease in accordance with the present
invention was validated in the following manner. A diagno-
sis was performed according to the diagnosis method in
accordance with the present invention by using experimental
data obtained from mice with a lung disorder. The diagnostic
result was then compared with the actual disease progression
to validate effectiveness of the diagnosis method in accor-
dance with the present invention. Next, this validation
example will be described in detail. The experimental data
was obtained in experiments that examined the molecular
level mechanism of acute lung injury caused by inhalation of
carbonyl chloride. In the experiment, (i) multiple experi-
mental CD-1 male mice were divided into a case group and
a control group, (ii) the case group was kept in a normal air
environment, and the control group was kept in an air
environment containing carbonyl chloride (poisonous gas),
and (iii) the health condition of the mice of the two groups
was observed. The health condition of mice in the case group
being exposed to carbonyl chloride was diagnosed according
to the diagnosis method in accordance with the present
invention by using the experimental data. Typically, mice
develop a carbonyl chloride-induced lung disorder after
inhaling a certain amount of carbonyl chloride.

FIG. 13 is a table of data for diagnostic use for the first
validation example. As illustrated in FIG. 13, the subjects to
be diagnosed were mice (CD-1 male mice) with a carbonyl
chloride-induced lung disorder. Samples were collected
from lung tissues of the mice in the case group (subjects) and
those in the control group (referents). Sampling points were
0,0.5, 1, 4,8, 12, 24, 48, and 72 hours into the experiment.
There were 22,690 genes used to detect a DNB.

Specifically, the following processes were carried out
according to the diagnosis method in accordance with the
present invention.
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Differential expression genes were chosen from the high-
throughput gene data for acute lung injury. At each sampling
point (or period), there are six case samples and six control
samples. At the 0 h sampling point, the case samples were
considered to be identical to the control samples.

At each sampling point, by using the student t-test with
significance level p<0.05, A=[0, 53, 184, 1,325, 1,327, 738,
980, 1,263, 915] differential expression molecules were
selected.

Based on set A of the selected differential expression
molecules, by using the false discovery rate (FDR) and by
two-fold change screening, B=[0, 29, 72, 195, 269, 163, 173,
188, 176] genes were obtained respectively for the 9 sam-
pling time points.

For the selected gene set B in the above step, molecules
were clustered at each sampling time point by correlations.
For each sampling point, 40 clusters were obtained.

At each sampling point, a new type of data normalization
was conducted for all genes in the 40 clusters. At each
sampling point, for every normalized cluster or group, the
average standard deviation (SDd, third index), average Pear-
son’s correlation coefficient (IPCCI in absolute value, sec-
ond index) of the cluster members, average OPCCd (first
index) between the cluster members and other genes, and the
composite index [ were calculated.

One of the clusters that had a maximum composite index
I in the calculated case group was chosen as a DNB
candidate at each sampling point. It was determined whether
or not the DNB candidate was a DNB by significance
analysis, with the average SDc of standard deviations of the
control group and the average PCCc of the absolute values
of Pearson’s correlation coefficients among genes being
used as the standards. As a result, the number of clusters that
were DNBs was 0, 0,0, 0, 1, 0, 0, 0, and 0 at the respective
sampling points.

In other words, a DNB was detected at the fifth sampling
point (8 h), and the DNB is the 111-th cluster with 220
genes.

FIG. 14A is a graph representing exemplary time-depen-
dent changes of the average SDd of standard deviations of
a DNB candidate detected in the first validation example.
FIG. 14B is a graph representing exemplary time-dependent
changes of the average PCCd of the absolute values of
Pearson’s correlation coefficients among cluster members
that are detected DNB candidates in the first validation
example. FIG. 14C is a graph representing exemplary time-
dependent changes of the average OPCCd of the absolute
values of Pearson’s correlation coeflicients of cluster mem-
bers that are detected DNB candidates with other genes in
the first validation example. FIG. 14D is a graph represent-
ing exemplary time-dependent changes of composite index
I for a detected DNB candidate in the first validation
example. In FIGS. 14A to 14D, the horizontal axis indicates
time periods t, and the vertical axis indicates respectively the
average SDd of standard deviations (FIG. 14A), the average
PCCd of the absolute values of Pearson’s correlation coef-
ficients among the members of the cluster (FIG. 14B), the
average OPCCd of the absolute values of Pearson’s corre-
lation coefficients of the members of the cluster with other
genes (FIG. 14C), and the composite index 1 (FIG. 14D).
Broken lines represent time-dependent changes of various
indices that are DNB candidates detected in the case group.
Solid lines represent time-dependent changes of various
indices for one cluster chosen from the control group.

As understood from FIGS. 14A to 14D, the first index
PCCd, the third index SDd, and the composite index I of the
DNB candidate started to increase drastically in the fourth
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time period (i.e., 4 h) and peaked in the fifth time period (i.e.,
8 h). Meanwhile, the third index OPCCd of the DNB
candidate started to decrease in the second time period and
has a local minimum in the same, fifth time period (i.e., 8 h).

The dynamical features of the entire gene network includ-
ing a DNB are shown in FIG. 15 to intuitively represent the
dynamical features of the DNB. FIG. 15 is chronological
maps of exemplary dynamical features of a DNB in a
network of case group genes in the first validation example.
FIG. 15 shows a network of case group genes (3,452 genes
and 9,238 links) at sequential sampling points of 0.5, 1, 4,
8, 12, 24, 48, 72 h. The nodes indicated by a “0” are genes
of the DNB candidate; those indicated by a “[J” are other
genes near the nodes of the DNB candidate. The lines
linking one node to another represent a correlation of the two
nodes. The color concentration of a “o” represents the
magnitude of the standard deviation SD of the gene. The
color concentration of the line linking the two nodes repre-
sents the magnitude of the absolute value of the correlation
coeflicient PCC of the two nodes. All the maps given as
examples in FIG. 15 are drawn using Cytoscape, an open
source platform for data analysis.

As illustrated in FIG. 15, the features (SD, PCC) of the
DNB candidate change with time, evolving gradually from
a normal cluster which behaves in the same manner as the
other genes to a DNB. In the fifth period (8 h) shown in e
of FIG. 15, the features are the most typical of a DNB,
sending off a clear early-warning signal of a pre-disease state
(8 h). However, after a transition to a disease state (24 h, 48
h, and 72 h), the DNB member comes to behave the same
manner as the other genes.

These results show that the pre-disease state is close to the
fifth time period and that the system undergoes a transition
to a disease state after the fifth time period.

Therefore, according to the method of DNB-based early
diagnosis of a disease in accordance with the present inven-
tion, a diagnostic result may be that the fourth time period
is giving off such a sign of an early-warning signal for the
disease that the disease will deteriorate in the near future. In
the fifth time period, a diagnostic result may be that the fifth
time period is giving off such a clear disease early-warning
signal that there will be a transition to a disease state soon.

Meanwhile, in an actual mouse experiment, the mice in
the case group developed lung edema in 8 hours after
inhalation of carbonyl chloride. 50% to 60% of them died in
12 hours. 60% to 70% of them died in 24 hours.

Therefore, the diagnostic results from the DNB-based
early diagnosis in accordance with the present invention
perfectly agree with the actual disease deterioration of the
mice.

Second Validation Example

The first validation example validates the effectiveness of
the method of DNB-based early diagnosis of a disease in
accordance with the present invention by using data from
animal experiments. The current validation example further
validates accuracy of the diagnosis by the method of DNB-
based early diagnosis of a disease in accordance with the
present invention by using clinical data from B-cell lym-
phomagenesis.

FIG. 16 is a table listing diagnosis data for the second
validation example. As illustrated in FIG. 16, the samples
were divided into five-period groups (rest period (P1), active
period (P2), limit period (P3), metastasis period (P4), and
invasion period (P5)) based on clinical manifestation, patho-
logical change, and flow cytometry. The numbers of samples
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for these periods were 5, 3, 6, 5, and 7 respectively. The
splenomegaly in the periods was “None,” “None,” “+/-,”
“+”, and “+++” respectively. The flow cytometry in the
periods was “normal rest,” “normal active,” “abnormal,”
“mixed,” and “B-1 clone” respectively. Control samples
were collected in the rest period (P1), and case samples were
collected in the other periods (P2 to P5).

A diagnosis was made according to the aforementioned
method of DNB-based early diagnosis of a disease from
13,712 genes based on gene expression data obtained from
the 26 samples above. Results of the diagnosis are shown in
FIGS. 17A to 17D representing indices detected in the genes
of the case group for a DNB candidate. FIG. 17A is a graph
representing exemplary time-dependent changes of the aver-
age SDd of standard deviations of a detected DNB candidate
in the second validation example. FIG. 17B is a graph
representing exemplary time-dependent changes of the aver-
age PCCd of the absolute values of Pearson’s correlation
coeflicients among cluster members that are detected DNB
candidates in the second validation example. FIG. 17C is a
graph representing exemplary time-dependent changes of
the average OPCCd of the absolute values of Pearson’s
correlation coefficients of cluster members that are detected
DNB candidates with other genes in the second validation
example. FIG. 17D is a graph representing exemplary time-
dependent changes of composite index I for a detected DNB
candidate in the second validation example.

In FIGS. 17A to 17D, the horizontal axis indicates num-
bers for the periods (P1 to P4), and the vertical axis indicates
the average SDd of standard deviations (FIG. 17A), the
average PCCd of the absolute values of Pearson’s correla-
tion coefficients among cluster members (FIG. 17B), the
average OPCCd of the absolute values of Pearson’s corre-
lation coefficients of cluster members with other genes (FIG.
17C), and the composite index I (FIG. 17D).

As would be clearly understood from FIGS. 17A to 17D,
composite index I for the DNB candidate reaches a peak
value, sending off the strongest early-warning signal for the
disease state, in the second period (P2), or the active period.
This diagnostic result perfectly agrees with actual patho-
logical changes. Actual clinical data indicates that the dis-
ease starts to deteriorate, the splenomegaly is “+/-,” and the
flow cytometry is “abnormal” in the limit period that imme-
diately follows the active period. Therefore, the DNB-
specific analytic results of the current validation example
perfectly agree with the actual clinical data.

In a conventional diagnosis, it is determined that there
exists no abnormality because the splenomegaly in the
active period is “None” and the flow cytometry in the active
period is “normal active,” as illustrated in FIG. 16. On the
other hand, a diagnosis according to the method of DNB-
based early diagnosis of a disease in accordance with the
present invention can inform the patient of a result that there
is a “sign of abnormality” because an early-warning signal
(DNB) indicating a pre-disease state is detected in the active
period. The patient can therefore start treatment in an early
stage, capable of preventing disease deterioration.

It is validated from the above that the DNB-based early
diagnosis of a disease in accordance with the present inven-
tion is very effective in the early diagnosis of lymphoma or
like complex diseases.

In addition, 22 genes and TFs are among the DNBs
detected in the current validation example. 13 genes of them
are clearly related to B-cell lymphomagenesis. Furthermore,
8 of the 13 genes are identified to be master regulators for
proliferation. Therefore, the DNB in accordance with the
present invention should be very useful for treatments and
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drug manufacturing for complex diseases because it not only
gives a sign of abnormality to the patient in an early stage
in the form of an early-warning signal indicating a pre-
disease state, but also specifically identifies genes related to
the disease.

The embodiments are a disclosure of only a few of
countless examples of the present invention and may be
altered if necessary in view of the nature of the disease,
detection targets, and various other conditions. Especially,
the factors may be any measurement data provided that the
information is obtained in measurement on a biological
object. The measurement data may be, for example, the
aforementioned gene-, protein-, or metabolite-related mea-
surement data or may be obtained by quantifying various
conditions of an organ based on an image output of the
interior of the body from a measuring instrument, such as a
CT scanner. Furthermore, the measurement data may come
from a non-image source, for example, measured and quan-
tified voice or sound that comes from the interior of the
body.

REFERENCE SIGNS LIST

1 Detection device

10 Control unit

11 Storage unit

12 Memory unit

13 Input unit

14 Output unit

15 Acquisition unit
11a Detection program

The invention claimed is:

1. An early diagnosis method of complex diseases for
which no reliable disease models are developed, the method
comprising the following steps:

collecting samples of a biological object to be measured
at a plurality of time points;

acquiring, by an acquisition unit, high-throughput data on
a plurality of factors of the samples of the biological
object to be measured;

classifying the factors into clusters based on a correlation
of time-dependent changes of the high-throughput data
for each factor;

calculating each cluster’s maximum composite index
value, wherein the composite index value is a product
of:

(1) a first index that is an average of the absolute values of
Pearson’s correlation coefficients of the high-through-
put data for each factor in the cluster,

(i) a second index that is an average of the absolute
values of Pearson’s correlation function of the high-
throughput data for the factors inside the cluster with
the high-throughput data for the factors outside the
cluster, and

(ii1) a reciprocal of a third index that is an average
standard deviations of the high-throughput data for
each factor in the cluster;

performing significance analysis on the cluster that has
the maximum composite index and adopting the com-
posite index of the cluster, which is referred to
Dynamic Network Biomarker (DNB), as an early-
warning signal of a pre-disease state if the cluster is
detected to be significant; and

sending off the strongest warning signal to a physician at
a peak time point when the composite index turns from
increase to decrease so that the physician makes a
distinction between a pre-disease state and a normal
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state, wherein the distinction having been difficult by a
conventional diagnosis method.

2. The method as set forth in claim 1, further comprising
a difference verification step of verifying whether or not the
high-throughput data for each of the factors has significantly
changed with time,

wherein the factors in the performing significance analy-
sis step are the factors whose significance in the time-
dependent changes is verified by the difference verifi-
cation step.

3. The method as set forth in claim 2, wherein, in the
difference verification step, it is verified, based on a com-
parison of the high-throughput data for each of the factors
and reference data that is predetermined, whether or not the
factors have significantly changed with time.

4. The method as set forth in claim 1, wherein the factors
include at least one of a gene-related measured item, a
protein-related measured item, a metabolite-related mea-
sured item, and a measured item related to an image
obtained from the biological object.

5. The method as set forth in claim 1, further comprising
a step of outputting, based on the emergence of the DNB
detected by the performing significance analysis step, infor-
mation that assists in determining at least one of the fol-
lowing: whether there exists an abnormality in the biological
object; validity of determination of the pre-disease state that
precedes the transition from the normal state to the disease
state of the biological object; and a disease whose symptoms
could possibly be developed by the biological object.

6. A non-transitory computer readable medium storing a
program causing a computer to execute an early diagnosis of
complex diseases for which no reliable disease models are
developed,

wherein the program causes the computer to execute the
following steps:

collecting samples of a biological object to be measured
at a plurality of time points;

acquiring high-throughput data on the a plurality of
factors of the biological object to be measured;

classifying the factors into clusters based on a correlation
of time-dependent changes of the high-throughput data
for each factor;

calculating each cluster’s maximum composite index
value, wherein the composite index value is a product
of:

(1) a first index that is an average of the absolute values of
Pearson’s correlation coefficients of the high-through-
put data for each factor in the cluster,

(ii) a second index that is an average of the absolute
values of Pearson’s correlation function of the high-
throughput data for the factors inside the cluster with
the high-throughput data for the factors outside the
cluster, and

(iii) a reciprocal of a third index that is an average
standard deviations of the high-throughput data for
each factors in the cluster;

performing significance analysis on the cluster that has
the maximum composite index and adopting the com-
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posite index of the cluster, which is referred to
Dynamic Network Biomarker (DNB), as an early-
warning signal of a pre-disease state if the cluster is
detected to be significant; and

outputting on an output unit the early-warning signal of a
pre-disease state in a graphic form so as to intuitively
show a disease risk.

7. The non-transitory computer readable medium storing

the program as set forth in claim 6,

wherein the program causes a computer to execute a
difference verification step of verifying whether or not
the high-throughput data for each of the factors has
significantly changed with time, and

wherein the factors in the performing significance analy-
sis step are the factors whose significance in the time-
dependent changes is verified by the difference verifi-
cation step.

8. The non-transitory computer readable medium storing
the program as set forth in claim 7, wherein the program
causes a computer to verify, as the difference verification
step, whether or not the factors have significantly changed
with time based on a comparison of the high-throughput data
for each of the factors and reference data that is predeter-
mined.

9. A device for an early diagnosis of complex diseases for
which no reliable disease models are developed, comprising:

collecting unit configured to collect samples of a biologi-
cal object to be measured at a plurality of time points;

an acquisition unit configured to acquire high-throughput
data on a plurality of factors of the biological object to
be measured;

a classification unit configured to classify the factors into
clusters based on a correlation of time-dependent
changes of the high-throughput data for each factor;

a calculation unit configured to calculate each cluster’s
maximum composite index value, wherein the compos-
ite index value is a product of:

(1) a first index that is an average of the absolute values of
Pearson’s correlation coefficients of the high-through-
put data for each factor in the cluster,

(i) a second index that is an average of the absolute
values of Pearson’s correlation function of the high-
throughput data for the factors inside the cluster with
the high-throughput data for the factors outside the
cluster, and

(ii1) a reciprocal of a third index that is an average
standard deviations of the high-throughput data for
each factors in the cluster;

a significant analysis unit to perform significance analysis
on the cluster that has the maximum composite index
and adopting the composite index of the cluster, which
is referred to Dynamic Network Biomarker (DNB), as
an early-warning signal of a pre-disease state if the
cluster is detected to be significant; and

an output unit configured to output the early-warning
signal of a pre-disease state in a graphic form so as to
intuitively show a disease risk.
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