(19) 日本国特許庁(JP)

(12) 特許公報(B2)

(11) 特許番号

特許第5538691号

(P5538691)

(45) 発行日 平成26年7月2日(2014.7.2)

- (24) 登録日 平成26年5月9日 (2014.5.9)
- (51) Int.Cl.
 F I

 C 1 2 N
 15/09
 (2006.01)
 C 1 2 N
 15/00
 A

 C 0 7 K
 14/47
 (2006.01)
 C 0 7 K
 14/47
 Z N A

請求項の数 12 (全 50 頁)

(21) 出願番号	特願2008-186385 (P2008-186385)	(73)特許権者	f 503360115		
(22) 出願日	平成20年7月17日 (2008.7.17)		独立行政法人和	斗学技術振興	愳機構
(65) 公開番号	特開2009-142259 (P2009-142259A)		埼玉県川口市2	本町四丁目1	番8号
(43) 公開日	平成21年7月2日 (2009.7.2)	(74) 代理人	100099623		
審査請求日	平成23年7月14日 (2011.7.14)		弁理士 奥山	尚一	
(31) 優先権主張番号	特願2007-303662 (P2007-303662)	(74) 代理人	100096769		
(32) 優先日	平成19年11月22日 (2007.11.22)		弁理士 有原	幸一	
(33)優先権主張国	日本国(JP)	(74) 代理人	100107319		
			弁理士 松島	鉄男	
		(74) 代理人	100114591		
			弁理士 河村	英文	
		(74) 代理人	100118407		
			弁理士 吉田	尚美	
		(74)代理人	100125380		
			弁理士 中村	綾子	
					最終頁に続く

(54) 【発明の名称】 RNA-蛋白質相互作用モチーフを利用した蛋白質応答翻訳制御システム

(57)【特許請求の範囲】

【請求項1】

リボソーム結合部位の5 '側、またはオープンリーディングフレームの5 '側内部に、 L7Ae結合配列もしくはスレオニル - tRNA合成酵素結合配列から選択される蛋白質 結合配列に相補的な塩基配列を有する人工mRNA。

【請求項2】

リボソーム結合部位の5 '側、またはオープンリーディングフレームの5 '側内部に、 L7Ae結合配列もしくはスレオニル - tRNA合成酵素結合配列から選択される蛋白質 結合配列を組み込んでなる人工mRNA。

【請求項3】

10

請求項2に記載のmRNAと、前記蛋白質結合配列に特異的に結合する蛋白質とを含ん でなるRNA-蛋白質複合体であって、

<u>前記蛋白質結合配列がL7Ae結合配列であるとき、前記蛋白質結合配列に特異的に結</u>合する蛋白質がL7Ae蛋白質であり、

<u>前記蛋白質結合配列がスレオニル - t R N A 合成酵素結合配列であるとき、前記蛋白質</u> 結合配列に特異的に結合する蛋白質がスレオニル - t R N A 合成酵素である、

<u> RNA-蛋白質複合体。</u>

【請求項4】

請求項2に記載のmRNAと、前記蛋白質結合配列に特異的に結合する蛋白質とを含んでなる、翻訳制御システムであって、

前記蛋白質結合配列がL7Ae結合配列であるとき、前記蛋白質結合配列に特異的に結 合する蛋白質がL7Ae蛋白質であり、

前記蛋白質結合配列がスレオニル-tRNA合成酵素結合配列であるとき、前記蛋白質 結合配列に特異的に結合する蛋白質がスレオニル・tRNA合成酵素である、

翻訳制御システム。

【請求項5】

請求項2に記載のmRNAと、前記蛋白質結合配列に特異的に結合する蛋白質とを接触 させることを特徴とするmRNAの翻訳制御方法(ヒトに対するin vivoでの方法を除く)であって、

10 前記蛋白質結合配列がL7Ae結合配列であるとき、前記蛋白質結合配列に特異的に結 合する蛋白質がL7Ae蛋白質であり、

前記蛋白質結合配列がスレオニル・tRNA合成酵素結合配列であるとき、前記蛋白質 結合配列に特異的に結合する蛋白質がスレオニル-tRNA合成酵素である、

mRNAの翻訳制御方法。

【請求項6】

(a) リボソーム結合部位の5 ' 側、またはオープンリーディングフレームの5 ' 側内 部に、L7Ae結合配列もしくはスレオニル-tRNA合成酵素結合配列から選択される 蛋白質結合配列に相補的な塩基配列を有するmRNAと、

(b)前記蛋白質結合配列を有するRNAと、

(c)前記(b)のRNAの蛋白質結合配列に特異的に結合する蛋白質と

を含んでなる、翻訳制御システムであって、

前記蛋白質結合配列がL7Ae結合配列であるとき、前記蛋白質結合配列に特異的に結 合する蛋白質がL7Ae蛋白質であり、

前記蛋白質結合配列がスレオニル・tRNA合成酵素結合配列であるとき、前記蛋白質 結合配列に特異的に結合する蛋白質がスレオニル-tRNA合成酵素である、

翻訳制御システム。

【請求項7】

(a) リボソーム結合部位の 5 ' 側、またはオープンリーディングフレームの 5 ' 側内 部に、L7Ae結合配列もしくはスレオニル-tRNA合成酵素結合配列から選択される 蛋白質結合配列に相補的な塩基配列を有するmRNAと、

(b)前記蛋白質結合配列を有するRNAと、

(c)前記(b)のRNAの蛋白質結合配列に特異的に結合する蛋白質と、

(d)リボソーム結合部位の5'側、またはオープンリーディングフレームの5'側内 部に、前記蛋白質結合配列を有するmRNAであって、(a)のmRNAとは異なる遺伝 子をコードするmRNAと

を含んでなる、異なる遺伝子の翻訳抑制と活性化を一つの蛋白質で制御する同時翻訳制御 システムであって、

前記蛋白質結合配列がL7Ae結合配列であるとき、前記蛋白質結合配列に特異的に結 合する蛋白質がL7Ae蛋白質であり、

前記蛋白質結合配列がスレオニル-tRNA合成酵素結合配列であるとき、前記蛋白質 結合配列に特異的に結合する蛋白質がスレオニル-tRNA合成酵素である、

同時翻訳制御システム。

【請求項8】

請求項1または2に記載のmRNAをコードする核酸配列を含んでなるプラスミドベク ター。

【請求項9】

請求項2に記載のmRNAをコードする核酸配列を含んでなる第1のプラスミドベクタ - ۲.

該ベクターにより産生されるmRNAの、前記蛋白質結合配列に特異的に結合する蛋白 質をコードする核酸配列を含んでなる第2のプラスミドベクターと

20

30

を含んでなる、細胞内翻訳制御システムであって、

前記蛋白質結合配列がL7Ae結合配列であるとき、前記蛋白質結合配列に特異的に結合する蛋白質がL7Ae蛋白質であり、

<u>前記蛋白質結合配列がスレオニル - t R N A 合成酵素結合配列であるとき、前記蛋白質</u> 結合配列に特異的に結合する蛋白質がスレオニル - t R N A 合成酵素である、

細胞内翻訳制御システム。

【請求項10】

ヒトがん細胞内において、蛋白質の翻訳を制御するための、請求項<u>9</u>に記載のシステム

【請求項11】

タグ配列としてのL7A e と第1の蛋白質とを含む融合蛋白質と、

L7Aeに特異的に結合する配列と、第2の蛋白質をコードする配列とを有するmRN Aと

を含んでなる、細胞内翻訳制御システム。

【請求項12】

L7Aeと、第1の蛋白質とをコードするmRNAをコードする核酸配列を含むプラス ミドベクターと、

L7Aeに特異的に結合する配列を有するmRNAであって、第2の蛋白質をコードするmRNAをコードする核酸配列を含むプラスミドベクターと を含む、細胞内翻訳制御システム。

20

10

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、 R N A - 蛋白質相互作用を活用した翻訳制御可能なm R N A 、翻訳制御シス テム及び翻訳制御方法に関する。

【背景技術】

[0002]

ポストゲノム科学の進展により、蛋白質やRNAなどの生体分子の構造、機能に関する 情報が蓄積している。そのような増加していく情報を活用し、これまでの還元的、分析的 な生物学とは対照的に、「合成」を通して生命システムを理解しようとする合成生物学(シンセティックバイオロジー)の気運が高まっている。中でも、生体分子や遺伝子回路を 人工的に(再)構成することは、生命科学研究にとどまらず産業応用の面からも非常に注 目されている。中でも、特定の蛋白質を認識し任意の遺伝子発現を調節できる翻訳制御シ ステムの発展が望まれている。

【0003】

従来、DNAの転写の誘導を低分子または蛋白質で制御する先行技術が知られている(非特許文献1を参照)。この技術は、DNAからRNAへの転写の制御を調節する方法で ある。しかし、この技術には、RNAから蛋白質への翻訳の制御技術としては、直接応用 できないという問題点があった。また、天然には、蛋白質が自身のmRNAの5'非翻訳 領域(5'-UTR)に結合することで、翻訳レベルを制御するシステムが存在する(S 15、ThrRSなど)。しかし、このようなRNP相互作用モチーフを利用して、細胞 内外で、目的遺伝子の人工的な翻訳抑制 / 活性化システムを構築した例はない。 【0004】

また近年、代謝産物に応答してmRNAが構造変化を誘起し、遺伝子発現を制御する「 リボスイッチ」というRNAがバクテリアで発見され、注目されている。しかしながら天 然のリボスイッチでは、基質がビタミンやアミノ酸など低分子のものに限られているため 、RNAや蛋白質などの生体高分子に応答して、遺伝子発現を制御することはできない。 さらに天然のリボスイッチは、自分自身の発現をfeedback制御するシステムに限 られているため、任意の遺伝子の発現を制御する人工システムの開発に直接応用した例は 30

20

30

40

[0005]RNAアプタマーやアンチセンスを利用した翻訳制御に関する先行技術が知られている 。酵母を利用して、人工RNAに低分子テオフィリンに結合するアプタマーを導入し、テ オフィリンの存在に依存して、遺伝子発現のON/OFFを制御する「RNAスイッチ」 を作成した技術も存在する(非特許文献2)。しかし、この技術には、低分子のアプタマ ーに応答するシステムであるため、基質として蛋白質などの生体高分子には適用できない 、という問題点があった。 10 【非特許文献1】 Trends Biochem Sci. 2005 ;30(6): 275-9. 【非特許文献 2】 Nat Biotechnol. 2004 22(7):841-7 2004 【発明の開示】 【発明が解決しようとする課題】 [0006]本発明は、より応用がしやすく、特異的なオン - オフ制御をすることができる、翻訳制 御可能なmRNA、およびmRNA-蛋白質複合体、およびこれを用いた翻訳制御システ ム、及び翻訳制御方法を提供することを目的とする。 【課題を解決するための手段】 [0007]本発明は、上記課題を解決するためになされたものである。すなわち、本発明は、一実 施の形態によれば、リボソーム結合部位の5 '側、またはオープンリーディングフレーム の5、側内部に、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列を有するmRN A である。 [0008]本発明は、別の実施の形態によれば、リボソーム結合部位の5'側、またはオープンリ ーディングフレームの5′側内部に、RNA-蛋白質複合体相互作用モチーフ由来の塩基 配列に相補的な塩基配列を有するmRNAである。 $\begin{bmatrix} 0 & 0 & 0 & 9 \end{bmatrix}$ 前記mRNAにおいて、前記相互作用モチーフが、L7Ae由来の塩基配列であること が好ましい。 [0010]前記mRNAにおいて、前記相互作用モチーフが、スレオニル-tRNA合成酵素(T hrRS)由来の塩基配列であることが好ましい。 [0011]本発明は、また別の実施の形態によれば、前記mRNAと、前記塩基配列に特異的に結 合する蛋白質とからなる R N A - 蛋白質複合体である。 [0012]本発明は、さらにまた別の実施の形態によれば、前記mRNAと、前記塩基配列に特異 的に結合する蛋白質とを含んでなる、翻訳制御システムである。 [0013]本発明は、さらに、前記mRNAと、前記蛋白質結合モチーフに特異的に結合する蛋白 質とを接触させることを特徴とするmRNAの翻訳制御方法でもある。ここで、接触させ るとは、例えば、細胞のような、その中で移動可能な系中で混合することをいう。 [0014]本発明は、さらにまた別の実施の形態によれば、前記mRNAと、前記塩基配列に特異 的に結合する前記塩基配列に相補的なRNAと、該相補的なRNAに特異的に結合する蛋 白質とを含んでなる、翻訳制御システムである。このシステムはまた、別の表現では、(

a)リボソーム結合部位の5′側、またはオープンリーディングフレームの5′側内部に 50

(4)

ない。したがって、このような機能をもった、人工リボスイッチの開発が期待されている

、 R N A - 蛋白質複合体相互作用モチーフ由来の塩基配列に相補的な塩基配列を有するm R N A と、(b)前記 R N A - 蛋白質複合体相互作用モチーフ由来の塩基配列を有する R N A と、(c)前記(b)の R N A に特異的に結合する蛋白質と、を含んでなる、翻訳制 御システムともいえる。

【0015】

本発明は、さらにまた別の実施の形態によれば、任意の基質蛋白質の入力情報を、任意 の目的蛋白質の出力情報に変換する人工情報変換システムである。

【0016】

本発明は、さらにまた別の実施の形態によれば、異なる遺伝子の翻訳抑制と活性化を一 つの蛋白質で制御する同時翻訳制御システムであって、(a)リボソーム結合部位の5 ' 側、またはオープンリーディングフレームの5 '側内部に、RNA - 蛋白質複合体相互作 用モチーフ由来の塩基配列に相補的な塩基配列を有するmRNAと、(b)前記RNA -蛋白質複合体相互作用モチーフ由来の塩基配列を有するRNAと、(c)前記(b)のR NAに特異的に結合する蛋白質と、(d)リボソーム結合部位の5 '側、またはオープン リーディングフレームの5 '側内部に、(b)における塩基配列と同一の塩基配列を有す るmRNAであって、(a)のmRNAとは異なる遺伝子をコードするmRNAとを含ん でなる。

【0017】

本発明は、さらにまた別の実施の形態によれば、プラスミドベクターであって、前述の いずれかのmRNAをコードする核酸配列を含んでなる。

[0018]

本発明は、さらにまた別の実施の形態によれば、細胞内翻訳制御システムであって、前述のmRNAをコードする核酸配列を含んでなる第1のプラスミドベクターと、該ベクターにより産生されるmRNAの、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列に特異的に結合する蛋白質をコードする核酸配列を含んでなる第2のプラスミドベクターとを含んでなる。

[0019]

これらの細胞内翻訳制御システムは、好ましくは、ヒトがん細胞内において、蛋白質の 翻訳を制御するためのシステムである。

[0020]

本発明は、さらにまた別の実施の形態によれば、翻訳制御システムであって、タグ配列 としてのL7Aeと、第1の蛋白質とを含む融合蛋白質を含んでなる。かかる翻訳制御シ ステムは、L7Aeに特異的に結合する配列と、第2の蛋白質をコードする配列とを有す るmRNAをさらに含んでなることが好ましい。

[0021]

本発明は、さらにまた別の実施の形態によれば、細胞内翻訳制御システムであって、L 7 A e と、第 1 の蛋白質とをコードするm R N A をコードする核酸配列を含むプラスミド ベクターを含んでなる。かかる細胞内翻訳制御システムは、L 7 A e に特異的に結合する 配列を有するm R N A であって、第 2 の蛋白質をコードするm R N A をコードする核酸配 列を含むプラスミドベクターをさらに含むことが好ましい。

【発明の効果】

【0022】

本発明の効果として、本発明のm R N A によれば、所望の遺伝子の翻訳反応を制御する ことができる。また、細胞内での翻訳制御、異なる遺伝子の翻訳抑制と活性化を一つの蛋 白質で制御する同時翻訳制御システムを可能にする。

【発明を実施するための最良の形態】

【0023】

以下に、本発明を、実施形態を挙げて詳細に説明する。しかし、以下の説明は本発明を 限定するものではない。

【0024】

30

10

20

20世紀後半から現在に至る、分子生物学の急速な発展により、膨大な数の遺伝子が同 定され、それらがコードする蛋白質を中心に、さまざまな生体高分子の機能が明らかにさ れて来た。さらにはDNA、RNAおよび蛋白質の詳細な立体構造が解明され、それらは 分子間の相互作用および選択的な化学反応により機能することが原子レベルで証明された 。よって、これら相互作用および化学反応を自在に制御することができれば、新しい病気 治療法や、エネルギー問題などを解決する方法が開発できるはずである。

【0025】

これを実現する手法としては、ターゲットとなる分子の機能を、分子間相互作用により 、直接制御する機能をもつ新しい分子をデザイン、作成し、それにより細胞や組織を制御 することがあげられる。RNAは多様な立体構造を形成できる。蛋白質に加え、RNAに は酵素機能をもつものがあり、その機能と構造の相関関係は、立体構造の解析を通じて詳 細に解明されて来た。また、4つの基本ユニットで作られるRNAは、シンプルな構築原 理により形成される。よって、ナノブロックとしての高度な立体構造を持つ分子の設計・ 構築に広くRNAを用いることができる。一方、20もの基本ユニットで作られる蛋白質 は、RNAよりはるかに多彩かつ複雑な立体構造および機能をもつ。現在、天然の蛋白質 の構造が、膨大な数、高分解能で解析されているものの、その分子設計・構築は難しく、 単純な構造を持つものに限られている。これらから、現時点では、ナノスケールで、複雑 な機能と構造を持つ3Dオブジェクトとしては、RNAやRNP(RNA - 蛋白質複合体)を設計・構築することが、現実的であり、具体的には「分子設計により作成する人工R NA」と「天然の構造既知の蛋白質」を組み合わせることが、分子デザインによる機能を もつ分子の開発へ向けての実現性の高い手法である。

【 0 0 2 6 】

本発明者らは、mRNAのリボソーム結合部位(RBS)の5'側またはオープンリー ディングフレームの5'側に、特定の蛋白質を結合させることによってリボソームによる 翻訳反応を阻害することを考え、本発明を完成するに至った。

[0027]

本発明は、第一実施の形態によれば、リボソーム結合部位の5[,]側に、RNA-蛋白質 複合体相互作用モチーフ由来の蛋白質結合モチーフを有するmRNAである。図1(A) は、本実施形態にかかるmRNAを模式的に表す図である。図1(A)中、mRNA1は 、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列2と、リボソーム結合部位3と

、オープンリーディングフレーム4とから構成される。

【0028】

[オープンリーディングフレーム]

本実施形態によるmRNA1は、リボソーム結合部位3を有し、翻訳機能を有する任意 のmRNAであってよく、オープンリーディングフレーム4の配列は特定の配列には限定 されない。したがって、オープンリーディングフレーム4の配列は、所望の蛋白質を発現 することができる遺伝子を有するものであってよく、特定の配列に限定されるものではな いが、開始コドンを有するものである。例えば、翻訳機能が作用しているかどうかを確認 する目的では、蛍光蛋白質をコードする遺伝子を有するオープンリーディングフレーム4 を備えるmRNAとすることができる。蛍光蛋白質としては、EGFP、GFP-UV、 DS-REDなどが挙げられ、これらの配列は一般に知られている。

40

50

10

20

30

【0029】

そのほかに、オープンリーディングフレーム4の配列は、特定の医薬物質として働く蛋 白質をコードするものであってもよい。具体的には、がん細胞アポトーシスを制御するB cl-2ファミリー蛋白質、がん細胞表面を特異的に認識する抗体などが挙げられるが、 これらには限定されない。

【 0 0 3 0 】

「RNA-蛋白質複合体相互作用モチーフ由来の塩基配列]

R N A - 蛋白質複合体相互作用モチーフ由来の塩基配列 2 は、特定の蛋白質が特異的に 結合する部位である。塩基配列 2 は、 R N A - 蛋白質複合体相互作用モチーフ由来の塩基

(6)

配列、あるいは当該塩基配列に変異を挿入した塩基配列を含んでもよい。 【0031】

本発明において、RNA - 蛋白質複合体相互作用モチーフ由来の塩基配列とは、天然の 、既知のRNA - 蛋白質複合体における、RNAと蛋白質との相互作用モチーフの、RN A側の配列として知られている塩基配列と、試験管内進化法により得られた人工的なRN A - 蛋白質複合体相互作用モチーフにおけるRNA側の配列である塩基配列とが含まれる 。RNA - 蛋白質複合体とは、生体において多数確認されている蛋白質とRNAとの会合 体であり、複雑な構造を持つ3Dオブジェクトである。

【0032】

天然のRNA-蛋白質複合体相互作用モチーフ由来の塩基配列は、通常、約10~80塩 10 基で構成されており、特定の蛋白質の特定のアミノ酸配列と、非共有結合的に、すなわち 水素結合により、特異的な結合を形成することが知られている。このような天然のRNA -蛋白質複合体相互作用モチーフ由来の塩基配列は、以下の表1及び表2、及びウェブサ イト上で利用できるデータベース:http://gibk26.bse.kyutec h.ac.jp/jouhou/image/dna-protein/rna/rna .htmlから選択することができる。本実施形態において好ましく用いられるRNA-蛋白質相互作用モチーフは、mRNAの翻訳機能を阻害するような立体構造を有するもの である。阻害することができる立体構造とは、RNA-蛋白質相互作用の親和性が高く、 リボソームとmRNAの相互作用に競合できる構造をいう。具体的には、蛋白質-RNA 相互作用モチーフのKdが、約0.1nM~約1µM程度のものをいうが、かかるKdの 20 範囲には限定されない。

【 0 0 3 3 】

RNA 名	蛋白質名	Kd	文献
5S RNA (Xenopus laevis oocyte)	SRI	$0.64 \pm 0.10 \text{ nM}$	Nat Struct Biol. 1998 Jul;5(7):543-6
5S RNA (Xenopus laevis oocyte)	5R2	$0.35 \pm 0.03 \text{ nM}$	Nat Struct Biol. 1998 Jul;5(7):543-6
dsRNA	B2	$1.4 \pm 0.13 \text{ nM}$	Nat Struct Mol Biol. 2005 Nov;12(11):952-7
RNA splicing motif with UGCAUGU element	Fox-1	0.49 nM at 150mM salt	EMBO J. 2006 Jan 11;25(1):163-73.
TGE	GLD-1	9.2 ± 2 nM	J Mol Biol. 2005 Feb 11;346(1):91-104.
sodB mRNA	Hfq	1.8 nM	EMBO J. 2004 Jan 28;23(2):396-405.
RyhB (siRNA)	Hfq	1500 nM	Annu Rev Microbiol. 2004;58:303-28
mRNA	HuD	$0.7 \pm 0.02 \text{ nM}$	Nat Struct Biol. 2001 Feb;8(2):141-5
S domain of 7S RNA	human SRP19		RNA. 2005 Jul;11(7):1043-50. Epub 2005 May 31
Large subunit of SRP RNA	human SRP19	2 nM	Nat Struct Biol. 2001 Jun;8(6):515-20
23S rRNA	L1		Nat Struct Biol. 2003 Feb;10(2):104-8
23S rRNA	L11		Nat Struct Biol. 2000 Oct;7(10):834-7
5S rRNA	L18		Biochem J. 2002 May 1;363(Pt 3):553-61
23S rRNA	L20	$13 \pm 2 \text{ nM}$	J Biol Chem. 2003 Sep 19;278(38):36522-30.
Own mRNA site1	L20	88 ± 23 nM	J Biol Chem. 2003 Sep 19;278(38):36522-30.
Own mRNA site2	L20	63 ± 23 nM	Mol Microbiol. 2005 Jun;56(6):1441-56
23S rRNA	L23		J Biomol NMR. 2003 Jun;26(2):131-7
5S rRNA	L25		EMBO J. 1999 Nov 15;18(22):6508-21
Own mRNA	L30		Nat Struct Biol. 1999 Dec;6(12):1081-3.
mRNA	LicT		EMBO J. 2002 Apr 15;21(8):1987-97
Own mRNA	MS2 coat	$39 \pm 5 \text{ nM}$	FEBS J. 2006 Apr;273(7):1463-75
Stem-loop RNA motif	Nova-2		Cell. 2000 Feb 4;100(3):323-32
SL2	Nucleocapsid	$110 \pm 50 \text{ nM}$	J Mol Biol. 2000 Aug 11;301(2):491-511
Pre-rRNA	Nucleolin		EMBO J. 2000 Dec 15;19(24):6870-81
	p19	$0.17 \pm 0.02 \text{nM}$	Cell. 2003 Dec 26;115(7):799-811
Box C/D	L7Ae	0.9 ± 0.2 nM	RNA. 2005 Aug;11(8):1192-200.

(8)

18H

【0034】

20

10

30

RNA 名	蛋白質名	Kd	文献
siRNA with the characteristic two-base 3' overhangs	PAZ(PiWi Argonaut and Zwille)		Nat Struct Biol. 2003 Dec;10(12):1026-32.
dsRNA	Rnase III		Cell. 2006 Jan 27;124(2):355-66
HIV-1 RRE (IIB)	RR1-38	3-8 nM	Nat Struct Biol. 1998 Jul;5(7):543-6
Own mRNA	S15	5 nM	EMBO J. 2003 Apr 15;22(8):1898-908
16S rRNA	S15	6 nM	Nat Struct Biol. 2000 Apr;7(4):273-277.
Own mRNA	S15	43 nM	EMBO J. 2003 Apr 15;22(8):1898-908
16S rRNA	S4	$6.5~\mu M$ in $4^\circ C,~1.7~nM$ in $42^\circ C$	J Biol Chem. 1979 Mar 25;254(6):1775-7
16S rRNA	S4	18 µM	J Biol Chem. 1979 Mar 25;254(6):1775-7
16S rRNA	S8	26 ± 7 nM	J Mol Biol. 2001 Aug 10;311(2):311-24
mRNA	S8	200 nM	RNA. 2004 Jun;10(6):954-64
mRNA	SacY	1400 nM	EMBO J. 1997 Aug 15;16(16):5019-29
SnRNA	Sm		Cold Spring Harb Symp Quant Biol. 2006;71:313-20.
tmRNA	SmpB	21 ± 7 nM	J Biochem (Tokyo). 2005 Dec;138(6):729-39
TD3 of tmRNA	SmpB	650 nM	J Biochem (Tokyo). 2005 Dec;138(6):729-39
U1 snRNA	snRNP UIA	0.032 ± 0.007 nM (salt dependence)	Nat Struct Biol. 2000 Oct;7(10):834-7
S domain of 7S RNA	SRP54	500 nM	RNA. 2005 Jul;11(7):1043-50.
TAR	Tat	200-800 nM	Nucleic Acids Res. 1996 Oct 15;24(20):3974-81
BIV TAR	Tat	1.3 nM or 8 nM or 60 nM (Mg の違いで変わる)	Mol Cell. 2000 Nov;6(5):1067-76
tRNA ^{Thr}	ThrRS	500 nM	Nat Struct Biol. 2002 May;9(5):343-7
thrS mRNA operator	ThrRS	10 nM	Trends Genet. 2003 Mar;19(3):155-61
Single stranded mRNA	TIS11d		Nat Struct Mol Biol. 2004 Mar;11(3):257-64.
PSTVd	Virp1	500 nM	Nucleic Acids Res. 2003 Oct 1;31(19):5534-43
RNA hairpin; Smaug recognition element (SRE)	Vts1p	30 nM	Nat Struct Mol Biol. 2006 Feb;13(2):177-8.
λ BoxB	λN	90 Mu	Cell. 1998 Apr 17;93(2):289-99

(9)

[0035]

人工のRNA-蛋白質複合体相互作用モチーフ由来の塩基配列とは、人工的に設計した 50

10

20

30

RNA-蛋白質複合体における、RNAと蛋白質との相互作用モチーフの、RNA側の塩 基配列である。このような塩基配列は、通常、約10~80塩基で構成されており、特定 の蛋白質の特定のアミノ酸配列と、非共有結合的に、すなわち水素結合により、特異的な 結合を形成するように設計する。このような人工的なRNA-蛋白質複合体相互作用モチ ーフ由来の塩基配列としては、アポトーシス誘導蛋白質Bcl-2ファミリーに特異的に 結合するRNAアプタマーや、がん細胞表面抗原を特異的に認識するRNAアプタマーな どが挙げられるが、これらには限定されない。また、以下の表3に挙げる塩基配列もしら れており、これらもまた本発明のRNA-蛋白質複合体相互作用モチーフ由来の塩基配列 2として用いることができる。

【0036】

RNA 名	蛋白質名	Kd	文献
Rev aptamer 5	Rev	190 nM	RNA. 2005 Dec;11(12):1848-57
Aptamer	p50	5.4 ± 2.2 nM	Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9268-73.
BMV Gag aptamer	BMV Gag	20 nM	RNA. 2005 Dec;11(12):1848-57
BMV Gag aptamer	CCMV Gag	260 nM	RNA. 2005 Dec;11(12):1848-57
CCMV Gag aptamer	CCMV Gag	280 nM	RNA. 2005 Dec;11(12):1848-57
CCMV Gag aptamer	BMV Gag	480 nM	RNA. 2005 Dec;11(12):1848-57

(11)

40

20

10

人工のRNA-蛋白質複合体は、分子デザイン方法と試験管内進化法を併用することで 、作成することができる。試験管内進化法では、様々な配列多様性をもつ分子ライブラリ ーから、機能性RNAを選別し、その遺伝子(DNA)を増幅、転写するといった反応を 繰り返すことで、アプタマーやリボザイムを得ることができる。従って、分子デザインで あらかじめ目的の機能構造をもったRNPに適応したRNA-蛋白質相互作用モチーフを 天然RNP分子から抽出、または試験管内進化法により人工的に作成することが可能とな る。

【0038】

本実施形態において、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列2は、その塩基配列の由来となるRNA-蛋白質複合体の解離定数Kdが、約0.1nM~約1µ ¹⁰ M程度であるものが好ましい。この理由は、リボソームとmRNAとの相互作用と競合す るに十分な親和性が必要となるからである。

【0039】

具体的なRNA - 蛋白質複合体相互作用モチーフ由来の塩基配列 2 としては、RNAの メチル化やシュードウリジン化といったRNA修飾に関わることが知られているL7Ae (Moore T et al., Structure Vol. 12, pp. 807-818 (2004))が結合する塩基配列である、5'-GGGCGUGAU GCGAAAGCUGACCCC-3'、アミノアシル化を行う酵素であって、自身のmR NAに結合し、翻訳を阻害するフィードバック阻害を持つことが知られているThreo nyl-tRNA synthetase(Cell (Cambridge, Mas s.) v97, pp.371-381 (1999))が結合する塩基配列である、 5'-GGCGUAUGUGAUCUUUCGUGUGGGUCACCACUGCGCC -3'などの塩基配列が挙げられるが、これらには限定されない。

[0040]

また、癌細胞特異的な内在性蛋白質であるBcl-XLに特異的に結合するBcl-XLアプタマーの蛋白質と相互作用する部分を、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列2として使用することもできる。このようなBcl-2ファミリーCED-9由来のRNA-蛋白質複合体相互作用モチーフ由来の塩基配列2の塩基配列は、R9-2;5'-GGGUGCUUCGAGCGUAGGAAGAAGCCCGGGGGCUGCAGAUAAUGUAUAGC-3'であり、Yang C, et al., JBiol Chem. 2006 ;281(14):9137-44. に、詳述されている。そのほかにも、NF-kappaB に結合するRNA配列のアプタマー由来の塩基配列を、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列2として用いることができる。

[0041]

RNA-蛋白質複合体相互作用モチーフ由来の塩基配列2は、mRNA1のリボソーム 結合部位3の5[']側に組み込む。mRNAのリボソーム結合部位の5[']側とは、リボソー ム結合部位から5[']側に向かって2塩基以上10塩基以下離れた個所をいう。図1(A) においては、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列2とリボソーム結合 部位3との間に存在していてもよい塩基配列を線で記載しているが、本実施形態において 、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列2とリボソーム結合部位3との あいだに存在してもよい塩基配列は、特定の塩基配列に限定されるものではない。 【0042】

また、本実施形態にかかるmRNA1においては、RNA-蛋白質複合体相互作用モチ ーフ由来の塩基配列2のさらに5'側である5'末端に、ステム・ループ構造を形成する 配列を有していてもよい(図示せず)。mRNA1の転写効率を高めるためである。ステ ム・ループ構造を形成する配列の例としては、通常知られている構造が挙げられ、当業者 であれば、常法にしたがって、転写効率を高めるための任意のステム構造を5'末端に導 入することができる。

【0043】

20

30

次に、第一実施形態による翻訳制御のメカニズムにつき、具体的に説明する。 [ONからOFFへの翻訳制御]

図1(A)に示す状態において、RNA - 蛋白質複合体相互作用モチーフ由来の塩基配 列2に特異的に結合する蛋白質が存在しない場合には、約33~41、 pH6.0~8 .0の条件下で、リボソームが存在すれば、リボソームは、リボソーム結合部位3に自由 に結合することができる。よって、mRNAの翻訳は、通常通り行われることになる。こ こに、RNA - 蛋白質複合体相互作用モチーフ由来の塩基配列2に特異的に結合する蛋白 質5を添加する。図1(B)は、蛋白質5が存在する場合のmRNA1と蛋白質との関係 を示す。図1(B)において、蛋白質5は、RNA - 蛋白質複合体相互作用モチーフ由来 の塩基配列2に特異的に結合している。そして、蛋白質5による立体障害のため、リボソ ーム結合部位3が遮蔽されている。このため、リボソームが存在しても、リボソーム結合 部位3に結合することができない。よって、mRNA1による翻訳反応が機能しなくなる 。このように、特定の蛋白質5を、蛋白質が存在しないmRNA1の系(図1(A)の状 態)に添加することで、mRNA1による翻訳反応を、ONからOFFへと制御すること ができる。

(13)

[0044]

また、同様のONからOFFへの翻訳制御は、系に特定の蛋白を添加させる場合だけで なく、例えば、生体において内在的に発現する蛋白質に応答させる場合にも行うことが可 能である。具体的には、例えば、ある種のがん細胞で特異的に発現する蛋白質(Bcl-×Lなど)に対するアプタマーをRNA-蛋白質複合体相互作用モチーフ由来の塩基配列 2として有し、オープンリーディング配列として、蛍光蛋白質をコードする配列を有する mRNA1を生体の細胞に導入しておけば、ある種のがん細胞で特異的に発現する蛋白質 を発現させている細胞においてのみ、蛍光蛋白質の発現がONからOFFへと制御される ため、蛍光を発しない細胞、すなわち、がんを産生している細胞を特異的に検出すること ができる。

【0045】

したがって、このようなmRNAと、蛋白質とは、翻訳制御システムとして用いること ができる。また、上記メカニズムに照らして、mRNAと、蛋白質とを接触させることに より、翻訳制御方法を提供することが出来る。さらに、mRNAと、蛋白質との複合体を 、そのような翻訳システムまたは翻訳制御方法において用いることもできる。また、これ らを用いることで、任意の基質蛋白質の入力情報を、任意の目的蛋白質の出力情報に変換 する人工情報変換システムの構築が可能となる。

【0046】

本発明の第一実施形態によるmRNAによれば、上述のように翻訳反応の制御が可能に なる。また、第一実施形態によるmRNAの応用的な使用態様として、RNA-蛋白質複 合体相互作用モチーフ由来の塩基配列2を、特定の疾患により生成される蛋白質が特異的 に結合するように設計し、オープンリーディングフレームにおいて、当該疾患を緩和し、 あるいは治療する蛋白質をコードする遺伝子を組み込むように設計したmRNAを、特定 の疾患のための医薬として使用することができる。

【0047】

本発明の第二実施形態によれば、オープンリーディングフレーム内部にRNA-蛋白質 複合体相互作用モチーフ由来の塩基配列を有するmRNAである。図2は、本実施形態に かかるmRNAを模式的に表す図である。図2中、本実施形態によるmRNA1aは、オ ープンリーディングフレーム4aと、その内部にあるRNA-蛋白質複合体相互作用モチ ーフ由来の塩基配列2aとから構成される。

[0048]

かかる実施形態は、上述のリボソーム結合部位が存在しないmRNA、具体的には、大 腸菌などのバクテリア以外のmRNAにおける翻訳制御にも好ましく用いられるが、リボ ソーム結合部位が存在するmRNAにおいても同様に用いられる。図2中、リボソーム結 合部位の記載を省略したが、本実施形態は、リボソーム結合部位の存在を排除するもので 10

20

はない。

【0049】

本実施形態においては、オープンリーディングフレーム4 a の内部に、 R N A - 蛋白質 複合体相互作用モチーフ由来の塩基配列2 a が設けられる。 R N A - 蛋白質複合体相互作 用モチーフ由来の塩基配列2 a の位置は、オープンリーディングフレーム4 a の内部であ れば任意の場所とすることができるが、例えば、開始コドンAUGの3 '側に隣接して配 置することができる。また、開始コドンAUGの3 '側に開始コドンから約1~20塩基 を介して配置してもよく、特には、開始コドンAUGの3 '側に開始コドンから約1~20塩基 を介して配置することもできる。なお、 R N A - 蛋白質複合体相互作用モチーフ由 来の塩基配列2 a を、オープンリーディングフレーム4 a の内部に挿入する場合に、読み 枠がずれないようにするために、挿入される塩基配列が、 3 の倍数になるように、必要に 応じて、モチーフ由来の塩基配列2 a に、 1 塩基、もしくは2 塩基を加えることができる

【0050】

図2に示す状態において、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列2a に特異的に結合する蛋白質が存在しない場合には、36~42、pH6~7.6の条件 下で、リボソームが存在すれば、mRNA1aの翻訳が開始される。しかし、蛋白質が存 在する場合には、蛋白質がRNA-蛋白質複合体相互作用モチーフ由来の塩基配列2aに 特異的に結合し、隣接するオープンリーディングフレーム4aを、立体的に遮蔽する。こ のため、リボソームによる翻訳が抑制される。

【0051】

第二実施形態によれば、オープンリーディングフレーム4 a を、立体的に遮蔽することで、mRNAの翻訳の制御が可能となる。なお、本実施形態によるmRNAを用いても、mRNAと蛋白質とを含む翻訳制御システム、mRNAと蛋白質との複合体、翻訳制御方法が第一実施形態と同様に実施可能である。

【0052】

本発明は第三実施形態によれば、リボソーム結合部位の5 '側、またはオープンリーディングフレームの5 '側内部に、RNA - 蛋白質複合体相互作用モチーフ由来の塩基配列 に相補的な塩基配列を有するmRNAである。図3(A)は、本実施形態にかかるmRN Aを模式的に表す図である。図3(A)中、本実施形態によるmRNA1bは、オープン リーディングフレーム4bと、その内部にあるRNA - 蛋白質複合体相互作用モチーフ由 来の塩基配列に相補的な塩基配列2bとから構成される。この場合にも、必要に応じて、 挿入される塩基配列が、3の倍数になるように、相補的な塩基配列2bに、1塩基、もし くは2塩基を加えることができる。

[0053]

本実施形態によるmRNA1bは、第二実施形態におけるRNA-蛋白質複合体相互作 用モチーフ由来の塩基配列が、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列に 相補的な塩基配列2bとなっている点において、第二実施形態のmRNAと異なる。ここ で、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列に相補的な塩基配列2bとは 、完全に相補的な配列のみならず、変異が挿入されている配列を含んでもよい場合もある

【0054】

[OFFからONへの翻訳制御]

次に、本実施形態にかかるmRNA1 bを用いた、mRNAのOFFからONへの翻訳 制御について説明する。図3(A)に示す状態において、mRNA1 bのRNA-蛋白質 複合体相互作用モチーフ由来の塩基配列に相補的な塩基配列2 bには、mRNA1 bのR NA-蛋白質複合体相互作用モチーフ由来の塩基配列を有する競合RNA6を結合させて おく。細胞内においては、図3(B)における蛋白質5 bが存在しない場合には、競合R NA6がmRNA1 b中の配列である2 bに結合した状態になっており、図3(A)に示 す状態になる。この競合RNA6は、RNA-蛋白質複合体相互作用モチーフ由来の塩基 10

20

配列と完全に同一でなくても、変異を含んでも良い場合がある。この状態においては、リ ボソームが存在しても翻訳は開始しない。競合RNA6が、リボソームのmRNA1bヘ の結合を遮蔽しているためである。

[0055]

この系に、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列を有する競合RNA 6に特異的に結合する蛋白質5bを添加する。添加した状態を図3(B)に示す。細胞内 においては、蛋白質5bが発現すると、ここでいう図3(B)の状態になる。ここでは、 蛋白質 5 b を添加することによって、蛋白質結合モチーフ由来の配列をもつ競合 R N A 6 とmRNA1bとの特異的な結合を阻害させることができる。特定の蛋白質5bに反応し たRNA6とmRNA1bとの結合の阻害により、リボソームによるオープンリーディン グフレーム4 bの翻訳反応が開始される。このように、特定の競合 R N A 6 とm R N A 1 bとが結合している系(図3(A)の状態)に蛋白質5bを添加することで、mRNA1 りによる翻訳反応を、OFFからONへと制御することができる。 [0056]

なお、図3においては、オープンリーディングフレーム4b内にRNA-蛋白質複合体 相互作用モチーフ由来の塩基配列に相補的な塩基配列2bを設ける実施形態を示したが、 本実施形態の変形例として、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列に相 補的な塩基配列は、リボソーム結合部位の5~側に設けることもできる。リボソーム結合 部位の5 '側に設ける態様は、第一実施形態においてRNA-蛋白質複合体相互作用モチ ーフ由来の塩基配列をリボソーム結合部位の5[,]側に設ける態様と同様であって良い。そ の場合も、上記第三実施形態と同様に作用させてOFFからONへの翻訳制御を行うこと ができる。また、本実施形態によるmRNAを用いても、mRNAと蛋白質とを含む翻訳 制御システム、mRNAと蛋白質との複合体、翻訳制御方法が実施可能である。

20

30

40

10

[0057]

本発明は、第4実施形態によれば、第3実施形態の変形であって、OFFからONへ、 及びONからOFFへの同時翻訳制御システムに関する。

本発明の第4実施形態による同時翻訳制御システムは、第3実施形態において説明した 、図3(A)に示すmRNA1b、競合RNA6、競合RNA6に特異的に結合する蛋白 質5bに加え、リボソーム結合部位の5[°]側、またはオープンリーディングフレームの5 '側内部に、競合RNA6と同一の配列を有し、mRNA1bとは異なる遺伝子をコード する第2のmRNAを含んでなる。第2のmRNAは競合RNA6と同一の配列を有する ものであるから、蛋白質5bに特異的に結合する。すなわち、蛋白質5bの存在により、 翻訳が阻害されるタイプのmRNAである。以下の説明において、図3(A)に示すmR NA1 bを、第1のmRNAと指称する。

[0058]

「OFFからONへ、及びONからOFFへの同時翻訳制御]

ここで、第1のmRNA1b、競合RNA6が存在する系に、蛋白質5bを添加すると 、第3の実施形態で説明したように、OFFからONへの翻訳制御が実現される。さらに 、過剰の蛋白質5bが存在する状態で、この系に第2のmRNAが存在する場合、蛋白質 5 b が 第 2 の m R N A に 特異的 に 結合 し、 翻訳 を 妨害 する た め、 第 2 の m R N A の 翻訳 は 制御され、ONからOFFへの翻訳制御が実現されることになる。このように、第4の実 施形態によれば、OFFからONへ、及びONからOFFへの同時翻訳制御が可能となる

[0059]

例えば、第1のmRNA1bと、第2のmRNAとが、異なる種類の蛍光蛋白質遺伝子 をORFに有する場合、一方ではOFFからONへ、他方ではONからOFFへの翻訳制 御が行われ、その観察は、一方の蛍光蛋白質遺伝子をEGFP(緑色)、他方をDsRe d(赤色)にすることにより、蛍光顕微鏡等を用いて容易に行うことができるため、有用 であると考えられる。

[0060]

本発明は第5実施形態によれば、細胞内翻訳制御システムであって、第1から第4の実施形態において用いたRNA及び/または蛋白質をコードする核酸を含むベクターを含む ものである。

【0061】

翻訳制御は、特にがん細胞中で好ましく行うことができ、蛋白質の発現抑制及び発現促 進のいずれも、上記ONからOFFへの翻訳制御、OFFからONへの翻訳制御の手順に 従って行うことができる。また、そのような制御が行われたかどうかは、マーカー蛋白質 を発現させることで確認することができる。この際、細胞内へのmRNA及び蛋白質を発 現する遺伝子の導入は、プラスミドベクターによって行うことができる。

【0062】

所望のRNAまたは蛋白質を発現させるプラスミドベクターを作成する技術は当業者に は既知であり、慣用的な手段によってベクターを作成することができる。たとえば、L7 A e を発現するベクターは、ヒト細胞内蛋白質発現に慣用的に用いられるベクター内部、 CMVプロモーター下流にL7Aeをコードする遺伝子を挿入することで、構築できる。 一方、L7Aeが特異的に結合する配列として知られているBoxC/Dまたは、これを 変異させたBoxC/DmutをEGFPオープンリーディングフレームの5 '側内部挿 入したmRNAを発現するベクターも、該当する遺伝子をPCRにより増幅し、ヒト細胞 内蛋白質発現に慣用的に用いられるベクター内部に挿入することで作成できる。さらに、 目的のタイミングで細胞内にL7Aeを発現させたい場合は、テトラサイクリン(Tet)の培地への付加によりL7Aeを発現できるベクターを作成することもできる。このよ うな、テトラサイクリンの培地への付加によりL7Aeを発現できるペクターは、Tet オペレーター配列の下流にL7Aeをコードする遺伝子を含み、かつTetリプレッサー を恒常的に発現するベクターまたは細胞を構成要素として含むものである。

【0063】

本発明の第5実施形態によれば、細胞内での翻訳制御が可能になる。特にがん細胞などの細胞内での翻訳制御は、治療に応用できる可能性が高く、非常に有用な手段となりうる

0

[0064]

本発明は第6実施形態によれば、翻訳制御システムであって、タグ配列としてのL7A eと、第1の蛋白質とを含む融合蛋白質を含んでなる。

【0065】

かかる融合蛋白質は、具体的には、L7Aeと、他の任意の蛋白質である第1の蛋白質 とから構成される融合蛋白質である。以下において、このような融合蛋白質を、タグ配列 融合型蛋白質ともいう。任意の蛋白質である第1の蛋白質としては、例えば、蛍光蛋白質 、アポトーシス誘導蛋白質、アポトーシス抑制蛋白質、細胞小器官局在蛋白質等が挙げら れるが、これらには限定されない。理論的には、所望の蛋白質とすることができる。 【0066】

本実施形態における翻訳制御システムは、L7Aeに特異的に結合する配列と、第2の 蛋白質をコードする配列とを有するmRNAをさらに含んでなる。すなわち、上記融合蛋 白質は、好ましくはmRNAとともに用いられる。mRNA中の、L7Aeに特異的に結 合する配列は、好ましくはBox C/D配列である。Box C/D配列に、Kink ・turnモチーフの構造を維持する範囲内の変異を導入したものであってもよい。いっ ぽう、このmRNAにおいてコードされる第2の蛋白質は、好ましくは融合蛋白質とは異 なる蛋白質である。理論的には、第2の蛋白質は、任意の蛋白質であってよいが、融合蛋 白質を構成する第1の蛋白質との組み合わせで決定され、第1の蛋白質が赤色蛍光蛋白質 の場合には、mRNAにおいてコードされる第2の蛋白質は緑色蛍光蛋白質とすることが 好ましく、第1の蛋白質がアポトーシス誘導蛋白質の場合には、mRNAにおいてコード される第2の蛋白質はアポトーシス抑制蛋白質とすることが好ましい。そのほかにも、第 1の蛋白質の発現により第2の蛋白質の翻訳を抑制することが好ましい、細胞内シグナル 伝達蛋白質の一部などのいくつかの組み合わせが可能である。

10

20

[0067]

このような、タグ配列融合型蛋白質と、mRNAとは、所望の第1の蛋白質と、第2の 蛋白質との遺伝子がわかれば、既知の方法にしたがって作成することができる。また、細 胞内における翻訳制御システムに用いる場合は、これらを発現するプラスミドベクターを 調製し、細胞内に導入することができる。プラスミドベクターの作成については、上記第 5の実施形態において説明したのと同様に、所望の遺伝子を挿入するように実施すること ができる。

[0068]

次に、このようなタグ配列融合型蛋白質と、mRNAとにより実現される、翻訳制御シ ステムの作用について説明する。ここでは、タグ配列融合型蛋白質が、L7Aeと赤色蛍 光蛋白質との融合蛋白質であり、mRNAが、Box C/D配列を有し、緑色蛍光蛋白 質をコードする場合に関して説明するが、本発明はこれに限定されるものではない。この mRNAを発現するプラスミドベクターを細胞に導入すると、タグ配列融合型蛋白質が存 在しない場合には、mRNAが翻訳されて、緑色蛍光蛋白質を発現する。この細胞に、タ グ配列融合型蛋白質を導入するために、タグ配列融合型蛋白質をコードする核酸配列を有 するプラスミドベクターを細胞に導入する。すると、細胞内で、タグ配列融合型蛋白質が 発現する。そして、発現したタグ配列融合型蛋白質はmRNAに結合する。より具体的に 言うと、タグ配列融合型蛋白質を構成するL7Aeが、mRNA上のBox C / D 配列 に特異的に結合する。すると、mRNAの翻訳が抑制されて、緑色蛍光蛋白質の産生が抑 制されることになる。そのいっぽうで、タグ配列融合型蛋白質は産生され続けるので、タ 20 グに融合した蛋白を構成する赤色蛍光蛋白質が増加していく。これを蛍光顕微鏡で観察す ると、時間の経過とともに、緑色が薄くなり、赤色が濃くなる。このように、タグ配列融 合型蛋白質と、mRNAとの組み合わせを用いれば、所定の遺伝子の発現に応答して、目 的遺伝子の翻訳を行わせる翻訳制御システムが実現できる。

[0069]

第6実施形態によれば、L7Aeをタグ配列として蛋白質に付加することで、任意の遺 伝子の発現、例えば赤色蛍光蛋白質の発現に応答して、目的遺伝子の翻訳、例えば緑色蛍 光蛋白質の翻訳を抑制するシステムを細胞内で構築することができる。さらに、L7Ae タグ配列に融合する蛋白質を例えばアポトーシス抑制蛋白質にし、制御する目的遺伝子を アポトーシス誘導蛋白質にすれば、がん細胞のようにアポトーシス抑制蛋白質を過剰発現 した細胞で、効果的にアポトーシスを誘導できるような、シグナル伝達回路のリワイアリ ングが可能となる。このような、所定の遺伝子の発現に応答して、目的遺伝子の翻訳を行 わせる翻訳制御システムは、人工遺伝子回路の構成ツールとして有望である。

[0070]

[実施例]

本発明にかかる蛋白質 - R N A 相互作用モチーフ(R N P モチーフ)を利用した蛋白質 応答翻訳制御システムは、天然から抽出、または人工的に作製したRNPモチーフを利用 し、翻訳反応をONからOFF、またはOFFからONに制御する技術である。具体的に は、ONからOFFへの制御はmRNAにRNA-蛋白質複合体相互作用モチーフ由来の 塩基配列を挿入し、目的蛋白質存在下で、蛋白質のmRNAへの結合によってリボソーム の結合や進行と競合し、翻訳阻害を起こすものである。OFFからONへの制御は、まず 、mRNAのオープンリーディングフレーム5'側に、RNA-蛋白質複合体相互作用モ チーフ由来の塩基配列のアンチセンス配列を挿入する。次に、RNA-蛋白質複合体相互 作用モチーフ由来の塩基配列からなるRNAを反応液に加えることで、mRNAに挿入さ れたアンチセンス鎖と相補鎖を形成し、翻訳が阻害される。そこに基質蛋白質を加えるこ とで、蛋白質結合モチーフからなるRNAのmRNAへの結合を阻害し、翻訳を活性化さ せるものである。本実施例では、一般的にL7Ae、ThrRSと呼ばれる蛋白質を利用 しているが、反応に利用できる蛋白質はL7Ae、ThrRSだけに限定されない。以下 具体的実験例を挙げる。

【実施例1】

10

30

[0071]

[翻訳制御に利用する、 R N A - 蛋白質複合体相互作用モチーフ(R N A 、蛋白質)の作 製]

[L7Ae結合RNA BoxC/Dの作製]

L7Ae結合RNA BoxC/D(配列番号5)はT7プロモーターを含むDNA鋳 型を作製し、T7 RNA polymeraseを用いた転写反応で作製した。詳細は 以下に示す。まず、DNAの作製に100µL反応液を調整した。反応液には、1ng BoxC/D template (5'-CTAATACGACTCACTATAGGC C A G A G T G G G C G T G A T G C A T G T C T A G G A A A C T A G A C A T G C T GACCCACTCTGGCC-3')(配列番号1)、10µM BoxC/D Fw d(5[']-CTAATACGACTCACTATAGGCCAG-3['])(配列番号2) 、BoxC/D Rev(5~-GGCCAGAGTGGGTCAGCAT-3~)(配 列番号3) 各5µL 、2.5mM dNTP(TAKARA)8µL、Ex taq

10×バッファー(TAKARA)10µL、Ex taq DNAポリメラーゼ(T AKARA)0.5µLが混合してあり、グラディエントマスターサイクラー(エッペン ドルフ社)を用いて94 30秒、53 30秒、72 1分で25サイクルを行 い、伸張させた(配列番号4)。反応後、フェノール処理、ジエチルエーテル処理、エタ ノール沈殿を行い、10µLの超純水に溶解し、転写の鋳型として用いた。転写の反応は ³² Pで放射性標識する場合には、40mM Tris・Cl (pH7.5)、5mM DTT、1mM スペルミジン、5mM MgCl₂、1.25mM ATP、1.25 mM CTP, 1.25 mM UTP, 0.25 mM GTP, $[^{32}P$ -]GTP(PerkinElmer), 20U RNase inhibitor(TOYOBO) 、35 ng/µL T7 RNA polymerase条件下で行い、100µLの系 に上記の鋳型 5 µ Lを使い、 3 7 、 3 時間から一晩で反応させた。非標識の場合は、 M EGAshortscript(商標)(Ambion)を用いて転写反応を行った。M EGAshortscriptを用いた転写反応は以下の通りである。超純水に溶解した 鋳型DNA 1µg、T7 10×Reaction Buffer 2µL、T7 A ТΡ Solution(75mM)2µL(CTP、GTP、UTPに関しても同様) 、T7 Enzyme Mix 2µLを混合し,超純水で全20µLにした反応液を3 7 で4時間から一晩反応させた。共に反応後は、TURBO DNase(MEGAs hortscript(商標)、Ambion)1µLを加え、37 で15分インキュ ベートし、鋳型DNAを分解させた。その後、フェノール処理、エタノール沈殿を行い精 製した。沈殿後、変性色素20μL(80% ホルムアミド、0.17% ΧC、 0. 27% BPB)に溶解させ、12% ポリアクリルアミド(29:1)変性ゲル電気泳 動で分離した。目的のサイズのゲルを切り出し、500µLの溶出緩衝液(0.3M 酢 酸ナトリウム(pH7.0))を加え、37 、一晩溶出を行った。溶出したRNAは再 びフェノール抽出、ジエチルエーテル抽出およびエタノール沈殿を行って精製した。 [0072]

30

10

20

40

L7Ae結合RNA Box C/D mini(配列番号9)、Box C/D m inimut(配列番号10)はBox C/D mini primer(5'-GG G T C A G C T T T C G C A T C A C G C C C T A T A G T G A G T C G T A T T A G C -3')(配列番号7)、Box C/D minimut primer(5'-GG G G C A G C T T T C G C A T G A C G C C C T A T A G T G A G T C G T A T T A G C -3')(配列番号8)をテンプレートとしてT7 RNA polymeraseを用 いた転写反応で作製した。反応は³²Pで放射性標識する場合には、0.75µM T7 primer(5'-GCTAATACGACTCACTATA-3')(配列番号6)、0.75μM テンプレート、40mM Tris・Cl (pH7.5)、5mM DTT、1mM スペルミジン、5mM MgCl₂、1.25mM ATP、1.25 m M C T P 、 1 . 2 5 m M U T P 、 0 . 2 5 m M G T P 、 [^{3 2} P -] G T P 50

[BoxC/D mini、Box C/D minimutの作製]

(PerkinElmer)、20U RNase inhibitor(TOYOBO)、35ng/µL T7 RNA polymerase条件で行い、100µLの系で、37、3時間から一晩で反応させた。非標識の場合は、MEGAshortscript(商標)(Ambion)を用いて転写反応を行った。MEGAshortscriptを用いた転写反応は以下の通りである。超純水に溶解した100µM T7 primer 0.75µL、100µM Box C/D mini 0.75µL、T7 10×Reaction Buffer 2µL、T7 ATP Solution(75mM)2µL(CTP、GTP、UTPに関しても同様)、T7 Enzyme Mix 2µLを混合し,超純水で全20µLにした反応液を37 で4時間から一晩反応させた。反応後は、上記と同様の方法で15% ポリアクリルアミド(29:1)変性ゲル電気泳動を使い精製した。

(19)

【0073】

[ThrRS結合RNA Domain234、Domain2の作製] ThrRS結合RNA Domain234(配列番号15)、Domain2(配列 番号19)はBox C/Dと同様、T7プロモーターを含むDNA鋳型を作製し、T7 RNA polymeraseを用いた転写反応で作製した。まず、DNAの作製に1 00μL反応液を調整した。Domain234の反応液には、10ng/μL Thr RS Domain234 template(5'-GATTGCGAACCAATT TAGCATTTGTTGGCTAAATGGTTTCGCAATGAACTGTTAA TAAACAAATTTTTCTTTGTATGTGATCTTTCGTGTGGGTC ACCA-3')(配列番号11)1µL、10µM ThrRS Domain234 Fwd (5'-CTAATACGACTCACTATAGGATTGCGAACCAA TTTAGCATTTGTTGG-3')(配列番号12)、ThrRS Domain 234 Rev (5'- TTTGCAGTGGTGACCCACACGAAAGATC AC-3')(配列番号13)各5µL、2.5mM dNTP(TAKARA) μL 、Ex taq 10×バッファー(TAKARA) 10μL、Ex taq DNAポリメラーゼ(TAKARA) 0.5µLが混合してあり、グラディエントマス ターサイクラー(エッペンドルフ社)を用いて94 30秒、55 30秒、72 1分で25サイクルを行い、伸張させた(配列番号14)。Domain2の反応液に は、10μM ThrRS Domain2 Fwd(5'-CTAATACGACTC A C T A T A G G C G T A T G T G A T C T T T C G T G T G G G T C A C - 3 ')(配 列番号16)、ThrRS Domain2 Rev(5'-GGCGCAGTGGTG ACCCACACGAAAGATCAC-3')(配列番号17) 各5µL 、2.5 mM dNTP(TAKARA) 8μL 、Ex taq 10×バッファー(TAK ARA) 10µL、Ex taq DNAポリメラーゼ(TAKARA) 0.5µL が混合してあり、グラディエントマスターサイクラー(エッペンドルフ社)を用いて94 30秒、52 30秒、72 1分で10サイクルを行い、伸張させた(配列番 号18)。反応後、共にフェノール処理、ジエチルエーテル処理、エタノール沈殿を行い 、10µLの超純水に溶解し、転写の鋳型として用いた。転写の反応、精製は、Box C/Dと同様の方法で、Domain234は12% ポリアクリルアミド(29:1) 変性ゲル、Domain2は15% ポリアクリルアミド(29:1) 変性ゲルを用 いて行った。

【0074】

[L7Aeの作製]

RNA-蛋白質複合体相互作用モチーフの蛋白質、L7AeはAlexander H uttenhofer博士から譲り受けたプラスミドを利用して発現させた(配列番号6 6)。そのプラスミドはA.fulgidusからL7Ae Fwd(5'-CTGA CATATGTACGTGAGATTTGAGGTTC-3')(配列番号64)、L7 Ae Rev(5'-CTGACTCGAGTTACTTCTGAAGGCCTTTAA TC-3')(配列番号65)のプライマーを使って増幅したインサートを、制限酵素N 10

20

d e I およびX h o I で切断した p E T - 2 8 b + ベクター (Novagen)に組み込 み作製されていた。発現精製法は以下に示す。 【0075】

まず、大腸菌BL21(DE3)pLysSに形質転換した。得られたコロニーを25 µg/mLカナマイシン、100µg/mLクロラムへェニコールを含むLB 培地5m Lに植菌し、37 で一晩振蕩培養した。続いて培養液全量を25µg/mLカナマイシ ン、100µg/mLクロラムフェニコールを含むLB培地500mLに植え継いだ。O . D. ₆₀₀が0.6~0.7になるまで37 で振蕩培養し、その後、発現誘導をする ため1M IPTGを500µL加え(終濃度1mM)、30 で一晩振蕩培養した。遠 心分離(4 、6000rpm、20分)で菌体を回収し、ソニケーションバッファー(50mM Na phosphate、0.3M NaCl、pH8.0)5mLを加え 、超音波処理を行い、菌体を破砕した。なお、超音波処理は、氷上で冷却後、15秒間超 音波を当てる、という操作を6回繰り返した。その後、80 15分で、不純蛋白質を 変性させた。遠心分離(4 、6000rpm 、20分)により、上清を回収し、ヒス チジンタグが付いた蛋白質をNi-NTAカラム(Qiagen)を用いてバッチ法によ り精製した。具体的には、まず上清とNi-NTA 1mLを混合し、4 、1時間撹拌 を行った。その後、カラムに充填し、washバッファー(50mM Na phosp hate、0.3M NaCl、20mM imidazole、pH8.0)4mLで 2回洗浄した。50mM、100mM、200mM、300mM imidazole溶 出バッファー(50mM Na phosphate、0.3 M NaCl рН8. 0 に i m i d a z o l e を 加えて 作製)を各1 m L 2 回 で 段階的に 溶出 させた。 確認は 17% SDS - PAGEにより行った。続いて、マイクロコンYM - 3(Millip ore)を用いて、蛋白質の濃縮行い、透析バッファー(20mM Hepes-KOH 、1.5mM MgCl₂、150mM KC1、5% グリセロール pH7.5)に 置換した。また、蛋白質の濃度はプロテインアッセイ(BIO-RAD)を用い、Bra d f o r d 法で決定した。

[0076]

[ThrRSの作製]

RNA-蛋白質複合体相互作用モチーフの蛋白質、ThrRSは清水義宏博士から譲り 受けたプラスミドを利用して発現させた(配列番号67)。そのプラスミドはE.col iから抽出したThrRSがpQE-30ベクター(Qiagen)に組み込み作製され ていた。発現精製法は以下に示す。

[0077]

まず、大腸菌M15(pREP4)に形質転換した。得られたコロニーを50µg/m Lアンピシリンを含むLB 培地3mLに植菌し、37 で一晩振蕩培養した。続いて培 養液全量を50μg/mLアンピシリンを含むLB培地50mLに植え継いだ。O.D. 600が0.4~0.6になるまで37 で振蕩培養し、その後、発現誘導をするため1 IPTGを25µL加え(終濃度0.5mM)、37 で一晩振蕩培養した。遠心分 Μ 離(4 、6000rpm、20分)で菌体を回収し、ソニケーションバッファー(50 mM Na phosphate、0.3M NaCl、pH8.0)5mLを加え、超 音波処理を行い、菌体を破砕した。なお、超音波処理は、氷上で冷却後、15秒間超音波 を当てる、という操作を6回繰り返した。その後、80 15分で、不純蛋白質を変性 させた。遠心分離(4 、6000rpm 、20分)により、上清を回収し、ヒスチジ ンタグが付いた蛋白質をNi-NTAカラム(Qiagen)を用いて上記と同様、バッ チ法により精製した。確認は8% SDS-PAGEにより行った。続いて、マイクロコ ンYM-30(Millipore)を用いて、蛋白質の濃縮行い、透析バッファー(2) 5 mM Hepes-KOH、5 mM MgCl₂、50 mM KCl、1 mM DTT 、5% グリセロール pH7.5)に置換した。また、蛋白質の濃度はプロテインアッ セイ(BIO-RAD)を用い、Bradford法で決定した。 【実施例2】

10

20

[0078]

[EMSA(Electrophoretic Mobility Shift Ass ay)によるRNP複合体形成の確認]

[Box C/D、BoxC/D mini、Box C/D mini mutのEM SA]

L7AeとBox C/D、BoxC/D mini、Box C/D mini m utの反応は最終濃度がそれぞれ10nM、25nM、25nM RNAで行った。反応 条件は10nM 25nM RNA、20mM Hepes - KOH、150mM KC 1、1.5mM MgCl₂、2mM DTT、0.001U/mL tRNA、3% グリセロール、0~500nM蛋白質となるよう、以下ように行った。まず³²Pで標識 したRNA 1µL を80 5分で変性した後、5×binding buffer (100mM Hepes - KOH(pH7.5)、750mM KCl、7.5mM MgCl₂、10mM DTT、0.005U/µL tRNA、15% グリセロール) 4µL、超純水を加えた。その後、蛋白質と混合し、全量を20µLとし、反応溶液 を氷上で60分間放置した。色素(0.25% BPB、0.25% XC、30% グ リセロール)を2µL加え、4 で、8% 非変性ポリアクリルアミドゲル電気泳動を3 ~4時間行った。その後、ゲルドライヤーでゲルを1時間乾燥させ、ゲルの放射線量の強 さをBio-Imaging Analyzer (BAS2500; 富士写真フィル ム)で解析した(図4、図5)。

【0079】

結果、Box C/D、Box C/D mini共にL7Ae蛋白質濃度に依存した バンドの上昇が確認された。これはBox C/DとL7Ae、Box C/D min iとL7Aeが結合することを示す。逆に変異体であるBox C/D minimut ではバンドの上昇が見られず、この蛋白質濃度ではL7Aeと結合しないことが示された

【0080】

[Domain234、Domain2のEMSA]

ThrRSとDomain234、Domain2の反応は最終濃度が20nM RN A、25mM Hepes - KOH、50mM KCl、5mM MgCl₂、1mM DTT、5% グリセロール、0~40µM蛋白質となるよう、以下の条件で行った。ま ず³²Pで標識した200nM RNA 4µL を80 5分で変性した後、5×b inding buffer(75mM Hepes - KOH、250mM KCl、2 5mM MgCl₂、5mM DTT、25% グリセロール)4µL、超純水を加えた 。その後、蛋白質と混合し、全量を20µLとし、反応溶液を氷上で60分間放置した。 色素(0.25% BPB、0.25% XC、30% グリセロール)を2µL加え、 4 で、12% 非変性ポリアクリルアミドゲル電気泳動を3~4時間行った。その後、 ゲルドライヤーでゲルを1時間乾燥させ、ゲルの放射線量の強さをBio-Imagin g Analyzer (BAS2500; 富士写真フィルム)で解析した(図6、図 7)。

【0081】

結果、ThrRS Domain234、Domain2共に、ThrRS蛋白質濃度 に依存したバンドの上昇が確認された。これはThrRS Domain234とThr RS、ThrRS Domain2とThrRSが結合することを示す。なかでもThr RS Domain2ではバンドのスーパーシフトが見られている。これは、Domai n2と結合したThrRSが二量化したために起こったと考えられるが、バンドのスメア 具合からもDomain234の方がDomain2だけよりも強く結合することがわか る。

【実施例3】

[0082]

[Original EGFP及び蛋白質応答人工RNAスイッチの作製]

10

20

Original EGFP並びに蛋白質応答人工RNAはpEGFP(clonte ch)より、2回または3回PCRを行い作製した。

【0083】

[Original EGFPの作製]

pEGFPをテンプレート、EGFP 1^{s t} Fwd(5'-AAGGAGATAT ACCAATGGTGAGCAAGGGCGAG-3')(配列番号20)、EGFP Rev(5'-TATTCATTACCCGGGCGGCGGTCACGAA-3')(配 列番号22)をプライマーとして用いて1st PCRを行った。50µL反応液には、 テンプレート 1 ng、各10µM DNAプライマー 1.5µL、2mM dNTP s 5µL 、10×KOD-PLUS-buffer ver.2 5µL、25mM MgSO₄ 2µL、KOD-PLUS- DNA polymerase 1µLが 混合してあり、反応は初めに94 2分インキュベートした後、94 15秒、50 30秒、68 1分を20サイクルで行った。

【0084】

以下すべて同じPCR条件で行っているため、テンプレートとプライマーだけを今後は 示す。

反応後、反応液をフェノール処理、エタノール沈殿をし、非変性色素(30%グリセリン、0.075% キシレンシアノール、0.075% ブロモフェノールブルー、69.85% 超純水)に溶解した。低融点アガロースSEA PLAQUE GTG AGAROSE(FMC)を用いて目的のバンドを分離し、切り出した。切り出したアガロース断片にTE 200µL加え65 30分インキュベートした後フェノール処理を3回、ジエチルエーテル処理、エタノール沈殿を行い、DNAを精製した。

[0085]

次にその産物をテンプレート、Universal primer(5'-GAAAT TAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTC TAGAAATAATTTTGTTTAACTTTTAAGGAAGGAGATATACCA -3')(配列番号21)、EGFP Revをプライマーとして用いて2nd PCR を行った。反応後、上記と同じ方法で分離、精製を行い、超純水に溶解して、それを転写 反応の鋳型とした(配列番号23)。転写反応はMEGAscript(商標)(Amb ion)を用いて行った。MEGAscriptを用いた転写反応はMEGAshort script(商標)(Ambion)と同様である。転写反応によって得られたRNA (配列番号24)はRneasy MinElute(商標) Cleanup Kit (QIAGEN)を用いて精製した。Rneasy MinElute(商標) Cle anup Kitを用いた精製は以下の通りである。

[0086]

転写反応液に超純水 8 0 µ L を加え 1 0 0 µ L とし、さらに B u f f e r R L T 3 5 0 µ L を添加して十分に混和した。 2 5 0 µ L のエタノールを添加し、ピペッティング により完全に混和した。 2 m L コレクションチューブにセットした R N e a s y M i n E l u t e S p i n C o l u m n に上記サンプルをアプライし微量高速冷却遠心機M X - 1 0 0 (T O M Y)を用いて 1 0 ,0 0 0 r p m、 1 5 秒間遠心し、フロースルーは 捨てた。スピンカラムを新しい 2 m L コレクションチューブ上に移し、スピンカラム上に 5 0 0 µ L の B u f f e r R P E をピペットで添加した。 1 0 ,0 0 0 r p mで 1 5 秒 間遠心しフロースルーは捨てた。 R N e a s y M i n E l u t e S p i n C o l u m n に 5 0 0 µ L の 8 0 % エタノールを添加、 1 0 ,0 0 0 r p mで 2 分間遠心しフロー スルーは捨てた。 R N e a s y M i n E l u t e S p i n C o l u m n に 5 0 0 µ L の 8 0 % エタノールを添加、 1 0 ,0 0 0 r p mで 2 分間遠心しフロー スルーは捨てた。 R N e a s y M i n E l u t e S p i n C o l u m n を新しい 2 m L コレクションチューブに移し、スピンカラムのキャップを開け、 1 4 ,0 0 0 r p m で 5 分間遠心、 フロースルーは捨てた。 スピンカラムを新しい1 .5 m L コレクションチ ューブに移し、 シリカゲルメンブレンの真ん中に 2 0 µ L の超純水を加え、 1 4 ,0 0 0 r p m で 5 分間遠心して溶出した。この溶出液をD U 6 4 0 S P E C T R O P H O T O M E T E R を用いて濃度測定を行った。 10

20

【0087】

[L7-UTR2の作製]

EGFP1 s tPCR産物をテンプレート、L7 - UTR22 n dFwd(5'-GGAGACCACAACGGTTTCCCCTCGGGCGTGATGCAAAGCTGACCCAGAAGGAGATATACCCAATGGTGAGC-3')(配列番号25)とEGFPRevをプライマーとして用いて2ndPCRを行った。次にその産物をテンプレート、stem-loopprimer(5'-GAAATTAATACGACTCACTATAGGGAGAGACCACAACGGTTTCCC-3')(配列番号26)とEGFPRevをプライマーとして用いて3rdPCRを行った。反応後、分離・精製を行い、超純水に溶解して、それを転写反応の鋳型とした(配列番号27))。転写反応はMEGAscript(商標)(Ambion)を用いて行った。転写反応によって得られたRNA(配列番号28)をRneasyMinElute(商標)CleanupKitを用いて精製、濃度測定を行った。

(23)

[0088]

[L7-UTR5の作製]

EGFP 1st PCR産物をテンプレート、L7-UTR5 2nd Fwd(5 '-GGAGACCACAACGGTTTCCCCTCGGGGCGTGATGCGAAAG CTGACCCTTAAGAAGGAGATATACCAATGGTGAGC-3')(配列番号29)とEGFP Revをプライマーとして用いて2nd PCRを行った。 次にその産物をテンプレート、stem-loop primerとEGFP Revを プライマーとして用いて3rd PCRを行った。反応後、分離・精製を行い、超純水に 溶解して、それを転写反応の鋳型とした(配列番号30)。転写反応はMEGAscri pt(商標)(Ambion)を用いて行った。転写反応によって得られたRNA(配列 番号31)を上述の方法で精製、濃度測定を行った。

[0089]

[L7-UTR9の作製]

EGFP1 stPCR産物をテンプレート、L7 - UTR92 ndFwd(5'-GGAGACCACAACGGTTTCCCCTCGGGCCGTGATGCGAAAGCTGACCCAACTTTAAGAAGGAGATATACCAATGGTGAGC-3')(配列番号32)とEGFPRevをプライマーとして用いて2ndPCRを行った。次にその産物をテンプレート、stem - 1 oopprimerとEGFPRevをプライマーとして用いて3rdPCRを行った。反応後、分離・精製を行い、超純水に溶解して、それを転写反応の鋳型とした(配列番号33)。転写反応はMEGAscript(商標)(Ambion)を用いて行った。転写反応によって得られたRNA(配列番号34)を上述の方法で精製、濃度測定を行った。

【0090】

[L7-UTR13の作製]

EGFP 1st PCR産物をテンプレート、L7 - UTR13 2nd Fwd(
5'-GGAGACCACAACGGTTTCCCTCGGGCGTGATGCGAAA
GCTGACCCGTTTAACTTTAAGAAGGAAGATATACCAATGGT
GAGC-3')(配列番号35)とEGFP Revをプライマーとして用いて2nd
PCRを行った。次にその産物をテンプレート、stem - 1 o o p primerと
EGFP Revをプライマーとして用いて3rd PCRを行った。反応後、分離・精製を行い、超純水に溶解して、それを転写反応の鋳型とした(配列番号36)。転写反応はMEGAscript(商標)(Ambion)を用いて行った。転写反応によって得られたRNA(配列番号37)を上述の方法で精製、濃度測定を行った。

「L7-UTR2 mutの作製]

EGFP 1st PCR産物をテンプレート、L7-UTR2 mut 2nd F wd(5'-GGAGACCACAACGGTTTCCCCTCGGGCGTCATGCG ⁵⁰

10

20

AAAGCTGCCCCAGAAGGAGATATACCAATGGTGAGC-3') (配列番号38)とEGFP Revをプライマーとして用いて2nd PCRを行った 。次にその産物をテンプレート、stem - 1 oop primerとEGFP Rev をプライマーとして用いて3rd PCRを行った。反応後、分離・精製を行い、超純水 に溶解して、それを転写反応の鋳型とした(配列番号39)。転写反応はMEGAscr ipt(商標)(Ambion)を用いて行った。転写反応によって得られたRNA(配 列番号40)を上述の方法で精製、濃度測定を行った。

(24)

【0092】

[L7-UTR2 minimutの作製]

EGFP 1st PCR産物をテンプレート、L7-UTR2 minimut 2 nd Fwd(5'-GGAGACCACAACGGTTTCCCCTCGGGGAAAC CCAGAAGGAGATATACCAATGGTGAGC-3')(配列番号41)と EGFP Revをプライマーとして用いて2nd PCRを行った。次にその産物をテ ンプレート、stem-loop primerとEGFP Revをプライマーとして 用いて3rd PCRを行った。反応後、分離・精製を行い、超純水に溶解して、それを 転写反応の鋳型とした(配列番号42)。転写反応はMEGAscript(商標)(A mbion)を用いて行った。転写反応によって得られたRNA(配列番号43)を上述 の方法で精製、濃度測定を行った。

【0093】

[L7-ORF(Box C/D GFP)の作製]

pEGFPをテンプレート、L7 - ORF 1^{s t} Fwd(5'-AAGGAGAT ATACCAATGGGGGCGTGATGCGAAAGCCTGACCCTGTGAGCA AGGGCGAGGAG-3')(配列番号44)とEGFP Revをプライマーとし て用いて1st PCRを行った。次にその産物をテンプレート、Universal primerとEGFP Revをプライマーとして用いて2nd PCRを行った。反 応後、分離・精製を行い、超純水に溶解して、それを転写反応の鋳型とした(配列番号4 5)。転写反応はMEGAscript(商標)(Ambion)を用いて行った。転写 反応によって得られたRNA(配列番号46)を上述の方法で精製、濃度測定を行った。 【0094】

[L7・ORF mut(Box C/D mut GFP)の作製] pEGFPをテンプレート、L7・ORF mut 1^{s t} Fwd(5'・AAGG AGATATACCAATGAGGGGGAAACCCCAGTGAGCAAGGGCGAG GAG・3')(配列番号47)とEGFP Revをプライマーとして用いて1st PCRを行った。次にその産物をテンプレート、プライマーとしてUniversal primerとEGFP Revを用いて2nd PCRを行った。反応後、分離・精製 を行い、超純水に溶解して、それを転写反応の鋳型とした(配列番号48)。転写反応は MEGAscript(商標)(Ambion)を用いて行った。転写反応によって得ら れたRNA(配列番号49)を上述の方法で精製、濃度測定を行った。

[0095]

[ThrRS-UTRWの作製]

pEGFPをテンプレート、ThrRS-UTRW 1^{s t} Fwd(5'-GTGA TCTTTCGTGTGGGGTCACCACTGCAAATAAGGATATAAAAT GGTGAGCAAGGGCGAG-3')(配列番号50)とEGFP Revをプラ イマーとして用いて1st PCRを行った。次にその産物をテンプレート、ThrRS Domain234 templateとEGFP Revをプライマーとして用いて 2nd PCRを行った。次にその産物をテンプレート、ThrRS Domain23 4 FwdとEGFP Revをプライマーとして用いて3rd PCRを行った。反応 後、分離・精製を行い、超純水に溶解して、それを転写反応の鋳型とした(配列番号51)。転写反応はMEGAscript(商標)(Ambion)を用いて行った。転写反 応によって得られたRNA(配列番号52)を上述の方法で精製、濃度測定を行った。 10

20

【0096】

[ThrRS-UTR2の作製]

EGFP 1st PCR産物をテンプレート、ThrRS-UTR2 2nd Fw d(5'-GGAGACCACAACGGTTTTCCCCTCGGCGTATGTGATC TTTCGTGTGGGGTCACCACTGCGCCAGAAGGAGATATACCA ATGGTG-3')(配列番号53)とEGFP Revをプライマーとして用いて2 nd PCRを行った。次にその産物をテンプレート、stem-loop prime rとEGFP Revをプライマーとして用いて3rd PCRを行った。反応後、分離 ・精製を行い、超純水に溶解して、それを転写反応の鋳型とした(配列番号54)。転写 反応はMEGAscript(商標)(Ambion)を用いて行った。転写反応によっ て得られたRNA(配列番号55)を上述の方法で精製、濃度測定を行った。

(25)

[ThrRS-UTR2 mutの作製]

EGFP 1st PCR産物をテンプレート、ThrRS-UTR2 mut 2ⁿ ^d Fwd(5'-GGAGACCACACACGGTTTCCCCTCGGCGTATGT GATCTTTCATGTGGGTCACCACCACTGCGCCAGAAGGAGATAT ACCAATGGTG-3')(配列番号56)とEGFP Revをプライマーとして 用いて2nd PCRを行った。次にその産物をテンプレート、stem-loop p rimerとEGFP Revをプライマーとして用いて3rd PCRを行った。反応 後、分離・精製を行い、超純水に溶解して、それを転写反応の鋳型とした(配列番号57)。転写反応はMEGAscript(商標)(Ambion)を用いて行った。転写反応 によって得られたRNA(配列番号58)を上述の方法で精製、濃度測定を行った。 【0098】

[ON switchの作製]

pEGFPをテンプレート、ON switch 1^{s t} Fwd(5'-AAGGA GATATACCAATGCAGCTTTTCGCATCACGTGAGCAAGGGCG AGGAG-3')(配列番号59)とEGFP Revをプライマーとして用いて1s t PCRを行った。次にその産物をテンプレート、Universal primer とEGFP Revをプライマーとして用いて2nd PCRを行った。反応後、分離・ 精製を行い、超純水に溶解して、それを転写反応の鋳型とした(配列番号60)。転写反 応はMEGAscript(商標)(Ambion)を用いて行った。転写反応によって 得られたRNA(配列番号61)を上述の方法で精製、濃度測定を行った。このRNAは オープンリーディングフレーム(ORF)に、以下に示したantisenceとハイブ リダイズさせる配列を挿入してある。

【0099】

[antisenceの作製]

antisenceはT7 primerとatisence primer(5'-GGTGGGTCAGCTTTCGCATCACGCCCACCTATAGTGAGTC GTATTAGC-3')(配列番号62)を用いてMEGAshortscript(商標)(Ambion)で作製した。このantisenceは、中にL7Ae結合部位 (Box C/D mini)が含まれている。反応後は、Box C/D miniと 同様の方法で15% ポリアクリルアミド(29:1) 変性ゲル電気泳動を使い精製し た(配列番号63)。

【実施例4】

[0100]

[L7-UTRの翻訳制御アッセイ]

L7 - UTRの翻訳制御のアッセイはPURE SYSTEM(ポストゲノム研究所) を利用して行った。ONからOFFへの翻訳制御はすべて以下のように測定した。まず、 Solution A 5µL、3.75µM RNA 1µL、蛋白質を加え、超純水 で全量を8µLにし、4 、1時間放置した。その後、Solution B 2µLを

10

20

30

加え、37 、75分間で反応させた。反応後、超純水で200µLにし、infini te F200(TECAN)を用いて、励起波長485nM、吸収波長535nMで測 定した。コントロールとして用いたEGFP UTRの二次構造は図8Aに示してある。 L7-UTR2の二次構造は図8Bに、L7-UTR5の二次構造は図8Eに、L7-U TR9の二次構造は図8Fに、L7-UTR13の二次構造は図8Gに示してある。これ らの図中、4は、オープンリーディングフレームを、3はリボソーム結合部位を、2は、 RNA-蛋白質複合体相互作用モチーフ由来の塩基配列を、7はエンハンサーをそれぞれ 示す。全てのRNAでEGFPの5'-UTRにL7Ae結合モチーフ(Box C/D)の塩基配列が挿入されており、それぞれRBS-モチーフ間の距離を2塩基、5塩基、 9塩基、13塩基開けて設計されている。

[0101**]**

アッセイの結果から、L7Aeモチーフを入れたものでは、蛋白質の濃度が上昇に応じて翻訳の阻害が起こっていることが分かる。また、モチーフ - RBSの距離に応じて翻訳 阻害効果が減少していることが分かる(図9)。L7AeのL7 - UTR2 mutの二 次構造は図8Cに、L7 - UTR2 minimutの二次構造は、図8Dに示してある 。これらはL7 - UTR2のL7Ae結合部位に変異を入れたものである。この変異体で も少しの翻訳阻害がみられるもののL7 - UTR2に比べ翻訳阻害効果は減少しているこ とが分かる(図10)。

【 0 1 0 2 】

競合実験では、Box C/Dをcompetitorとして用いL7-UTR2を使
20
ってアッセイした。具体的には、Solution A 5µL、3.75µM RNA 1µL、10~100µM cometitor 1µL、50µM 蛋白質 1µL
を加え、超純水で全量を8µLにし、4 、1時間放置した。その後、Solution B 2µLを加え、37 、75分間で反応させた。反応後の測定は上記と同じ方法で
行った。結果、蛋白質の添加で下がった翻訳効率がcompetitorであるBox
C/Dを加えることで回復することが分かる。この結果から、この翻訳阻害はL7Aeと
その結合部位が影響していることが示唆される(図11)。これらの実験の結果から、設計通り蛋白質の立体障害によりリボソームのmRNAへの結合を制御できることが示唆された。

【0103】

[ThrRS-UTRの翻訳制御アッセイ]

ThrRS-UTRでもL7-UTRと同様のアッセイを行った。アッセイ条件はL7 -UTRと同じである。ThrRS-UTRW、ThrRS-UTR2、ThrRS-U TR2 mutの二次構造は図12に示してある。これらの図中、4は、オープンリーデ ィングフレームを、3はリボソーム結合部位を、2は、RNA-蛋白質複合体相互作用モ チーフ由来の塩基配列をそれぞれ示す。L7-UTRと同様に蛋白質結合RNAが5'-UTRに挿入されており、ThrRS-UTRW(図12A)はDomain234が、 ThrRS-UTR2(図12B)はDomain2が5'-UTRに挿入されている。 ThrRS-UTR2 mut(図12C)はThrRS-UTR2 のThrRS結合 部位(Domain2)に変異を入れたものであり、変異体として用いた。 【0104】

結果、ThrRS蛋白質の濃度に依存して翻訳が阻害されることが分かる。ThrRS-UTRWの方が結合力の違いからThrRS-UTR2よりも阻害効果は大きかった。 また、L7-UTRと同様、変異体では、翻訳阻害効果は減少した。(図13)。これらの結果から、ONからOFFへの翻訳制御は、mRNA上の蛋白質結合モチーフを入れ替える事で、入力蛋白質を自由に選択できることが示唆される。 【0105】

[L7 - ORF(Box C/D GFP)の翻訳制御アッセイ]
 L7 - ORF(Box C/D GFP)でもL7 - UTRと同様のアッセイを行った
 。アッセイ条件はL7 - UTRと同じである。L7 - ORF(Box C/D GFP) 50

30

10

、 L 7 - O R F m u t (B o x C / D m u t G F P)の二次構造は図14に示し てある。これらの図中、4は、オープンリーディングフレームを、3はリボソーム結合部 位を、2は、RNA-蛋白質複合体相互作用モチーフ由来の塩基配列を、7はエンハンサ ーをそれぞれ示す。L7‐UTRとは違い蛋白質結合RNAモチーフがORFに挿入され ており、L7-ORF(Box C/D GFP)(図14A)はL7Ae結合部位(B ox C/D)が、開始コドンのすぐ後ろのORFに挿入されている。L7-ORF m ut (Box C/D mut GFP) (図14B) は変異体として用いるため同様の 場所にStem-Loopが挿入されている。結果、L7Ae蛋白質の濃度が上昇すると 翻訳が阻害される。また、L7-UTR、ThrRS-UTRと同様、変異体では、翻訳 阻害効果は減少していることが分かる。この結果は、mRNAオープンリーディングフレ ームに結合したL7Ae蛋白質がリボソームの進行を阻害することを示唆している(図1 5)。

[0106]

[ON switchの翻訳制御アッセイ]

OFFからONへの翻訳制御は、Solution A 5µL、500nM RNA 1 μ L、1 0 μ M antisence R N A 1 μ L、蛋白質を加え、超純水で全量 を8µLにし、60 、3分の熱処理を行い、すぐに氷冷した。15分間、氷上に置いた 後、Solution B 2µLを加え、37 、75分間で反応させた。反応後の測 定は上記と同じ方法で行った。結果、antisenceRNAを加えることで、阻害さ れていた翻訳が、蛋白質の添加で回復した(図16)。これは、antisenceRN AにL7Aeが結合することで、翻訳阻害を抑制したためと考えられる。

20

30

10

【実施例5】 [0107]

次に、出力遺伝子の改変が自由であることを示すために、赤色蛍光蛋白質の一種である 、DsRed-Express(DsRed-Ex)をターゲットとして翻訳制御を行い 、かつ、異なる二つの遺伝子の翻訳制御/活性化を同時に進行させた実施例を示す。 [0108]

[コントロール DsRed-Ex 及び蛋白質応答人工RNAスイッチの作製] コントロール D s R e d - E x 並びに蛋白質応答人工 R N A は、 p D s R e d - E x ベクター(clontech)より、2回PCRを行い作製した。

[0109]

[コントロール DsRed-Exの作製]

p DsRed Ex をテンプレート、DsRed Ex 1st Fwd (5' AAGGAGATATACCAATGGCCTCCTCCGAGGA C 3')(配列 番号 6 8)、 D s R e d E x R e v (5 ' T A T T C A T T A C T A C A G G A A CAGGTGGTGGC 3')(配列番号69)をプライマーとして用いて、1st PCRを行った。50µL反応液には、テンプレート 1ng、各10µM DNAプラ $77-1.5\mu$ L, 2mM dNTPs 5μ L, $10\times$ KOD PLUS buf fer ver. 2 5µL、25mM MgSO4 2µL、KOD PLUS D NApolymerase 1µLが混合してあり、反応は初めに94 2分インキュ ベートした後、94 15秒、50 30秒、68 1分を20サイクルで行った

[0110]

以下すべて同じPCR条件で行っているため、テンプレートとプライマーだけを今後は 示す。反応後、反応液をフェノール処理、エタノール沈殿をし、非変性色素(30%グリ セリン、0.075% キシレンシアノール、0.075% ブロモフェノールブルー、 69.85% 超純水)に溶解した。低融点アガロースSEA PLAQUE GTG AGAROSE(FMC)を用いて目的のバンドを分離し、切り出した。切り出したアガ ロース断片にTE 200µL加え65 30分インキュベートした後フェノール処理 を3回、ジエチルエーテル処理、エタノール沈殿を行い、DNAを精製した。

[0111]

次にその産物をテンプレート、Universal primer(5' GAAAT TAATACGACTCACTATAGGGGAGACCACAACGGTTTCCCTC TAGAAATAATTTTGTTTAACTTTAAGGAGAGAGATATACCA 3')(配列番号21)、DsRed Ex Revをプライマーとして用いて2nd PCRを行った。反応後、上記と同じ方法で分離、精製を行い、超純水に溶解して、それ を転写反応の鋳型とした(配列番号70)。転写反応はMEGAscript(商標)(Ambion)を用いて行った。MEGAscriptを用いた転写反応はMEGAsh ortscript(商標)(Ambion)と同様である。転写反応によって得られた RNA(配列番号71)はRneasy MinElute(商標)Cleanup K it(QIAGEN)を用いて精製した。Rneasy MinElute(商標)Cl eanup Kitを用いた精製は以下の通りである。

(28)

転写反応液に超純水80μLを加え100μLとし、さらにBuffer RLT 3 50µLを添加して十分に混和した。250µLのエタノールを添加し、ピペッティング により完全に混和した。2mLコレクションチューブにセットしたRNeasy Min Elute Spin Columnに上記サンプルをアプライし、微量高速冷却遠心機 MX 100(TOMY)を用いて10,000rpm、15秒間遠心し、フロースルー は捨てた。スピンカラムを新しい2mLコレクションチューブ上に移し、スピンカラム上 に500µLのBuffer RPEをピペットで添加した。10,000rpmで15 秒間遠心しフロースルーは捨てた。RNeasy MinElute Spin Colu mnに500µLの80%エタノールを添加、10,000rpmで2分間遠心しフロー スルーは捨てた。RNeasy MinElute Spin Columnを新しい2 mLコレクションチューブに移し、スピンカラムのキャップを開け、14,000rpm で5分間遠心、フロースルーは捨てた。スピンカラムを新しい1.5mLコレクションチ ューブに移し、シリカゲルメンブレンの真ん中に20µLの超純水を加え、14,000 rpmで5分間遠心して溶出した。この溶出液をDU640 SPECTROPHOTO METERを用いて濃度測定を行った。

【0113】

[BoxC/D-DsRed-Exの作製]

pDsRed Exをテンプレート、BoxC/D-DsRed-Ex 1st Fw d(5' AAGGAGATATACCAATGGGGGCGTGATGCGAAAGCT GACCCTGCCTCCTCCGAGGACGTC 3')(配列番号72)とDsR ed Ex Revをプライマーとして用いて1st PCRを行った。次にその産物を テンプレート、Universal primerとDsRed Ex Revをプライ マーとして用いて2nd PCRを行った。反応後、分離・精製を行い、超純水に溶解し て、それを転写反応の鋳型とした(配列番号73)。転写反応はMEGAscript(商標)(Ambion)を用いて行った。転写反応によって得られたRNA(配列番号7 4)を上述の方法で精製、濃度測定を行った。

[0114]

[Box C/D mutant-DsRed-Exの作製]

pDsRed Exをテンプレート、BoxC/D mutant 1st Fwd(5、AAGGAGATATACCAATGAGGGGGAAACCCCAGCCTCCTC CGAGGACGTC 3、)(配列番号75)とDsRed Ex Revをプライマ ーとして用いて1st PCRを行った。次にその産物をテンプレート、プライマーとし てUniversal primerとDsRed Ex Revを用いて2nd PC Rを行った。反応後、分離・精製を行い、超純水に溶解して、それを転写反応の鋳型とし た(配列番号76)。転写反応はMEGAscript(商標)(Ambion)を用い て行った。転写反応によって得られたRNA(配列番号77)を上述の方法で精製、濃度 測定を行った。 10

20

30

[0 1 1 5 **]**

[ON switchの作製]

pEGFPをテンプレート、ON switch1_{st} Fwd(5' AAGGAG ATATACCAATGCAGCTTTTCGCATCACGTGAGCAAGGGCGA GGAG 3')(配列番号59)とEGFP Revをプライマーとして用いて1st PCRを行った。次にその産物をテンプレート、Universal primerと EGFP Revをプライマーとして用いて2nd PCRを行った。反応後、分離・精 製を行い、超純水に溶解して、それを転写反応の鋳型とした(配列番号60)。転写反応 はMEGAscript(商標)(Ambion)を用いて行った。転写反応によって得 られたRNA(配列番号61)を上述の方法で精製、濃度測定を行った。このRNAはオ ープンリーディングフレーム(ORF)に、以下に示したantisenceとハイブリ ダイズさせる配列を挿入してある。

(29)

[0116**]**

[antisence25merの作製]

antisence25merはT7primerとantisence25mer primer(5' GGGGTCAGCTTTCGCATCACGCCCCTATAG TGAGTCGTATTAGC 3')(配列番号78)を用いてMEGAshorts cript(商標)(Ambion)で作製した。このantisenceは、中にL7 Ae結合部位(BoxC/Dmini)が含まれている。反応後は、BoxC/Dmin iと同様の方法で15% ポリアクリルアミド(29:1)変性ゲル電気泳動を使い精製 した。

[0117]

[Box C/D-DsRed-Exの翻訳制御アッセイ]

Box C/D-DsRed-Exの翻訳制御のアッセイはPURE SYSTEM(ポストゲノム研究所)を利用して行った。ONからOFFへの翻訳制御はすべて以下のよ うに測定した。まず、Solution A 5µL、3.75µM RNA 1µL、 蛋白質を加え、超純水で全量を8µLにし、4 、1時間放置した。その後、Solut ion B 2µLを加え、37 、75分間で反応させた。反応後、超純水で200µ Lにし、infinite F200(TECAN)を用いて、励起波長535nM、吸 収波長595nMで測定した。BoxC/D-DsRed-Exの二次構造は図17(a)に示した。また、コントロールとして用いたDsRed-Ex の二次構造は図17(c)に示した。これらの図中、3はリボソーム結合部位を、2は、RNA 蛋白質複合体 相互作用モチーフ由来の塩基配列をそれぞれ示す。

【0118】

アッセイの結果から、L7Aeが結合するBox C/DモチーフをmRNAのORF の5[°] 側内部に入れたものでは、蛋白質の濃度が上昇に応じて翻訳の阻害が起こっている ことが分かる。Box C/D mut-DsRed-Exの二次構造は図17(b)に 示した。これらは、Box C/D-DsRed-ExのL7Ae結合部位(Box C /Dモチーフ)に変異を入れたものである。図18に、L7Aeが0µMのときの蛍光量 を1としたときの、L7Aeの添加濃度に対する蛍光量の比率を示す。コントロールDs Red-Ex、Box C/D mut-DsRed-Exにおいては、高濃度のL7A e(5~10µM)で少しの翻訳阻害がみられるものの、Box C/D-DsRed-Exと比較して、翻訳阻害効果は顕著に減少していることが分かる。 【0119】

[ON switchとBoxC/D-DsRed-Exの同時翻訳制御アッセイ]
 EGFP遺伝子をターゲットにしたON switchと、BoxC/D-DsRed
 Exの同時翻訳制御は、Solution A 5µL、1µM ON switch
 RNA(配列番号61) 0.5µL 3.75µMBoxC/D-DsRed-Ex
 RNA(配列番号74) 1µL 20µM antisence 25mer(配列
 番号63)0.5µL、L7Ae蛋白質(配列番号66)を加え、超純水で全量を8µL

10

20

30

にし、70、3分の熱処理を行い、すぐに氷冷した。15分間、氷上に置いた後、Solution B 2µLを加え、37、75分間で反応させた。反応後、超純水で200µLにし、infiniteF200(TECAN)を用いて、励起波長485nM、吸収波長535nMで測定した。さらにinfinite F200(TECAN)を用いて、励起波長535nM、吸収波長595nMで測定した。図19に結果を示す。その結果、antisenceRNAを加えることで、阻害されていたON switch RNAの翻訳(EGFPの発現で確認)が、L7Ae蛋白質の添加で回復し、BoxC/D-DsRed-Exの翻訳は、L7Ae蛋白質の添加で抑制された。これは、一種類の蛋白質の添加で、同時に異なる二つのmRNAの翻訳を逆方向に(翻訳の抑制/活性化)制御できたことを示唆している。

(30)

【0120】

[pcDNA-L7Aeの制限酵素処理による作製]

pL7Aeをテンプレート、Fwd(5 ' CACCAAGCTTATGTACGTG AGATTTGAGGTTCC 3')(配列番号79)、Rev(5' CCGCTC GAGCTTCTGAAGGCCTTTAATTCTTC 3')(配列番号80)をプ ライマーとして用いて PCRを行った。50µL反応液には、テンプレート 5ng、 各10µM DNAプライマー 1.5µL、2.5mM dNTPs 4µL、10x KOD PLUS buffer ver. 2 5µL、25mM MgSO4 1.6 μL、KOD PLUS DNA polymerase 1μLが混合してあり、反応 は初めに94 2分インキュベートした後、94 15秒、52 、30秒、68 1分を25サイクルで行った。フェノール処理、ジエチルエーテル処理、エタノール沈 殿を行い、DNAを精製した。これを15pL の超純水に溶かしテンプレートとして制 限酵素処理を行った。テンプレート5µL、バッファー2µL、HindIIIを1µL 、XhoIを1μL、10xBSA2μL、超純水9μL、計20μLの系で37 2h インキュベートし、低融点アガロースSEA PLAQUE GTG AGAROSE(FMC)を用いて目的のバンドを分離し、切り出した。切り出したアガロース断片にTE 200µL加え65 30分インキュベートした後フェノール処理を2回、ジエチル エーテル処理、エタノール沈殿を行い、DNAを精製した。pcDNAベクター(インビ トロジェン)も同様に制限酵素処理を行った。テンプレート2ng、バッファー2µL、 HindIIIを1µL、XhoI 1µL、10×BSA2µL、超純水13µL、計

 20µLの系。37 2hインキュベートし、低融点アガロースSEA PLAQUE GTG AGAROSE(FMC)を用いて目的のバンドを分離し、切り出した。切り 出したアガロース断片に、TE 200µL加え65 30分インキュベートした後フ ェノール処理、ジエチルエーテル処理、エタノール沈殿を行い、DNAを精製した。これ を10µLの超純水に溶かし、BAP 処理を行った。テンプレート10µL、超純水3 3µL,BAP2µL,バッファー5µL,計50µLの系37 2hインキュベート し、低融点アガロースSEAPLAQUE GTG AGAROSE(FMC)を用いて 目的のバンドを分離し、切り出した。切り出したアガロース断片にTE 200µL加え 65 30分インキュベートした後フェノール処理2回、ジエチルエーテル処理、エタ ノール沈殿を行い、DNAを精製した。

[0 1 2 1 **]**

インサート1µL、ベクター1µL、Ligation High2µLの計4µLを 16 2hインキュベート。JM109に形質転換。ミニプレップしてpcDNA-L7 Aeを精製した。

[0122]

[Box C/D-GFPの部位特異的変異導入による作製]

pEGFP-N1(clontech)のプラスミドをTemplateにし、リン酸 化したプライマーを用いて、全長を高正確性のPCR酵素、KOD-PLUS-(TOY OBO)を用いて増幅させた。Ligation High (TOYOBO)を用いて PCR産物をつなげることによって作製した。Fwd Box C/D-EGFP pr 10

20

30

imer(5'-GGGCGTGATGCGAAAGCTGACCCTGTGAGCAA GGGCGAGGAGCTG-3')(配列番号81),Rev Box C/D-EG FP primer(5'-CATGGTGGCGACCGGTGGATC-3')(配 列番号82)。50µL反応液には、テンプレート 5 ng、各10µM DNAプライ マー 1.5µL、2.5mM dNTPs 4µL 、10×KOD PLUSbuf fer5µL、KOD PLUS DNA polymerase 1µLが混合してあ り、反応は初めに94 2分インキュベートした後、98 10秒、68 4分を 25サイクルで行った。次に、メチル化されているDNAを特異的に分解する制限酵素D pnIを作用させて、鋳型Plasmidを消化し、さらにPCR産物のSelf-li gationにより、PCR産物を自己環状化させた。

(31)

【0123】

[BoxC/D mut GFPの部位特異的変異導入による作製]

Fwd BoxC/D mut EGFP primer(5'-AGGGGAAAC CCAGTGAGCAAGGGCGAGGAGCTG-3')(配列番号83)を作成し 、pEGFP-N1(clontech)のプラスミドをTemplateにして遺伝子 を増幅させた。それ以外は、上と同様に作成した。

【実施例6】

【0124】

ヒト癌培養細胞内でのL7Aeの発現を確認するためにウエスタンブロッティングを行った。

前日に子宮頸癌由来HeLa細胞を6wellプレートに0.5x10⁶ cells/ wellになるように捲種し、37 CO₂インキュベーション内で培養した。翌日Li pofectamine2000(invitrogen)(商標)によりトランスフェ クションを行った。pcDNA-A(図20)(配列番号84)、及びL7Ae発現ベク ターpcDNA-L7Ae(配列番号85)(図21)の添加量を1µg、2µg、4µ gとしこれに合わせてLipofectamine2000の量を2.5µl、5µl、 10µlとした。これらのDNA-脂質複合体を室温、20分インキュベーションを行い 、細胞に滴下した。なお、L7Ae発現ベクターpcDNA-L7Aeとは、pcDNA 3.1ベクター(インビトロジェン)のCMVプロモーター下流に、L7Ae遺伝子を挿 入したプラスミドベクターである。4時間後に培地交換を行った。 【0125】

トランスフェクション29時間後、wellをPBSで2回洗浄後300µl RIP A buffer(1×PBS、1%NP40、0.5%Sodium deoxych olate、0.1%SDS)を加え、セルスクレーパーで細胞をwellから剥がした 。そのライセートを、21ゲージの針をつけたシリンジにより破砕した。10µl 10 mg/ml PMSFを加え30分氷上に静置し、遠心分離(4 、15000g、20 分)により上清を回収した。同様にトランスフェクション53時間後の蛋白質を回収した 。蛋白質の濃度はDC-プロテインアッセイ(BIO-RAD)を用いLowry法で決 定した。

【0126】

ウエスタンブロッティングにより、L7Aeの検出を行った。細胞より抽出した蛋白質 をSDS-PAGEにより展開しウエスタンプロッティングを行った。一次抗体Anti - c - Myc(Ab - 1)(Calbiochem)(1/500)、二次抗体二次抗体 Goat Anti - Mouse IgG (H+L) - HRP conjugate (BIORAD)(1/2000)を用いた。ECL Plus(GE healthc are)(商標)により発色させLAS3000(富士フィルム)を用いて検出した。こ れらの結果より、HeLa細胞内でのpcDNA-L7Ae導入によるL7Ae発現を確 認できた。以下細胞の蛋白質抽出およびL7Aeの検出には同様の方法で行った。図22 は、細胞内でのL7Ae発現を示す図である。図中、レーン1は、pcDNA-A4 μg : Lipofectamine10μ1、レーン2は、pcDNA-A 2μg:Lip 30

10

20

ofectamine5µl、レーン3は、pcDNA - A1µg:Lipofecta mine2.5µl、レーン4は、pcDNA - L7Ae4µg:Lipofectam ine10µl、レーン5は、pcDNA - L7Ae 2µg:Lipofectami ne5µl、レーン6は、pcDNA - L7Ae 1µg:Lipofectamine 2.5µlを、それぞれ添加したものである。この図から、トランスフェクション29時 間後において、L7Aeがヒト癌細胞内部において発現することがわかった。トランスフ ェクション53時間後においても、発現量が減少するものの、その発現は確認された。 【0127】

L 7 A e 発現させたことによる細胞毒性への影響を評価するために、WST1アッセイを行った。前日にHeLa細胞を96wellプレートに、1.0×10⁴ cells/ 10wellになるように捲種し、37 CO₂インキュベーション内で培養した。翌日Lipofectamine2000(invitrogen)(商標)によりトランスフェクションを行った。pcDNA - A、pcDNA - L 7 A eの添加量を0.05、0.10、0.15、0.20、0.25、0.30、0.40µgとし、1サンプルにつき0.25µl Lipofectamine2000を加えた。これらのDNA - 脂質複合体を室温、20分インキュベーションを行い、細胞に滴下した。4時間後に培地交換を行った。トランスフェクション24時間後生細胞数をCell Proliferation Reagent WST - 1(Roche)(商標)を用いWST1アッセイにより測定した。この時間内ではL7Aeを発現させたことによる細胞毒性がないことが示された。図23は、トランスフェクション24時間後、L7Aeを発現させたことによる細胞

【0128】

L7AeによるBox C/D-GFP蛋白質発現抑制をウエスタンブロッティングに より測定した。

前日にH e L a 細胞を 6 w e l l プレートに 0 . 5 x 1 0 ⁶ c e l l s / w e l l にな るように捲種し、37 CO,インキュベーション内で培養した。翌日Lipofect amine2000(invitrogen)(商標)によりトランスフェクションを行 った。Box C/D-GFP(図24)(配列番号86)、BoxC/D mut G FP(図25)(配列番号87)1.0µgに、pcDNA-L7Aeを、各0、0.5 、1.0、1.5、2.0µg加え、1サンプルにつき5µl Lipofectami ne2000を加えた。これらのDNA - 脂質複合体を室温、20分インキュベーション を行い、細胞に滴下した。4時間後に培地交換を行った。トランスフェクション24時間 後、上記の方法により蛋白質抽出しウエスタンブロッティングによりL7Ae(図26) 、EGFP(図27)の検出を行った。EGFPの一次抗体はGFP(B-2)SC99 96 (SantaCruz) (1/200)、二次抗体Goat Anti-Mouse IgG (H+L)-HRP conjugate (BIORAD)(1/2000)を用いた。L7Aeの発現によるBox C/D-GFP特異的なEGFP発現抑制を 確認することができた。図26は、L7Aeの発現を示した図である。この図より、Bo x C/D-GFPまたはBoxC/D mut GFPとL7Aeを共発現させた場合 、L7Aeの発現量に差はないことをウエスタンブロッティングにより確認できた。図2 7は、L7AeによるEGFPの翻訳抑制を示した図である。この図より、pcDNA-L7Aeを発現させると、Box C/D-GFPの発現は顕著に抑制されることがわか る。一方、BoxC/D mut GFPの発現抑制効果は、Box C/D-GFPと 比較して小さいことがわかった。

【0129】

また、LAS3000(富士フィルム)を用いて、Multi Gauge Ver3
.0(富士フィルム)により、Western blotで得られたバンドの解析を行った。Box C/D-GFP、BoxC/D mut GFP 1.0µgにpcDNA
-L7Aeを加えなかったもの(-)をそれぞれ1として、pcDNA-L7Ae を0
.5µg加えたもの(+)の値を算出した。このWestern blotの定量結果を

30

40

、 図 2 8 に示す。

[0130]

L7Aeによる蛋白質発現抑制をFACSにより測定した。

前日にHeLa細胞を24wellプレートに、0.5x10⁵cells/well になるように捲種し、37 のCO,インキュベーション内で培養した。翌日Lipof ectamine2000(invitrogen)(商標)によりトランスフェクショ ンを行った。Box C/D-GFP、BoxC/D mut GFP 0.2µgに、 p c D N A - A、 p c D N A - L 7 A e を、各0、0.05、0.10、0.15、0. 20、0.40、0.80、1.60µgを加え、1サンプルにつき1µl Lipof e c t a m i n e 2 0 0 0を加えた。これらの D N A - 脂質複合体を室温、 2 0 分インキ ュベーションを行い、細胞に滴下した。4時間後に培地交換を行った。 [0131]

(33)

トランスフェクション24時間後に培地を除去し、200µ1 Trypsine E DTAで細胞を剥離し200µl DMEM/F12を加えた。FACSチューブに移し 、FACS Aria(BD)により解析を行った。なおFACSとは遊離した細胞を細 い管に通過させる際、レーザー光線を当てて、その細胞から発生する蛍光の強弱により、 細胞の分画を解析する方法である。ここでは、生細胞にゲーティングを行い10000 個についてFITCを測定した。結果よりpcDNA-L7Ae、Box C/D-GF Pをトランスフェクションした細胞特異的に、EGFP発現抑制がおこることが示された 。また上記のウエスタンブロットの結果と比較して、より詳細に解析することができた。 図29は測定結果を示すグラフである。図中、Mockは、DNAを添加せずLipof ectamine2000(invitrogen)(商標)のみをトランスフェクショ ンしたものを表し、Box C/D-GFP(実線)とBoxC/D mut GFP(点線)を0.2µgに固定したものに、pcDNA-Aを0、0.10、0.20、0. 80µgを加えたものを左列に表し、pcDNA-L7Aeを0、0.10、0.20、 0.80µgを加えたものを右列に表した。図30では、図29のFACSデータを元に 解析し、L7Aeの発現が、Box C/D-GFPの翻訳を特異的に抑制する結果を定 量した。

【0132】

次に、L7Aeによる蛋白質発現抑制される時のmRNA量の変化をReal tim PCRにより測定した。 е

前日にHeLa細胞を6wellプレートに0.5x10⁶cells/wellにな るように捲種し、37 CO,インキュベーション内で培養した。Box C/D-GF P、BoxC/D mut GFP 1.0µgにpcDNA-L7Aeを、各0、0. 5、1.0、2.0µg加え、1サンプルにつき5µl Lipofectamine2 000を加えた。また、Box C/D-GFP 1.0µgにpcDNA-L7Ae、 p c D N A - A を 0、 0 . 5、 1 . 0、 2 . 0 μ g 加え、 1 サンプルにつき、 5 μ l L ipofectamine2000を加えた。これらのDNA - 脂質複合体を室温、20 分インキュベーションを行い、細胞に滴下した。 4 時間後に培地交換を行った。トランス フェクション24時間後、RNAqueous 4PCR Kit (Ambion(商 標))を用いてRNA抽出およびDNA除去を行った。

抽出したRNA 1.5pg(または0.5pg)をテンプレートとしてHigh-C apacity cDNA Reverse Transcription Kits(Applied Biosystems(商標))を用いランダムプライマーと逆転写酵 素によりcDNA合成をした。リアルタイムPCRは20000分の1希釈したcDNA を鋳型として、LightCycler 480 SYBR GreenI Maste (Roche) (商標)を用いたインターカレーション法により行った。PCR反 r 応とリアルタイム蛍光検出は、ライトサイクラー480 (Roche)(商標)を用い て実施した。反応条件は、初期変性工程は95 、5分間、増幅工程は、変性95 、1 20

40

0秒、アニーリング60、10秒、伸長72、3秒に設定し、これを45サイクル行 った。融解曲線分析では、変性95、5秒、アニーリング65、15秒、目標温度9 8 とし、最後に反応液を50 、10秒間冷却して測定を終了した。Ct値をSeco nd Derivative Maximum法により決定した。481P Fwd(5 ' - C A A G G A G G A C G G C A A C A - 3 ')(配列番号 8 8)、 R e v (5 ' - C CTTGATGCCGTTCTTCTGC-3')(配列番号89)を用いて、目的遺伝 子であるEGFPの増幅を行った。GAPDH Fwd(5'- AGCCACATCGC TCAGACAC-3')(配列番号90)、Rev(5'-GCCCAATACGAC CAAATCC-3')(配列番号91)を用いて、リファレンス遺伝子であるGAPD Hの増幅を行った。融解曲線分析および電気泳動により増幅産物が単一であること目的産 物あることを確認し、結果を相対定量により評価した。GAPDHによりEGFPの量を 正常化し、その正常化した値を用いてBox C/D-GFP(BoxC/D mut GFP)のみを添加したサンプルを1としてサンプル間の比較を行った。サンプル間の発 現量の差が2倍以内であることが示された。これらの結果よりL7Ae特異的なBox C/D-GFPのmRNA量の変化がないことを確認し、L7Aeにより、Box C/ D-GFPmRNAの転写レベルは制御されないことが示された。

[0134]

図31は、Box C/D-GFPと、pcDNA-L7Aeとに由来するサンプル、 及びBox C/D-GFPとpcDNA-Aとに由来するサンプルに関し、Box C / D - G F P の m R N A 量を B o x C / D - G F P の み の サンプルを 1 として サンプル間 で比較したグラフである。Box C/D-GFP 1.0µgに固定しpcDNA-L 7 A e 、 p c D N A - A をそれぞれ 0 、 0 . 5 、 1 . 0 、 2 . 0 µ g 加えたものである。 左側の棒グラフはBox C/D-GFPにpcDNA-L7Ae を添加したものを表 し、右側の棒グラフはBox C/D-GFP にpcDNA-A を添加したものを表 した。縦軸は、Box C/D-GFP 1.0μgを添加したサンプルのBox C/ D-GFPのmRNA量を1としたときの他のサンプルの発現量を表し、横軸は、pcD NA-L7AeおよびpcDNA-Aの添加量を表した。図32は、Box C/D-G FPと、pcDNA-L7Aeとに由来するサンプル、及びBoxC/D mut GF Pと、pcDNA-L7Aeとに由来するサンプルに関し、mRNA量をBoxc/Dの みのサンプルを1としてサンプル間で比較したグラフである。(図8) Box C/D - GFP、BoxC/D mut GFPをそれぞれ 1.0µgに固定しpcDNA-L 7 A e を 0 、 0 . 5 、 1 . 0 、 2 . 0 µ g 加えたものである。左側の棒グラフは B o x C/D-GFP にpcDNA-L7Ae を添加したものを表し、右側の棒グラフは BoxC/D mut GFP にpcDNA-L7Ae を添加したものを表した。縦 軸は、Box C/D-GFP、またはBoxC/D mut GFPを 1.0µgを 添加したサンプルのBox C/D-GFP、またはBoxC/D mut GFPのm RNA量を1としたときの他のサンプルの発現量を表し、横軸は、pcDNA-L7Ae の添加量を表した。

[0135]

40 蛍光顕微鏡写真によるL7Ae発現によるBox C/D-GFP発現の抑制の観察を 行った。

前日にHeLa細胞を24wellプレートに0.5x10⁵cells/wellに なるように捲種し、37 CO,インキュベーション内で培養した。翌日Lipofec t a m i n e 2 0 0 0 (i n v i t r o g e n) (商標) によりトランスフェクションを 行った。Box C/D-GFP、BoxC/D mut GFP 0.2µgにpcD NA - A、pcDNA - L7Aeを各0、0.05、0.10、0.15、0.20µg を加え1サンプルにつき1µ1 Lipofectamine2000を加えた。これら のDNA-脂質複合体を室温、20分インキュベーションを行い、細胞に滴下した。4時 間後に培地交換を行った。トランスフェクション24時間後に蛍光顕微鏡で写真をとった 。図33は、L7AeによるBox C/D-GFPの発現抑制効果を示す蛍光顕微鏡写 10

真である。この図から、四角で囲んだ領域で、顕著にBox C/D-GFPの蛍光量が 低下することがわかった。すなわち、L7Aeの発現が、特異的にBox C/D-GF Pの翻訳を抑制することがわかる。

【0136】

次に、L7Aeが目的蛋白のタグ配列として利用できることを示した実験について説明 する。pcDNA-L7AeをpcDNA3.1-L7Ae DsRedに置換すること ができた。

前日にHeLa細胞を24we11プレートに0.5×10⁵ ce11s/we11に なるように捲種し、37 CO₂インキュベーション内で培養した。翌日Lipofec tamine2000(invitrogen)(商標)によりトランスフェクションを 行った。Bo× C/D-GFP、Bo×C/D mut GFP 0.2µgにpcD NA3.1-DsRed、pcDNA3.1-L7Ae DsRedを各0、0.2、0 .4、0.8、1.6µgを加え1サンプルにつき1µ1 Lipofectamine 2000を加えた。これらのDNA-脂質複合体を室温、20分インキュベーションを行 い、細胞に滴下した。4時間後に培地交換を行った。トランスフェクション24時間後に 蛍光顕微鏡で写真をとった。図34は、蛍光顕微鏡写真である。この図から、四角で囲ん だ領域で、pcDNA3.1-L7Ae-DsRedの発現とともに、顕著にBox C /D-GFPの蛍光量が低下することがわかった。細胞が赤色蛋白質を発現するにつれ、 緑色蛋白質の発現が抑制される。すなわち、L7Aeをタグ配列として蛋白質に付加する ことで、任意の遺伝子の発現、例えば赤色蛍光蛋白質の発現に応答して、目的遺伝子の翻 訳、例えば緑色蛍光蛋白質の翻訳を抑制するシステムが細胞内で構築できることがわかっ た。

【実施例7】

【0137】

上記の実施例において用いた、L7Aeと、RNA複合体との結合特性を調べるために、生体分子間相互作用解析装置「BIACORE3000」での反応速度定数の算出を行った。

【0138】

[L7Ae結合RNA BoxC/D mini bia, boxC/D mini mutant biaの作製]

BIACOREで使用するL7Ae結合RNAは、BoxC/D mini,BoxC /D mini mutantの3'未端にBIACOREセンサーチップ上に固定化さ せているDNA配列(5 '- ССССССАТСТАСАСТС-3 ')(配列番 号92)の相補鎖とT7プロモーターを含むDNA鋳型を作製し、T7 RNA pol ymeraseを用いた転写反応で作製した。反応液には、0.1μM BoxC/D mini bia template (5'-CCGGGGATCCTCTAGAGTC G G G T C A G C T T T C G C A T C A C G C C C T A T A G T G A G T C G T A T T A GC-3')(配列番号93),10µM T7 promoter(5'-GCTAA TACGACTCACTATAGG-3')(配列番号94),10µM biacor e Rev (5'-CCGGGGATCCTCTAGAGT-3')(配列番号95) 各5µL、2.5mM dNTP (TAKARA) 8µl,Ex Taq 10× buffer(TAKARA)10µL, Ex Taq DNAポリメラーゼ(TAK ARA)0.5µLが混合してあり,DNA Engine PCT-200(BIOR AD社)を用いて94 30秒,60 30秒,72 30秒で25サイクルを行 い伸長させた。反応後、フェノール処理、ジエチルエーテル処理、エタノール沈澱を行い 、10µLの超純水に溶解し、転写の鋳型として用いた。BoxC/D mini mu tant biaは反応液のテンプレートに0.1μM boxC/D mini m u template (5'-CCGGGGATCCTCTAGAGTCGGGGCAG t CTTTCGCATGACGCCCTATAGTGAGTCGTATTAGC - 3')配列番号96)を用いて同様に行った。

10

20

【0139】

転写の反応はtemplate DNA 10µL,10×T7 RNA polym erase buffer(400mM Tris‐HCl(pH7.5),50mM DTT,10mM Spermidine, 150mM MgCl2) 70µL,1 0×rNTPs(12.5mM rATP,12.5mM rCTP,12.5mM r UTP,12.5mM rGTP)70µL,T7 RNA polymerase 1 4µLを混合し、37 ,3時間反応させた。反応液にTURBO DNase(Amb ion)5µLを加え37 で1時間インキュベートし、鋳型DNAを分解させた。その 後、フェノール処理、エタノール沈澱を行い精製した。沈澱後、変性色素(80% ホル ムアミド,0.17% XC,0.27% BPB)20µLに溶解させ、12% ポリ アクリルアミド(29:1)変性ゲル電気泳動で分離した。目的のサイズのゲルを切り出 し、500µLの溶出緩衝液(0.3M 酢酸ナトリウム(pH7.0),0.1% S DS)を加え、37 、一晩溶出を行った。溶出したRNAは再びフェノール抽出、ジエ チルエーテル抽出およびエタノール沈澱を行って精製した。

[0140]

[BIACOREセンサーチップ上へのリガンド(biotin DNA)の固定化] ストレプトアビジン固定化センサーチップ(SAチップ)(GEヘルスケア)上に、ア ミノカップリングキット(GEヘルスケア)を用いて1µMのN末端 - ビオチン化修飾し たDNA(5'-CCGGGGATCCTCTAGAGTC-3')(配列番号97)を 10µL/minの流速で80µL添加し、固定化させた。

[0141]

[SAチップへのリガンドRNAの固定化]

RNAはHBS-EP buffer(10mM HEPES(pH7.4),150 mM NaCl,3mM EDTA,0.005% Surfactant P20)(GEヘルスケア)で1µMに調整し、80 で10min,室温で10min反応させリ フォールディングを行った後、1M KClで1/100に希釈し、10µL/minの 流速で300µL添加し、SAチップ上に固定化したDNAとハイブリダイゼーションさ せ52RU(レゾナンスユニット)固定化させた。

【0142】

[L7Aeの結合と解離]

L7Aeはrunning buffer(10mM Tris-HCl(pH8.0),150mM NaCl,5% glycerol,125µg/ml tRNA,6 2.5µg/ml BSA,1mM DTT,0.05% Tween20)で0nM, 2.5nM,5nM,7.5nM,10nM,15nM,20nM,25nMに調整し、 50µL/minの流速で50µL添加しRNAと結合させた。解離は同流速で5分間行 った。結合、解離の測定後、2M KClを20µL/minの流速で10µL添加を数 回繰り返し、5分間で解離しなかったL7Aeを強制的にRNAから解離させた。各濃度 3回ずつ測定した。

[0 1 4 3 **]**

[反応速度定数の算出]

BoxC/D mini bia RNAを結合させたフローセルのセンサーグラムから、BoxC/D mini mutant bia RNAを結合させたフローセルのセンサーグラムを差し引き、BIAevaluation解析ソフトの1:1(Lang muir)binding様式、Global fittingで反応速度定数(結合速度定数(ka),解離速度定数(kd), 結合定数(KD),解離定数(KA))を算出した。結果を、表4及び図35に示す。この図から、細胞内で翻訳制御に使用できるRNPモチーフは、強い結合親和性(KD=~1nM)をもつとともに、遅い解離速度(Kd=~1×10⁻⁴)をもつこと、すなわち一度RNP複合体を形成すると、再びRNAと蛋白質に解離しにくいという特徴に持つことが示された。

10

20

【表4】

ka (1/Ms)	kd (1/s)	KA (1/M)	KD (M)
1.46E+05	1.02E-04	1.43E+09	7.01E-10

【0145】

上記の実施例中、遺伝子及びRNAの名称表記において、GFP、EGFPという二つ の表現を用いているが、いずれもEGFP(Enhanced Green Fluor escent Protein)遺伝子由来の遺伝子及びRNAを意味するものである。 10 【産業上の利用可能性】

【0146】

本発明の活用例として、in vitroでは任意の蛋白質の発現に応答して、下流の シグナル蛋白質(蛍光、発光蛋白質など)に応答するバイオセンサー、人工遺伝子回路と して機能できる。また細胞内に導入することで、細胞を破壊することなく、特定の遺伝子 を発現する細胞を検出するシステムや、任意の蛋白質の発現に応答して、任意の蛋白質の 発現をONからOFFまたはOFFからONに変換する人工遺伝子回路のデバイスとして 機能できる。したがって、細胞運命を制御する技術へと展開できる。 【図面の簡単な説明】

[0 1 4 7 **]**

- 【図1】図1(A)は、第一実施形態によるmRNAを示す図であり、図1(B)は、第 一実施形態によるmRNAに、蛋白質が結合した状態を示す図である。
- 【図2】第二実施形態によるmRNAを示す図である。

【図3】図3(A)は、第三実施形態によるmRNAを示す図であり、図3(B)は、第 三実施形態によるmRNAにおいて、相補鎖が外れた状態を示す図である。

【図4】Box C/DのEMSAを示す図である。

【図5】Box C/D mini、Box C/D minimutのEMSAを示す 図である。

- 【図6】ThrRS Domain2のEMSAを示す図である。
- 【図7】ThrRS Domain234のEMSAを示す図である
- 【図8A】図8Aは、EGFP UTRの二次構造を表す図である。
- 【図 8 B】図 8 B は、L7 UTR 2 の二次構造を表す図である。
- 【図8C】図8Cは、L7AeのL7-UTR2 mutの二次構造を表す図である。
- 【図 8 D】図 8 Dは、L7 UTR2 minimutの二次構造を表す図である。
- 【図8E】図8Eは、L7-UTR5の二次構造を表す図である。
- 【図8F】図8Fは、L7-UTR9の二次構造を表す図である。

【図8G】図8Gは、L7-UTR13の二次構造を表す図である。

【図9】リボソーム結合部位と、L7Ae結合部位との距離の影響を示す図である。

- 【図10】変異体における翻訳制御との比較を示す図である。
- 【図11】競合実験を示す図である。
- 【図12】ThrRS UTRの二次構造を示す図である。

【図13】ThrRS UTRとThrRS複合体が翻訳を阻害できることを示す図である。

【図14】L7-ORFの二次構造を示す図である。

【図15】ORFでの翻訳制御を示す図である。

【図16】ON switchの翻訳制御アッセイの結果を示す図である。

【図17】図17中、(a)は、Box C/D-DsRed Exの二次構造を示す模 式図であり、(b)は、Box C/D mut-DsRed Exの二次構造を示す模 式図であり、(c)コントロールとして用いた、通常の5'-UTR配列をもつDsRe d Exの二次構造を示す模式図である。 20

30

(38)

【図18】図18は、L7Aeが0µMのときの蛍光量を1としたときの、L7Aeの添 加濃度に対する蛍光量の比率を示すグラフである。 【図19】図19は、蛋白質の添加で同時に二つのmRNAの翻訳を制御した結果を表す グラフである。 【図20】図20は、pcDNA-Aベクターを示すベクター図である。 【図21】図21は、pcDNA3.1ベクター(インビトロジェン)のCMVプロモー ター下流に、L7Ae遺伝子を挿入したプラスミドベクターである、L7Ae発現ベクタ ーpcDNA-L7Aeを示すベクター図である。 【図22】図22は、ヒト培養細胞内でのL7Ae発現を示す図である。 10 【図23】図23は、ヒト培養細胞内でL7Aeを発現させたことによる細胞毒性がない ことを示す図である。 【図24】図24は、Box C/D-GFPベクターを示すベクター図である。 【図25】図25は、BoxC/D mut GFPベクターを示すベクター図である。 【図26】図26は、L7Aeの発現を示した図である。 【図27】図27は、EGFPの発現を示した図である。 【図28】図28は、L7AeによるEGFPの翻訳抑制をウエスタンブロッティングで 定量した図である。 【図29】図29は、L7AeによるEGFPの翻訳抑制をFACSで測定した図である 20 【図30】図30は、pcDNAまたはpcDNA-L7Aeの添加量が0~1.6µg の時のEGFP翻訳抑制の結果を定量した図である。 【図31】図31は、Box C/D-GFPと、pcDNA-L7Aeとに由来するサ ンプル、及びBox C/D-GFPとpcDNA-Aとに由来するサンプルに関し、m R N A 量を B o x c / D のみのサンプルを 1 としてサンプル間で比較したグラフである。 【図32】図32は、Box C/D-GFPと、pcDNA-L7Aeとに由来するサ ンプル、及びBoxC/D mut GFPと、Box C/D-GFPとに由来するサ ンプルに関し、mRNA量をBoxc/Dのみのサンプルを1としてサンプル間で比較し たグラフである。 【図33】図33は、空ベクター、L7Aeを発現するベクターの添加量と、BoxCD 30 - mut-GFP、Box C/D-GFPにおける翻訳制御の関係を示す蛍光顕微鏡画 像である。 【図34】図34は、L7Aeを目的蛋白のタグ配列として利用できることを示した蛍光 顕微鏡画像である。 【図35】図35は、BoxC/D RNAとL7Ae蛋白質の結合速度(Ka)、解離 速度(Kd)、結合(KA)、解離(KD)定数を測定し、このRNA-蛋白質複合体に おいて、親和性が高く、解離速度が遅いモチーフが細胞内翻訳制御に有効であることを示 すグラフである。 【符号の説明】 [0148]40 ΜRΝΑ 1 1 a m R N A 1 b m R N A 2 RNA-蛋白質複合体相互作用モチーフ由来の塩基配列 2 a RNA-蛋白質複合体相互作用モチーフ由来の塩基配列 2 b RNA-蛋白質複合体相互作用モチーフ由来の塩基配列に相補的な塩基配列 リボソーム結合部位 3 オープンリーディングフレーム 4 4 a オープンリーディングフレーム 4 b オープンリーディングフレーム 50 5 蛋白質

6 競合RNA

【図1】

【図3】

【図 8 A】

【図88】

L7-UTR2 (EGFP)

L7-UTR2 mut (EGFP)

【図 8 D】

【図 8 F】

【図9】

【図10】

【図11】

+ EGFP

50

- ThrRS-UTR2 → ThrRS-UTR2 mut → ThrRS-UTRW

1.2

1

0.2

0

0

5

10

タンパク質 濃度 (μM)

20

【図14】

【図15】

【図20】

【図21】

BoxC/D-DsRed Ex, BoxC/Dmut-DsRed Ex, DsRed Ex の蛍光量の相対値

【図23】

【図24】

【図29】

···· BoxC/D mut GFP

【図30】

【図31】

pcDNA-A vs pcDNA-L7Ae

【図32】

BoxC/D GFP vs BoxC/D mut GFP

☑ BoxC/D mut GFP

【図4】

$0 \ \ 2 \ \ 5 \ \ 10 \ \ 200 \ \ 500 \ nM$

【図6】

【図7】

【図22】

【配列表】 0005538691000001.app フロントページの続き

(74)代理人	100130960		
	弁理士 岡本 正之		
(74)代理人	100125036		
	弁理士 深川 英里		
(74)代理人	100142996		
	弁理士 森本 聡二		
(72)発明者	井上 丹		
	京都市左京区北白川追分町	京都大学大学院	生命科学研究科内
(72)発明者	齊藤 博英		
	京都市左京区北白川追分町	京都大学大学院	生命科学研究科内
(72)発明者	小林 哲大		
	京都市左京区北白川追分町	京都大学大学院	生命科学研究科内
(72)発明者	原知明		
	京都市左京区北白川追分町	京都大学大学院	生命科学研究科内

審査官 鳥居 敬司

(56)参考文献 J. Bacteriol., 2007.08, Vol.189, No.15, p.5472-5481 Current Opinion in Structural Biology, 2007.06(online), Vol.17, p.273-279 Annu. Rev. Microbiol., 2005, Vol.59, p.487-517 Structure, 2004, Vol.12, p.807-818 Cell, 1999, Vol.97, p.371-381 Mol. Cell. Biol., 2007.09, Vol.27, No.18, p.6350-6360

(58)調査した分野(Int.Cl., DB名)

C 1 2 N 1 5 / 0 0 - 1 5 / 9 0 C 0 7 K 1 4 / 0 0 - 1 4 / 8 2 5 C A p l u s / MEDLINE / EMBASE / BIOSIS (STN) J S T P l u s / J MEDP l u s / J S T 7 5 8 0 (J D r e am I I I) WP I D S / WP I X (STN)