(19) 日本国特許庁(JP)

(12) 特許公報(B2)

(11)特許番号

特許第5025970号

(P5025970)

(45) 発行日 平成24年9月12日(2012.9.12)

- (24) 登録日 平成24年6月29日 (2012.6.29)
- (51) Int.Cl. F I **CO7D 213/30** (2006.01) CO7D 213/30 CSP CO7F 15/00 (2006.01) CO7F 15/00 C

請求項の数7 (全30頁)

(21) 出願番号	特願2006-64326 (P2006-64326)	(73) 特許権者	章 503360115 法主任于法人公共任任国际管理	
(22) 出願日	平成18年3月9日(2006.3.9)		独立行政法人科学技術振興機構	
(65)公開番号	特開2007-238519 (P2007-238519A)		埼玉県川口市本町四1日1番8号	
(43) 公開日	平成19年9月20日 (2007.9.20)	(74) 代理人	100108419	
審査請求日	平成20年10月28日 (2008.10.28)		弁理士 大石 治仁	
		(72)発明者	藤田 誠	
			東京都文京区本郷七丁目3番1号	国立大
			学法人東京大学内	
		(72)発明者	佐藤 宗太	
			東京都文京区本郷七丁目3番1号	国立大
			学法人東京大学内	
		(72)発明者	飯田 淳也	
			東京都文京区本郷七丁目3番1号	国立大
			学法人東京大学内	
			最終頁に	こ続く

(54) 【発明の名称】中空の殻内部に含フッ素アルキル基を有する中空遷移金属錯体、及びその製造方法

(57)【特許請求の範囲】

【請求項1】

中空の殻を有する中空遷移金属錯体であって、前記中空の殻が、n1個(n1は、6~60の整数を表す。)の遷移金属原子と、2(n1)個の二座有機配位子とから形成されてなり、

前記二座有機配位子が、<u>式(I)</u>

【化1】

10

 {式中、R¹、R²はそれぞれ独立して、ハロゲン原子、置換されていても良いアルキル

 基、置換されていても良いアルコキシル基、シアノ基またはニトロ基を表す。

 m1、m2はそれぞれ独立して、0~4の整数を表す。m1、m2が2以上のとき、R

1同士、	R ² 同士はそ	れぞれ同一であ	あっても、相異なっていても良い。	
Aは、	下記式 (a -	1)~(a-4	4)	

(2)

<u>〔R³は、式:-D-Rfで表される基を表し、Dは、式:-(O-CH₂)s-で表される連結基(sは1~20の整数を表す)、式:-(CH₂)t-で表される連結基(t は1~20の整数を表す)、又はこれらの組み合わせからなる連結基を表し、Rfはパー フルオロアルキル基を表す。</u>

<u>R⁴は、ハロゲン原子、置換されていても良いアルキル基、置換されていても良いアル</u> コキシル基、シアノ基またはニトロ基を表す。

<u>m3は0~3の整数を表し、m4は0~2の整数を表す。m3が2以上、m4が2のと</u> き、複数個のR⁴は同一であっても、相異なっていても良い。

<u>Qは、-Nr1-(r1は水素原子、アルキル基、アリール基若しくはアシル基を表す</u>20 <u>。)、-O-、-C(=O)-、-S-、または-SO₂-を表す。〕で表される基を示</u> す。}で示される化合物であり、かつ、

前記<u>R³</u>が中空の殻内部に配向するように形成されていることを特徴とする中空遷移金属 錯体。

【請求項2】

中空の殻を有する中空遷移金属錯体であって、前記中空の殻が、 n 2 個 (n 2 は、 6 、 1 2 、 2 4 、 3 0 または 6 0 である。)の遷移金属原子と、 2 (n 2) 個の二座有機配位 子とから形成されてなり、

前記二座有機配位子が、式(I)

【化1】

{式中、R¹、R²はそれぞれ独立して、ハロゲン原子、置換されていても良いアルキル 基、置換されていても良いアルコキシル基、シアノ基またはニトロ基を表す。

m1、m2はそれぞれ独立して、0~4の整数を表す。m1、m2が2以上のとき、R 40 ¹同士、R²同士はそれぞれ同一であっても、相異なっていても良い。

Aは、下記式(a - 1)~(a - 4)

【化2】

〔R³は、式: - D - R f で表される基を表し、Dは、式: - (O - C H₂) s - で表される連結基(sは1~20の整数を表す)、式: - (C H₂) t - で表される連結基(t は1~20の整数を表す)、又はこれらの組み合わせからなる連結基を表し、R f は、炭素数が1~20のパーフルオロアルキル基を表す。

R⁴は、ハロゲン原子、置換されていても良いアルキル基、置換されていても良いアル コキシル基、シアノ基またはニトロ基を表す。

m3は0~3の整数を表し、m4は0~2の整数を表す。m3が2以上、m4が2のと き、複数個のR⁴は同一であっても、相異なっていても良い。

Qは、-Nr1-(r1は水素原子、アルキル基、アリール基若しくはアシル基を表す 20 。)、-O-、-C(=O)-、-S-、または-SO₂-を表す。〕で表される基を示 す。}で示される化合物であり、かつ、

<u>前記R³</u>が中空の殻内部に配向するように形成されていることを特徴とする中空遷移金属 錯体。

【請求項3】

遷移金属化合物(M)と<u>前記二座有機配位子(L)とから、前記二座有機配位子(L)</u> のR³が中空の殻内部に配向するように自己組織的に形成されてなる、式:M_{n1}L_{2(n1)}(n1は、6~60の整数であり、M同士、L同士は、それぞれ同一であっても、 相異なっていても良い。)で表される請求項1に記載の中空遷移金属錯体。 【請求項4】

遷移金属化合物(M)と<u>前記二座有機配位子(L)とから、前記二座有機配位子(L)</u> <u>のR³</u>が中空の殻内部に配向するように自己組織的に形成されてなる、式:M_{n2}L_{2(n2)}(n2は、6、12、24、30または60であり、M同士、L同士は、それぞれ 同一であっても、相異なっていても良い。)で表される請求項2に記載の中空遷移金属錯 体。

【請求項5】

前記遷移金属錯体を構成する遷移金属原子が、Ti、Fe、Co、Ni、Cu、Zn、 Ru、Rh、Pd、Cd、Os、Ir及びPtからなる群から選ばれる一種であることを 特徴とする請求項1~<u>4</u>のいずれかに記載の中空遷移金属錯体。

【請求項6】

前記二座有機配位子が、式(I-1)

10

(4)

【化5】

(式中、D及びRfは、前記と同じ意味を表す。)

で示される化合物であることを特徴とする<u>請求項1~5</u>のいずれかに記載の中空遷移金属 錯体。

【請求項7】

<u>前記</u>遷移金属化合物(M)と二座有機配位子(L)とを、遷移金属化合物(M)1モル に対し、二座有機配位子(L)を1~5モルの割合で反応させることを特徴とする<u>請求項</u> 1~6のいずれかに記載の中空遷移金属錯体の製造方法。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、遷移金属原子と、末端に含フッ素アルキル基部分をもつ置換基を有する二座 20 有機配位子とから形成される中空の殻を有し、二座有機配位子の置換基が中空の殻内部に 配向してなる中空遷移金属錯体、及びその製造方法に関する。

【背景技術】

【0002】

厳密に制御されたナノサイズの中空構造体は、表面、内面、孤立内部空間の3つの領域 に分類することができる。これまで、その表面や内部空間については盛んに研究が行われ てきたが、人工系において内面を利用した研究例はほとんど報告されていない。

【 0 0 0 3 】

近年、フェリチン等の球状タンパク質や球状ウイルスCCMVなど、自然界のナノスケ ール構造体の内面を利用した研究が行われている。これらの構造体は人工的な刺激により 分解されても、再び自己組織化によって元の構造に復元する。球殻構造(中空の殻を有す る球状構造)の内面に向くようにサブユニットに対し官能基修飾を行い、自己組織化によ って再び球殻構造を形成させることで、球状の内面へ官能基を精密に配置することができ る(非特許文献1、2)。

[0004]

本発明者らも、有機配位子と遷移金属イオンとの配位結合を利用した自己組織化を検討 している。配位結合は適度な結合力があり方向性が明確に規定されているため、精密に構 造が制御された分子集合体を自発的かつ定量的に構築することが可能である。また、金属 の種類や酸化数に応じて配位数や結合角を制御することができるため、多様な配位結合性 の構造体を得ることができる(非特許文献3~5)。

【0005】

例えば、平面四配位性のPd(II)イオンを用いた場合には配位結合の方向を90度 に規定できる。特に、シス位がエチレンジアミン(en)で保護されたパラジウムエチレ ンジアミン硝酸錯体[(en)Pd(NO₃)₂](M)と、パネル状の有機配位子(L))からは、配位子に応じた様々な中空構造が最も安定な状態として自己集合する(非特許 文献 6~11)。

【 0 0 0 6 】

また、多成分からなるM₁₂L₂₄組成の立方八面体型の球状錯体の自己集合も見出されている(非特許文献12)。得られる錯体は、中心がフランやベンゼンである約120 度の折れ曲がり型二座有機配位子24個とPd(II)イオン12個が自己集合し、8枚 10

30

の正三角形と6枚の正方形の計14枚の面から構成されている。この場合、頂点の数は1 2、辺の数は24で各々金属イオンと配位子の数に相当する。 【0007】

この構造は、X線結晶構造解析により明らかになっており、直径約3.5 nm、内部空間容積約22 nm³であり、巨大な三次元中空構造が構築されている。また、配位子の長さを変化させた二座有機配位子からも同様にM₁₂L₂₄組成の球状錯体が構築されることがわかっており、直径5 nmの球状錯体が自己集合する。これらの錯体は、球状という内部の空間が最も広くなる構造をとっており、このサイズであると生体分子のタンパク質や核酸などが包接できる大きさである。

[0008]

上記M₁₂L₂₄組成の球状錯体では配位子の所定位置に官能基を導入することによって、自己集合反応を経て球状カプセルのナノ表面に24個の官能基を一挙にかつ精密に配置できることが明らかとなっている。例えば、ポルフィリンやフラーレンを表面に精密に配置した錯体が報告されており(非特許文献12)、球状構造のナノ表面を利用した生理活性や光物性などへの応用が期待されている。

[0009]

また、カチオン性のトリメチルアンモニウム基を導入することで、表面に48⁺の電荷 を持つカチオンボールが構築され、タンパク質の変成作用を著しく増大させるといったナ ノ表面特有の機能が見出されている(非特許文献13)。

[0010]

【非特許文献1】R.M.Kramer,C.Li,D.C.Carter,M.O.S tone, R. R. Naik, J. Am. Chem. Soc., 2004, 126, 13 283 【非特許文献2】T.Douglas,E.Strable,D.Willits,A. Aitouchen, M. Libera, M. Young, Adv. Mater., 20 02,14,415 【非特許文献3】P.J.Stang,B.Olenyuk,Acc.Chem.Res . 1 9 9 7 , 3 0 , 5 0 7 【非特許文献 4 】M . F u j i t a , C h e m . S o c . R e v . , 1 9 9 8 , 2 7 , 4 1 7 【非特許文献 5 】 B . O l e n y u k , A . F e c h t e n k o t t e r , P . J . S t ang, J. Chem. Soc. Dalton Trans. 1998, 1707 【非特許文献6】M.Fujita,K.Umemoto,M.Yoshizawa,N . Fujita, T. Kusukawa, K. Biradha, Chem. Commun . , 2 0 0 1 , 5 0 9 【非特許文献7】M.Fujita,D.Oguro,M.Miyazawa,H.Ok a,K.yamaguchi,K.Ogura,Nature,1995,378,46 9 【非特許文献8】N.Takeda,K.Umemoto,K.Yamaguchi,M . Fujita, Nature, 1999, 398, 794 【非特許文献9】K.Umemoto,H.Tsukui,T.Kusukawa,K. Biradha, M. Fujita, Angew. Chem. Int. Ed., 2001 , 40, 2620

【非特許文献10】M.Aoyagi,S.Tashiro,M.Tominaga,K .Biradha,M.Fujita,Chem.Commun.,2002,2036 【非特許文献11】T.Yamaguchi,S.Tashiro,M.Tominag a,M.Kawano,T.Ozeki,M.Fujita,J.Am.Chem.So c.,2004,10818 【非特許文献12】M.Tominaga,K.Suzuki,M.Kawano,T. Kusukawa,T.Ozeki,S.Sakamoto,K.Yamaguchi, 10

20

(6)

M.Fujita, Angew.Chem.Int.Ed., 2004,43,5621
 【非特許文献13】矢倉健一郎、卒業論文、東京大学
 【発明の開示】
 【発明が解決しようとする課題】

[0011]

本発明は、このような本発明者らの研究開発の一環としてなされたものであり、n1個 (n1は6~60の整数を表す。)の遷移金属原子と、2(n1)個の二座有機配位子と から形成されてなる中空の殻を有する遷移金属錯体であって、前記二座有機配位子が、末 端に含フッ素アルキル基部分を有するものであり、前記置換基が中空の殻内部に配向する ように形成されている中空遷移金属錯体、及びその製造方法を提供することを課題とする

10

【課題を解決するための手段】

[0012]

本発明者らは1,3-ビス(4-ピリジルエチニル)ベンゼンの2位に、末端に含フッ 素アルキル基部分を有する置換基を導入した化合物を合成し、このものを二座有機配位子 として用いて、遷移金属化合物との自己組織的な中空遷移金属錯体の形成を試みた。そし て、末端に含フッ素アルキル基部分を有する置換基が錯体の中空の殻内部に配置された中 空遷移金属錯体を効率よく得ることができることを見出し、本発明を完成するに至った。 【0013】

かくして本発明の第1によれば、下記(1)~(9)のいずれかに記載の中空遷移金属 ²⁰ 錯体が提供される。

(1)中空の殻を有する中空遷移金属錯体であって、前記中空の殻が、n1個(n1は、 6~60の整数を表す。)の遷移金属原子と、2(n1)個の二座有機配位子とから形成 されてなり、前記二座有機配位子が、末端に含フッ素アルキル基部分をもつ置換基を有す るものであり、かつ、前記置換基が中空の殻内部に配向するように形成されていることを 特徴とする中空遷移金属錯体。

【0014】

(2)中空の殻を有する中空遷移金属錯体であって、前記中空の殻が、n2個(n2は、 6、12、24、30または60である。)の遷移金属原子と、2(n2)個の二座有機 配位子とから形成されてなり、前記二座有機配位子が、末端に含フッ素アルキル基部分を もつ置換基を有するものであり、かつ、前記置換基が中空の殻内部に配向するように形成 されていることを特徴とする中空遷移金属錯体。

[0015]

(3) 遷移金属化合物(M)と、末端に含フッ素アルキル基部分をもつ置換基を有する二 座有機配位子(L)とから、前記置換基が中空の殻内部に配向するように自己組織的に形 成されてなる、式: M_{n1}L_{2(n1)}(n1は、6~60の整数であり、M同士、L同 士は、それぞれ同一であっても、相異なっていても良い。)で表される(1)に記載の中 空遷移金属錯体。

[0016]

(4)遷移金属化合物(M)と、末端に含フッ素アルキル基部分をもつ置換基を有する二
 40
 座有機配位子(L)とから、前記置換基が中空の殻内部に配向するように自己組織的に形成されてなる、式: M_{n2}L_{2(n2)}(n2は、6、12、24、30または60であり、M同士、L同士は、それぞれ同一であっても、相異なっていても良い。)で表される(2)に記載の中空遷移金属錯体。

[0017]

(5)前記含フッ素アルキル基部分が、パーフルオロアルキル基であることを特徴とする (1)~(4)のいずれかに記載の中空遷移金属錯体。

(6)前記遷移金属錯体を構成する遷移金属原子が、Ti、Fe、Co、Ni、Cu、Z n、Ru、Rh、Pd、Cd、Os、Ir及びPtからなる群から選ばれる一種であるこ とを特徴とする(1)~(5)のいずれかに記載の中空遷移金属錯体。

50

(7)前記二座有機配位子が、式(I)【0018】

【化1】

【0019】

{式中、R¹、R²はそれぞれ独立して、ハロゲン原子、置換されていても良いアルキル
 基、置換されていても良いアルコキシル基、シアノ基またはニトロ基を表す。
 m1、m2はそれぞれ独立して、0~4の整数を表す。m1、m2が2以上のとき、R
 ¹同士、R²同士はそれぞれ同一であっても、相異なっていても良い。
 Aは、下記式(a - 1)~(a - 4)

[0020]

【化2】

【0021】

〔R³は末端に含フッ素アルキル基を有する基を表す。

R⁴は、ハロゲン原子、置換されていても良いアルキル基、置換されていても良いアル コキシル基、シアノ基またはニトロ基を表す。

m3は0~3の整数を表し、m4は0~2の整数を表す。m3が2以上、m4が2のと き、複数個のR⁴は同一であっても、相異なっていても良い。

Qは、 - Nr1 - (r1は水素原子、アルキル基、アリール基若しくはアシル基を表す。)、 - O - 、 - C (= O) - 、 - S - 、または - SO₂ - を表す。〕で表される基を示す。}で示される化合物であることを特徴とする(1)~(6)のいずれかに記載の中空 遷移金属錯体。

【 0 0 2 2 】

(8)前記 R³が、式: - D - R f で表される基〔Dは、式: - (O - C H₂) s - で表 される連結基(sは1~20の整数を表す)、式: - (C H₂) t - で表される連結基(tは1~20の整数を表す)、又はこれらの組み合わせからなる連結基を表し、R f はパ ーフルオロアルキル基を表す。〕であることを特徴とする(7)に記載の中空遷移金属錯 体。

(9)前記二座有機配位子が、式(I-1)【0023】

10

30

【化3】

[0024]

(式中、D及びRfは前記と同じ意味を表す。)で示される化合物であることを特徴とす る(1)~(6)のいずれかに記載の中空遷移金属錯体。

[0025]

本発明の第2によれば、下記(10)の本発明の中空遷移金属錯体の製造方法が提供さ れる。

(10)遷移金属化合物(M)と、末端に含フッ素アルキル基部分をもつ置換基を有する 二座有機配位子(L)とを、遷移金属化合物(M)1モルに対し、二座有機配位子(L) を1~5モルの割合で反応させることを特徴とする(1)~(9)のいずれかに記載の中 空遷移金属錯体の製造方法。

【発明の効果】

[0026]

本発明の第1によれば、精密に制御された大きさの中空の殻を有し、前記二座有機配位 子の、末端に含フッ素アルキル基部分をもつ置換基が前記中空の殻内部に配向した特殊な 構造を有する中空遷移金属錯体が提供される。

本発明の中空遷移金属錯体によれば、錯体の中空の殻内部をフッ素原子に富んだ環境と することができるため、フッ素を含む他の分子やイオンをゲストとして選択的に取り込む ことが可能となる。また、前記置換基の含フッ素アルキル基の種類等を選択して用いるこ とで、取り込むゲストの種類や数の制御を行うことも可能となる。

[0027]

本発明の第2によれば、複雑なステップを要することなく、球状構造内部に含フッ素ア 30 ルキル基を有するナノメートルスケールの中空遷移金属錯体(本発明の中空遷移金属錯体)を効率よく製造できる中空遷移金属錯体の製造方法が提供される。

【発明を実施するための最良の形態】

[0028]

以下、本発明を、1)中空遷移金属錯体、及び、2)中空遷移金属錯体の製造方法に項 分けして詳細に説明する。

[0029]

1) 中空遷移金属錯体

本発明の中空遷移金属錯体は、中空の殻を有する中空遷移金属錯体であって、前記中空 の殻が、n1個の遷移金属原子と、2(n1)個の二座有機配位子とから形成されてなり 前記二座有機配位子が、末端に含フッ素アルキル基部分をもつ置換基を有するものであ り、かつ、前記置換基が中空の殻内部に配向するように形成されていることを特徴とする

ここで、n1は6~60の整数である。

本発明の中空遷移金属錯体においては、自己組織化が容易に進行することから、前記n 1がn2であるのが好ましい。n2は、6、12、24、30または60、好ましくは6 または12、特に好ましくは12である。

[0030]

本発明の中空遷移金属錯体は、遷移金属イオンと、末端に含フッ素アルキル基部分をも つ置換基を有する二座有機配位子との配位結合を利用した自己組織化により形成されるも 50

10

20

のである。配位結合は適度な結合力があり方向性が明確に規定されているため、精密に構 造が制御された分子集合体を自発的かつ定量的に構築することが可能である。また、金属 の種類や酸化数に応じて配位数や結合角を制御することができるため、多様な配位結合性 の構造体とすることができる。

【0031】

本発明の中空遷移金属錯体としては、遷移金属化合物(M)と、末端が含フッ素アルキル基部分である置換基を有する二座有機配位子(L)(以下、単に「二座有機配位子(L)」ということがある。)とから、前記置換基が中空の殻内部に配向するように自己組織的に形成されてなる、式:M_{n1}L_{2(n1)}(n1は前記と同じ意味を表す。)で示されるものが好ましく、遷移金属化合物(M)と二座有機配位子(L)とから、前記置換基が中空の殻内部に配向するように自己組織的に形成されてなる、式:M_{n2}L_{2(n2)}(n2は前記と同じ意味を表す。)で示されるものがより好ましい。ここで、M同士、L同士は、それぞれ同一であっても相異なっていてもよいが、同一であるのが好ましい。

本発明の中空遷移金属錯体の中空の殻の大きさは、特に制限されないが、直径が3~1 5 nmであるのが好ましい。

- 【0033】
- (1) 遷移金属原子

本発明の中空遷移金属錯体を構成する遷移金属原子としては、特に制限されないが、T i、Fe、Co、Ni、Cu、Zn、Ru、Rh、Pd、Cd、Os、Ir及びPtから 20 なる群から選ばれる一種であることが好ましく、平面4配位の錯体を容易に形成し得るこ とから、Ru、Rh、Pd、Os、Ir、Pt等の白金族原子が好ましく、Ru、Pd、 Ptがより好ましく、Pdが特に好ましい。

遷移金属原子の価数は、通常 0 ~ 4 価、好ましくは 2 価であり、配位数は、通常 4 ~ 6 、好ましくは 4 である。

[0034]

(2)二座有機配位子(L)

本発明の中空遷移金属錯体を形成する二座有機配位子(L)は、末端に含フッ素アルキ ル基部分をもつ置換基を有し、かつ、この置換基が、中空の殻内部に配向するように遷移 金属原子と自己組織的に中空遷移金属錯体を形成できるものであれば特に制限されないが 、下記に示す式(I)で表される化合物が好ましい。式(I)で表される化合物は、ピリ ジル基の隣にブリッジ部としてアセチレン基を有し、平面性を保ちつつ、両端のピリジル 基の間に広い空間をもった構造を有する。

[0035]

【化4】

40

30

10

【0036】

式中、R¹、R²はそれぞれ独立して、ハロゲン原子、置換されていても良いアルキル 基、置換されていても良いアルコキシル基、シアノ基またはニトロ基を表す。

m1、m2はそれぞれ独立して、0~4の整数を表す。m1、m2が2以上のとき、R¹同士、R²同士はそれぞれ同一であっても、相異なっていても良い。

Aは、下記式(a - 1)~(a - 4)で表される化合物の一種を表す。 【0037】

【0038】

式中、R³は末端に含フッ素アルキル基を有する基を表し、式: - D - R f で表される 基であるのが好ましい。式中、Dは、式: - (O - C H₂)s - で表される連結基、式: - (C H₂)t - で表される連結基、又はこれらの組み合わせからなる連結基を表す。式 中、s、tはそれぞれ独立して、1~20の整数を表す。

【0039】

R f はパーフルオロアルキル基を表す。パーフルオロアルキル基の炭素数としては、特に制約はないが、通常1~20、好ましくは3~10である。また、パーフルオロアルキル基としては、鎖状であっても分岐状であってもよい。

[0040]

R⁴は、ハロゲン原子、置換されていても良いアルキル基、置換されていても良いアル コキシル基、シアノ基またはニトロ基を表す。

m3は0~3の整数を表し、m4は0~2の整数を表す。m3が2以上、m4が2のと き、複数個のR⁴は同一であっても、相異なっていても良い。

【0041】

前記 R¹、 R²、 R⁴のハロゲン原子としては、フッ素原子、塩素原子、臭素原子など が挙げられる。

R¹、R²、R⁴の置換されていても良いアルキル基のアルキル基としては、メチル基 、エチル基、プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-ペンチル 基、n-ヘキシル基、n-オクチル基、n-ノニル基、n-デシル基等の炭素数1~20 のアルキル基が挙げられる。

30

10

20

また、 R¹、 R²、 R⁴の置換されていても良いアルキル基の置換基としては、ハロゲン原子、アルコキシル基、置換基を有していても良いフェニル基などが挙げられる。 【0042】

R¹、R²、R⁴の置換されていても良いアルコキシル基のアルコキシル基としては、 メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、t-ブトキシ 基、ペンチルオキシ基、ヘキシルオキシ基等の炭素数1~20のアルコキシル基が挙げら れる。また、R¹、R²、R⁴の置換されていても良いアルコキシル基の置換基としては 、ハロゲン原子、置換基を有していても良いフェニル基などが挙げられる。

【0043】

Qは、 - Nr1 - (r1は、水素原子、アルキル基、アリール基、若しくはアシル基を 表す。)、 - O - 、 - C (= O) - 、 - S - 、または - S O , - を表す。

前記 r 1 のアルキル基としては、メチル基、エチル基などが、アリール基としては、フ ェニル基、 p - メチルフェニル基などが、アシル基としては、アセチル基、ベンゾイル基 などがそれぞれ挙げられる。

【0044】

本発明に用いる二座有機配位子(L)としては、下記式(I-1)で表される化合物で あるのが特に好ましい。

【0045】

【化6】

[0046]

式中、D及びRfは前記と同じ意味を表す。

 二座有機配位子(L)は、公知の合成法を適用することにより製造することができる。 例えば、前記式(I)で表される化合物のうち、下記式(I-2)で表される化合物は、以下に示すように、文献公知の方法(K.Sonogashira,Y.Tohda,N.Hagihara,Tetrahedron Lett.,1975,4467;J.F.Nguefack,V.Bolitt,D.Sinou,Tetrahedron Lett.,1996,31,5527)に従い、製造することができる。
 【0047】

【化7】

[0048]

式中、A、R¹及びm1は前記と同じ意味を表す。

(A - 1)は、式:X - A - Xで表される化合物を表す。

Xは塩素原子、臭素原子、ヨウ素原子等のハロゲン原子を表す。

【0049】

すなわち、式(I - 2)で表される化合物は、適当な溶媒中、塩基、 P d (P h C N) 2 C l 2 / P(t - B u) 3 、 P d (P P h 3) 4 等のパラジウム触媒、及びヨウ化第 1 銅等の銅塩の存在下に、式(I I)で示される 4 - エチニルピリジン類(又はその塩)と 、式(I I I 」)で表される化合物(A - 1)とを反応させることにより得ることができる

[0050]

なお、上記反応は、2つの4-エチニルピリジン類(またはその塩)を一挙に反応させて、同じピリジニルエチニル基を2つ有する化合物を製造する例である。相異なる置換ピ 40 リジルエチニル基を有する化合物は、対応する4-エチニルピリジン類(またはその塩) を、同様な反応条件で、段階的に反応させることにより得ることができる。 【0051】

ここで用いる塩基としては、ジメチルアミン、ジエチルアミン、ジイソプロピルアミン 、トリエチルアミン、ジイソプロピルエチルアミン等のアミン類が挙げられる。

【0052】

用いる溶媒としては、1,4-ジオキサン、ジイソプロピルエーテル、テトラヒドロフ ラン、1,3-ジメトキシエタン等のエーテル類;ジメチルホルムアミド等のアミド類; ジメチルスルホキシド等のスルホキシド類;アセトニトリル等のニトリル類;等が挙げら れる。 30

反応温度は、通常、0 から用いる溶媒の沸点までの温度範囲、好ましくは10 ~7 0 であり、反応時間は、反応規模等にもよるが、通常、数分から数十時間である。 【0053】

4 - エチニルピリジン(又はその塩)は、公知の方法で製造することができるが、市販 品をそのまま用いることもできる。

【0054】

また、式(III)で表される化合物は、公知の方法で製造することができる。 例えば、前記式(I-1)で表される化合物の製造に用いられる下記式(III-1) で表される化合物は、下記の製造法1又は2により製造することができる。

(製造法1)

[0 0 5 5]

【0056】

(式中、 X 及び R f は前記と同じ意味を表し、 L は脱離基を表し、基: - O - D ' は、前 記 D に相当する。)

すなわち、式(IV)で表される化合物と式(V)で表される化合物とを、不活性ガス 雰囲気下で、塩基存在下に反応させることにより、式(IIII-1)で表される化合物を 得ることができる。

【 0 0 5 7 】

用いる塩基としては、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリ ³⁰ ウム、水酸化ナトリウム、水素化ナトリウム等の無機塩基類;トリエチルアミン、ピリジ ン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)等のアミン類;カ リウムt-ブトキシド、ナトリウムメトキシド等の金属アルコキシド類;等が挙げられる

【0058】

この反応は、溶媒中で行うのが好ましい。用いる溶媒としては、反応に不活性な溶媒で あれば、特に限定されない。例えば、ジエチルエーテル、テトラヒドロフラン(THF) 、1,4-ジオキサン等のエーテル類;ベンゼン、トルエン、キシレン等の芳香族炭化水 素類;ジクロロメタン、クロロホルム、1,2-ジクロロエタン等のハロゲン化炭化水素 類;アセトニトリル等のニトリル類;ジメチルホルムアミド(DMF)等のアミド類;ジ メチルスルホキシド(DMSO)等のスルホキシド類;ピリジン等の芳香族アミン類;等 が挙げられる。

40

【0059】

この反応は、0 から用いる溶媒の沸点までの温度範囲で円滑に進行する。反応時間は 反応規模等にもよるが、数分から48時間である。

(製造法2)

[0060]

10

【0061】

(式中、X、Rf、及びD'は前記と同じ意味を表す。)

すなわち、式(IV)で表される化合物と式(VI)で表される化合物とを、不活性ガ ス雰囲気下、脱水剤存在下に反応させることにより、式(III-1)で表される化合物 を得ることができる。

【0062】

用いる脱水剤としては、特に制限されず、1,3-ジシクロヘキシルカルボジイミド、 ジイソプロピルアゾジカルボキシレート(DIAD)等が挙げられる。

この反応は、溶媒中で行うのが好ましい。用いる溶媒としては、反応に不活性な溶媒で 20 あれば、特に限定されず、製造法1で例示したものと同様のものが挙げられる。

【0063】

この反応は、0 から用いる溶媒の沸点までの温度範囲で円滑に進行する。反応時間は 反応規模等にもよるが、数分から48時間である。

【0064】

いずれの反応においても、反応終了後は、通常の後処理操作を行い、及び所望により公 知の精製操作を行うことにより、目的物を単離することができる。

得られる化合物の構造は、元素分析、IR、NMR及びMSスペクトル等を測定することにより、同定・確認することができる。

【 0 0 6 5 】

本発明の中空遷移金属錯体の一例を図1に示す。図1に示す中空遷移金属錯体は、12 個の遷移金属化合物(M)と、24個の二座有機配位子(L)とから構成されている。

図1に示す中空遷移金属錯体は、金属イオン12個と折れ曲がった二座有機配位子(L)24個が自己集合することにより構築され、その内部に広い空間を持つ。また、二座有 機配位子(L)は末端に含フッ素アルキル基部分をもつ置換基Rを有し、置換基Rは、中 空の殻の内部に精密に配列されている。

【0066】

2) 中空遷移金属錯体の製造方法

本発明の中空遷移金属錯体の製造方法は、遷移金属化合物(M)と二座有機配位子(L)とを、遷移金属化合物(M)1モルに対し、二座有機配位子(L)を1~5モル、好ま 40 しくは2~3モルの割合で反応させることを特徴とする。

【 0 0 6 7 】

本発明に用いる遷移金属化合物(M)は、二座有機配位子(L)と自己組織的に中空遷 移金属錯体を形成できるものであれば特に制限されないが、二価の遷移金属化合物が好ま しい。

【0068】

遷移金属化合物(M)を構成する遷移金属原子としては、例えば、Ti、Fe、Co、 Ni、Cu、Zn、Ru、Rh、Pd、Cd、Os、Ir又はPt等の遷移金属原子が挙 げられる。なかでも、平面4配位の錯体を容易に形成し得ることから、Ru、Rh、Pd 、Os、Ir、Pt等の白金族原子が好ましく、Ru、Pd、Ptがより好ましく、Pd

50

が特に好ましい。

【0069】

遷移金属化合物(M)として具体的には、遷移金属の、ハロゲン化物、硝酸塩、塩酸塩、硫酸塩、酢酸塩、メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、 p-トルエンスルホン酸塩などが挙げられる。これらの中でも、効率よく、目的とする中空遷移金属 錯体が得られることから、遷移金属の、硝酸塩、トリフルオロメタンスルホン酸塩が好ましい。

【 0 0 7 0 】

遷移金属化合物(M)と二座有機配位子(L)との使用割合は、目的とする中空遷移金属錯体の組成などに応じて適宜設定することができる。例えば、前述した、式:M₁₂L ¹⁰ 24の組成をもつ遷移金属錯体を得たい場合には、遷移金属化合物(M)1モルに対し、 二座有機配位子(L)を2~3モルの割合で反応させればよい。

【0071】

遷移金属化合物(M)と二座有機配位子(L)との反応は、適当な溶媒中で行うことができる。

用いる溶媒としては、アセトニトリル等のニトリル類;ジメチルスルホキシド(DMS O)等のスルホキシド類;N,N-ジメチルホルムアミド等のアミド類;ジエチルエーテ ル、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン等のエーテル 類;ジクロロメタン、クロロホルム等のハロゲン化炭化水素類;ペンタン、ヘキサン等の 脂肪族炭化水素類;ベンゼン、トルエン等の芳香族炭化水素類;メタノール、エタノール 、イソプロピルアルコール等のアルコール類;アセトン、メチルエチルケトン等のケトン 類;エチルセロソルブ等のセロソルブ類;水等が挙げられる。これらの溶媒は一種単独で 、あるいは二種以上を組み合わせて用いることができる。

20

30

【0072】

遷移金属化合物(M)と二座有機配位子(L)との反応は、0 から用いる溶媒の沸点 までの温度範囲で円滑に進行する。

反応時間は、数分から数日間である。

反応終了後は、有機合成化学における通常の後処理操作を行い、所望によりイオン交換 樹脂等によるカラム精製、蒸留、再結晶等の公知の分離精製手段により精製を行うことに よって、目的とする中空遷移金属錯体を単離することができる。

【0073】

なお、得られる中空遷移金属錯体の対イオンは、通常、用いる遷移金属化合物(M)の 陰イオンであるが、結晶性を向上させたり、中空遷移金属錯体の安定性を向上させる目的 で対イオンを交換してもよい。かかる対イオンとしては、PF₆⁻、ClO₄⁻、SbF 4⁻、AsF₆⁻、BF₄⁻、SiF₆²⁻等が挙げられる。

【0074】

得られた中空遷移金属錯体の構造は、¹ H - NMR、¹ ³ C - NMR、IRスペクトル 、マススペクトル、可視光線吸収スペクトル、UV吸収スペクトル、反射スペクトル、X 線結晶構造解析、元素分析等の公知の分析手段により確認することができる。

【0075】

40

以上のようにして、極めて簡便な操作により、本発明の中空遷移金属錯体を効率よく製造することができる。そのため、グラムスケールでの大量合成も可能である。 【0076】

本発明の中空遷移金属錯体は、ナノメートルスケールの一定の大きさを有し、二座有機 配位子(L)の、末端に含フッ素アルキル基を有する置換基Rが錯体の球状構造の内部に 配向した、精密に制御された特殊な構造を有する。

[0077]

このように、本発明の中空遷移金属錯体は、二座有機配位子(L)の含フッ素アルキル 基が錯体の中空の殻内部に集積しており、殻内部をフッ素原子に富んだ特殊な環境を有し ている。そのため、本発明の中空遷移金属錯体はその殻内部に含フッ素化合物を選択的に

包接することができる。

【0078】

本発明の中空遷移金属錯体の殻内部に包接する含フッ素化合物の数は、殻の大きさ(容積)と含フッ素化合物の大きさに依存する。一般的には、殻が大きいほど多くの含フッ素 化合物を包接でき、含フッ素化合物が大きいほど包接される含フッ素化合物の数は少なく なる。その一方、中空遷移金属錯体の殻が小さく、殻内部に存在するフッ素原子間の距離 が短くなるほど、よりフッ素原子に富んだ特殊な環境を形成でき、含フッ素化合物を選択 的に殻内部に取りこむ能力は高くなると考えられる。

[0079]

本発明の中空遷移金属錯体の殻内部に含フッ素化合物を包接させるには、本発明の中空 10 遷移金属錯体の溶液に含フッ素化合物を添加して、全容を撹拌すればよい。

[0080]

ここで、含フッ素化合物としては、例えば、含フッ素アルカン、含フッ素アルケン等が 挙げられる。含フッ素化合物の炭素原子数は、本発明の中空遷移金属錯体が有する殻の大 きさに依存するが、通常3~20である。

【0081】

用いる溶媒としては、特に制約はないが、前記遷移金属化合物(M)と二座有機配位子 (L)との反応に用いる溶媒として列挙したのと同様のものが挙げられる。また、含フッ 素化合物が溶解しない溶媒中であっても、該溶媒中で、本発明の中空遷移金属錯体と含フ ッ素化合物とを混合することにより、均一な溶液が得られ、含フッ素化合物が中空遷移金 属錯体の有する殻内部に取りこまれたことが推測できる。

20

30

【 0 0 8 2 】

含フッ素化合物と混合・撹拌するときの温度は、特に制限されないが、通常0~50、 、好ましくは10~30 である。

混合・撹拌時間は、用いる化合物の種類等にもよるが、通常0.5~10時間である。 【0083】

本発明の中空遷移金属錯体の殻内部中に含フッ素化合物が取り込まれたことは、¹⁹ F - NMRスペクトル、¹⁹ F - NOESYスペクトル、¹⁹ F - COSYスペクトル、¹ ⁹ F - DOSYスペクトル等を測定し、そのシグナルが変化することで確認することがで きる。

【実施例】

[0084]

次に、実施例により、本発明をさらに詳細に説明する。なお、本発明は、実施例により何ら限定されるものではない。

(機器類)

(1)¹ H - N M R スペクトルの測定

¹ H - NMRスペクトルは、Bruker DRX 500(500MHz)NMR spectrometer、及びJEOL JNM - AL 300(300MHz)NM R spectrometerにより測定した。測定温度は27 である。

溶媒として、CDCl₃、DMSOを用いた場合は、テトラメチルシラン(TMS)を ⁴⁰ 内部標準とした。

化学シフトは 値で表示し、次の省略形を用いた。 s (一重線)、 d (二重線)、 t (三重線)、 b r (ブロード)。

【0085】

(2)¹³C-NMRスペクトル、及び各種二次元NMRスペクトルの測定

¹³C-NMRスペクトル及び¹⁹F-NMRスペクトルは、Bruker DRX 5 00(¹³C:125MHz,¹⁹F:470MHz)NMR spectromete rを用いて測定した。測定温度はいずれも27 である。なお、¹⁹F-NMRの測定時 には、トリフルオロ酢酸(TFA)を各溶媒に溶かした溶液をガラスキャピラリーに封管 したものを外部標準とした。

[0086]

(3)マススペクトルの測定

GC-MSは、Agilent 5973 inertを用いて測定した。 コールドスプレーイオン化質量分析(CSI-MS)は、JEOL JMS-700C により測定した。

[0087]

(試薬類)

カラムクロマトグラフィーによる生成物の分離には、ワコーシルC-300(和光純薬)を用いた。

反応溶媒は、和光純薬工業株式会社及び関東化学株式会社で市販されている有機合成用 10 脱水溶媒(水分0.005%以下)をそのまま使用した。

試薬類は、特に精製することなく、市販品をそのまま使用した。

[0088]

(実施例1~4)

下記に示す中空遷移金属錯体(2a)~(2d)を製造した。

- [0089]
- 【化10】

20

2d

2b

40

 $\begin{bmatrix} 0 & 0 & 9 & 0 \end{bmatrix}$ (実施例1)中空遷移金属錯体(2a)の製造

[0091]

1a

[0092]

(1)1,3-ジブロモ-2-(3,3,4,4,5,5,6,6,7,7,8,8,8
 トリデカフルオロオクチロキシ)ベンゼン(4a)の合成
 2,6-ジブロモフェノール(1.0g,4.0mmol)と、トリフェニルホスフィ

 ン(1.0g,4.0mmol)との混合物に、ジイソプロピルアゾジカルボキシレート (DIAD,0.78mL,4.0mmol)及びテトラヒドロフラン(THF)(10 mL)を加え、全容をアルゴン雰囲気下、室温で30分撹拌した後、3,3,4,4,5 ,5,6,6,7,7,8,8,8-トリデカフルオロ-1-オクタノール(0.88m L,4.0mmol)を加え、同条件下でさらに12時間撹拌した。

反応混合物を減圧濃縮し、濃縮物をシリカゲルカラムクロマトグラフィー(n - ヘキサン)で精製することにより、化合物(4 a)(1 . 8 g , 3 . 1 m m o 1)を透明オイル ざとして得た(収率 7 7 %)。

[0093]

(物性データ)

¹ H - N M R (500 M H z , C D C l ₃ , p p m); 7 . 52 (d , J = 8 . 0 H z , 2 H) , 6 . 90 (t , J = 8 . 0 H z , 1 H) , 4 . 31 (t , J = 7 . 3 H z , 2 H) , 2 . 77 (m , 2 H)

[0094]

GC-MS calcd for $C_{14}H_7Br_2F_{13}O([M^+])$; 598, found 598

【0095】

(2)1,3-ビス(4-ピリジルエチニル)-2-(3,3,4,4,5,5,6,6,7,7,7,8,8,8-トリデカフルオロオクチロキシ)ベンゼン(1a)の合成 上記で得た化合物(4a)(1.5g,2.5mmol)、4-エチニルピリジン塩酸 塩(0.98g,7.0mmol)、Pd(PhCN)₂Cl₂(58mg,0.15m mol)、及びCuI(19mg,0.10mmol)のジオキサン(6mL)溶液に、 トリt - ブチルホスフィン(0.77mL,0.31mmol;10%ヘキサン溶液)と ジイソプロピルアミン(1.8mL,13mmol)を加え、全容を、アルゴン雰囲気下、 50 で22時間撹拌した。反応混合物に酢酸エチル(10mL)を加えて濾過し、濾 液に水(150mL)を加え、エチレンジアミン(1mL)で洗浄後、酢酸エチルで抽出 した。有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮して得られた濃縮物をシリカゲル 20

カラムクロマトグラフィー(クロロホルム:メタノール=100:1(v/v))により 精製して、配位子(1a)(1.1g,1.7mmol)を白色固体として得た(収率6 7%)。 [0096] (物性データ) 融点:65-66 ¹ H - NMR (500 MHz, CDCl₃, ppm); 8.64 (d, J = 6.0 H z, 4 H), 7.57(d, J = 7.5Hz, 2 H), 7.37(d, J = 6.5Hz, 4 H) , 7 . 1 8 (t , J = 7 . 5 H z , 1 H) , 4 . 6 1 (t , J = 6 . 5 H z , 2 H 10), 2.78(m, 2H) [0097]¹ ³ C - NMR (125 MHz, DMSO - d₆, ppm); 160.2 (C), 1 4 9 . 9 (C) , 1 3 5 . 0 (C H) , 1 2 9 . 8 (C) , 1 2 5 . 1 (C H) , 1 2 4 .9(CH),116.0(C), 91.3(C),88.7(C),78.9(C) , 6 6 . 2 (C H ₂) , 3 1 . 1 (C H ₂) [0098]¹ ⁹ F - NMR (470 Hz, DMSO - d₆, ppm); - 82.0 (CF₃), - 1 1 3 . 8 (CF₂), - 1 2 3 . 2 (CF₂), - 1 2 4 . 2 (CF₂), - 1 2 4 . 6 (CF₂), - 1 2 7 . 3 (CF₂) 20 [0099]GC-MS calcd for $C_{28}H_{15}F_{13}N_2O([M^+])$; 642, found 642 元素分析:Calcd for C₂₈H₁₅F₁₃N₂O:C,52.35;H,2 . 3 5 ; N , 4 . 3 6 、 F o u n d : C , 5 2 . 4 0 ; H , 2 . 5 3 ; N , 4 . 3 2 [0100](3) 中空遷移金属錯体(2a) の製造 上記で得た配位子(1a)(7.0mg,10.9µmol)、及びPd(NO3)。 (2.1mg,9.1µmol)を、ジメチルスルホキシド(0.70ml)中、70 で3時間撹拌した。 30 反応混合物にジエチルエーテルを加えたところ、白色固体が析出した。遠心分離して上 澄みを取り除き、真空乾燥することで目的物(4.6mg)を得た(収率51%)。 [0101]得られた中空遷移金属錯体(2a)の物性データは、以下の通りである。 ¹ H - NMR (500 MHz, DMSO - d₆, ppm); 9.23 (br, 96 H),7.74(br,144H),7.33(br,24H),4.55(br,48H)), 2.88(br,48H) [0102]¹⁹ F - NMR (470 Hz, DMSO - d₆, ppm); - 82.9 (72 F), - 1 1 4 . 1 (4 8 F) , - 1 2 3 . 5 (4 8 F) , - 1 2 4 . 7 (4 8 F) , - 1 2 5 40 . 1 (48F), - 128.0 (48F) [0103] CSI - MSは、錯体(2a)のDMSO溶液にCFュSOュNaを添加して、カウン ターアニオンをCF₃SO₃・に交換した後に測定を行った。 [0104]CSI-MS(CF₃SO₃⁻塩、CH₃CN:DMSO=19:1):m/z;23 85.6[M-8(CF₃SO₃⁻)]⁸⁺,2103.9[M-9(CF₃SO₃] 9 $^{+}$, 1 8 7 8 . 7 [M - 1 0 (C F $_3$ S O $_3$ $^{-}$)] 1 0 $^{+}$, 1 6 9 4 . 3 [M - 1 1 (CF₃SO₃⁻)]¹¹⁺, 1547.1[M-12(CF₃SO₃⁻)+(DMSO)] ^{1 2 +} , 1 5 4 0 . 6 [M - 1 2 (CF ₃ SO ₃ ⁻)] ^{1 2 +} , 1 4 1 6 . 7 [M -13 (CF₃SO₃⁻) + (DMSO)] 1^{3} + , 1410.7 [M - 13 (CF₃SO 50

⁻)]¹³⁺,1310.342[M-14(CF₃SO₃⁻)+2(DMSO)]¹ ⁴ ⁺ , 1 3 0 4 . 8 [M - 1 4 (CF₃ SO₃ ⁻) + (DMSO)] ^{1 4 +} , 1 2 9 9 . $2 [M - 14 (CF_3 SO_3^{-})]^{14}$ [0105](実施例2)中空遷移金属錯体(2b)の製造 [0106]【化12】 C8F17-(CH2)2-OH PPh₃, DIAD Br Br THF OH r.t., 12 h CF₂)₇CF₃ 4b Pd(PhCN)₂Cl₂, Cul $HN(i-Pr)_2$, $P(t-Bu)_3$ 1,4-dioxane 50 °C, 17 h $(CF_2)_7 CF_3$

20

30

10

【0107】

(1)1,3-ジブロモ-2-(3,3,4,4,5,5,6,6,7,7,8,8,9
 ,9,10,10,10-ヘプタデカフルオロデシロキシ)ベンゼン(4b)の合成
 2,6-ジブロモフェノール(400mg,1.6mmol)と、トリフェニルホスフィン(420mg,1.6mmol)の混合物に、DIAD(0.31mL,1.6mm

1b

イン(420mg,1.6mmol)の混合物に、DIAD(0.31mL,1.6mm ol)及びTHF(5mL)を加え、反応混合物をアルゴン雰囲気下、室温で30分撹拌 した後、3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロ-1 -デカノール(740mg,1.6mmol、5mLのTHF溶液)を加え、同条件下で さらに12時間撹拌した。

反応混合物を減圧濃縮し、濃縮物をシリカゲルカラムクロマトグラフィー(n - ヘキサン)で精製することにより、化合物(4b)(768mg,1.1mmol)を透明オイルとして得た(収率70%)。

【0108】

(物性データ)

GC-MS calcd for C₁₆H₇Br₂F₁₇O([M⁺]);698、 40 found 698

【0109】

(2)1,3-ビス(4-ピリジルエチニル)-2-(3,3,4,4,5,5,6,6
 ,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロデシロキシ)ベンゼン(1b)の合成

得られた化合物(4b)(700mg,1.0mmol)、4-エチニルピリジン塩酸 塩(390g,2.8mmol)、Pd(PhCN)₂Cl₂(23mg,0.060m mol)、及びCuI(7.6mg,0.040mmol)のジオキサン(5mL)溶液 中に、トリt-ブチルホスフィン(0.31mL,0.12mmol;10%ヘキサン溶 液)とジイソプロピルアミン(0.72mL,5.2mmol)を加えた。 **[**0 1 1 0 **]**

反応混合物を、アルゴン雰囲気下、50 で17時間撹拌した。反応混合物に酢酸エチル(10mL)を加え濾過し、濾液に水(150mL)を加え、エチレンジアミン(1mL)で洗浄後、酢酸エチルで抽出した。有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮して得られた濃縮物をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=100:1(v/v))により精製して、配位子(1a)(180mg,0.24mmol)を白色固体得た(収率24%)。

¹ H - N M R (500 M H z , C D C l ₃ , p p m); 8 . 6 4 (d , J = 6 . 0 H z , 4 H) , 7 . 5 7 (d , J = 8 . 0 H z , 2 H) , 7 . 3 7 (d , J = 6 . 5 H z , 4 H) , 7 . 1 8 (t , J = 7 . 5 H z , 1 H) , 4 . 6 1 (t , J = 6 . 5 H z , 2 H)

¹ ³ C - NMR (125 MHz, DMSO - d₆, ppm); 160.2(C), 1 49.9(CH), 135.0(CH), 129.8(C), 125.1(CH), 1 24.9(CH), 115.9(C), 91.3(C), 88.7(C), 66.2(C)

¹ ⁹ F - NMR (470 Hz, DMSO - d₆, ppm); - 81.8 (CF₃), - 113.8 (CF₂), - 123.0 (CF₂), - 123.3 (CF₂), - 124

元素分析:Calcd for C₃₀H₁₅F₁₅N₂O:C,48.53;H,2

. 0 4 ; N , 3 . 7 7 、 F o u n d : C , 4 8 . 7 7 ; H , 2 . 3 0 ; N , 4 . 0 6

【0111】 (物性データ)

[0112]

[0113]

[0 1 1 4 **]**

[0115]

融点: 67-69

), 2.78(m, 2H)

H₂), 31.3(CH₂)

(3)中空遷移金属錯体(2b)の製造

10

-

20

30

3時間撹拌した。 反応混合物にジエチルエーテルを加えたところ、白色固体が析出した。遠心分離して上 澄みを取り除き、真空乾燥することで目的物(5.7mg)を得た(収率56%)。

得られた配位子(1b)(8.1mg,10.9µmol)、及びPd(NO₃)₂(

1 mg,9.1µmo1)を、ジメチルスルホキシド(0.70m1)中、70 で

【0116】

得られた中空遷移金属錯体(2b)の物性データは以下の通りである。

. 0 (C F ₂) , - 1 2 4 . 6 (C F ₂) , - 1 2 7 . 3 (C F ₂)

¹ H - NMR (500MHz, DMSO - d₆, ppm); 9.20 (br, 96H), 7.72 (br, 144H), 7.35 (br, 24H), 4.51 (br, 48H), 2.97 (br, 48H)

¹ ⁹ F - NMR (470 H z , DMSO - d ₆ , ppm); - 84.7(72F), ⁴⁰ - 114.4(48F), - 123.4(48F), - 124.3(96F), - 125 .2(48F), - 125.5(48F), - 129.3(48F) [0118]

CSI-MSは、錯体(2b)のDMSO溶液にCF₃SO₃Naを添加して、カウン ターアニオンをCF₃SO₃⁻に交換した後に測定を行った。

【0119】

C S I - M S (C F ₃ S O ₃ ⁻ 塩 , C H ₃ C N) : m / z ; 2 8 2 9 . 4 [M - 6 (C F ₃ S O ₃ ⁻)] ^{6 +} , 2 4 0 3 . 8 [M - 7 (C F ₃ S O ₃ ⁻)] ^{7 +} , 2 0 8 4 . 7 [M - 8 (C F ₃ S O ₃ ⁻)] ^{8 +} , 1 8 3 6 . 5 [M - 9 (C F ₃ S O ₃ ⁻)] ^{9 +} , 1 6 3 7 . 9 [M - 1 0 (C F ₃ S O ₃ ⁻)] ^{1 0 +} , 1 4 7 5 . 4 [M - 1 1 (C F ₃ 50

(21)

[0122**]**

(1)1,3-ジブロモ-2-(9-トリフルオロメチル-3,3,4,4,5,5,6 , 6 , 7 , 7 , 8 , 8 , 9 , 1 0 , 1 0 , 1 0 - トリデカフルオロデシロキシ)ベンゼン (4 c)の合成 2,6-ジブロモフェノール(600mg,2.4mmol)、炭酸セシウム(1.6 g , 4 . 8 m m o 1)、及び 9 - トリフルオロメチル - 3 , 3 , 4 , 4 , 5 , 5 , 6 , 6 , 7 , 7 , 8 , 8 , 9 , 1 0 , 1 0 , 1 0 - ヘキサデカフルオロ - 1 - ヨードノナン (4 .1g,7.1mmo1)を、アセトニトリル(15mL)中、アルゴン雰囲気下、80 で17時間撹拌した。 反応混合物を減圧濃縮し、濃縮物をシリカゲルカラムクロマトグラフィー(n-ヘキサ ン)で精製することにより、化合物(4 c) (4 2 0 m g , 0 . 5 6 m m o 1)を透明オ イルとして得た(収率24%)。 **[**0123**]** (物性データ) ¹ H - NMR (300 MHz, CDCl₃, ppm); 7.52 (d, J = 8.1 H z, 2 H), 6.90(t, J = 8.1 Hz, 1 H), 4.30(t, J = 7.1 Hz, 2 H) , 2 . 7 7 (m , 2 H) GC-MS:calcd for C₁₇H₇Br₂F₁₉O([M⁺]);748、 found 748 [0124](2)1,3-ビス(4-ピリジルエチニル)-2-(9-トリフルオロメチル-3,3,4,4,5,5,6,6,7,7,8,8,9,10,10,10-トリデカフ ルオロデシロキシ)ベンゼン(1 c)の合成 上記で得た化合物(4 c)(4 1 0 mg, 0.55 mmol)、4 - エチニルピリジン 塩酸塩(210g,1.5mmol)、Pd(PhCN),Cl,(18mg,0.03 4 mmol)、及びCuI(4.2mg,0.022mmol)のジオキサン(1mL) 溶液に、トリt‐ブチルホスフィン(0.14mL,0.066mmol;10%ヘキサ

30

40

ン溶液)とジイソプロピルアミン(0.40mL,2.8mmol)を加え、全容を、ア ルゴン雰囲気下、50 で17時間撹拌した。反応混合物に酢酸エチル(5mL)を加え て濾過し、濾液に水(100mL)を加え、エチレンジアミン(1mL)で洗浄後、酢酸 エチルで抽出した。有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮して得られた濃縮物 をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=100:1(vノ v))により精製して、配位子(1a)(320mg,0.40mmol)を白色固体と して得た(収率86%)。 **[**0125**]** (物性データ) 10 融点:73-75 GC-MS:calcd for C₃₁H₁₅F₁₉N₂O([M⁺]);792、 found 792 ¹ H - NMR (500 MHz, CDC l₃, ppm); 8.63 (d, J = 6.0 H z, 4 H), 7.57(d, J=8.0Hz, 2H), 7.37(d, J=8.0Hz, 4 H) , 7 . 1 8 (t , J = 7 . 5 H z , 1 H) , 4 . 6 1 (t , J = 6 . 5 H z , 2 H), 2.76 (m, 2H) [0126] IR (KBr, cm⁻¹); 160.2(C), 149.8(CH), 135.0(C H), 1 2 9 . 7 (C), 1 2 5 . 1 (CH), 1 2 4 . 8 (CH), 1 1 5 . 9 (C) 20 , 9 1 . 2 (C) , 8 8 . 6 (C) , 6 6 . 1 (C H ₂) , 3 1 . 1 (C H ₂) [0127]¹⁹ F - NMR (470 Hz, DMSO - d₆, ppm); -72.9 (CF₃), - 1 1 3 . 8 (CF₂), - 1 1 6 . 4 (CF₂), - 1 2 2 . 1 (CF₂), - 1 2 2 . 8 (CF₂), -123.0 (CF₂), -124.6 (CF₂), -187.3 (C F) [0128] (3)中空遷移金属錯体(2 c)の製造 上記で得た配位子(1c)(8.6mg,10.9µmol)、及びPd(NO₃)₂ (2.1mg,9.1µmol)を、ジメチルスルホキシド(0.70ml)中、70 30 で3時間撹拌した。 反応混合物にジエチルエーテルを加えたところ、白色固体が析出した。遠心分離して上 澄みを取り除き、真空乾燥することで目的物(5.7mg)を得た(収率56%)。 [0129]得られた中空遷移金属錯体(2c)の物性データは下記の通りである。 ¹ H - NMR (500 MHz, DMSO - d₆, ppm); 9.19 (br, 96 H),7.72(br,144H),7.34(br,24H),4.51(br,48H)), 2.95 (br, 48H) [0130]¹⁹ F - NMR (470 Hz, DMSO - d₆, ppm); -72.9(144 F) 40 , -113.8(48F), -116.4(48F), -122.1(48F), -12 2.8(48F),-123.0(48F),-124.6(48F),-187.3(24F) [0131]CSI-MSは、錯体(2c)のDMSO溶液にCF3SO3Naを添加して、カウン ターアニオンをCF、SO、「に交換した後に測定を行った。 [0132] CSI-MS(CF₃SO₃⁻塩,CH₃CN):m/z;3630.4[M-6(C F₃SO₃⁻)]⁶⁺, 3090.4[M-7(CF₃SO₃⁻)]⁷⁺, 2685.4 $[M - 8 (CF_{3}SO_{3}^{-})]^{8 +}$, 2370.4 $[M - 9 (CF_{3}SO_{3}^{-})]^{9 +}$, 2 1 1 8 . 4 [M - 1 0 (C F ₃ S O ₃ ⁻)] ^{1 0 +} , 1 9 2 6 . 5 [M - 1 1 (C F ₃ 50

(22)

(23)

ィン(880mg,3.4mmo1)との混合物に、ジイソプロピルアゾジカルボキシレ ート(0.66mL,3.4mmol)及びTHF(10mL)を加え、全容をアルゴン 雰囲気下、室温で30分撹拌した。さらに、3,3,4,4,5,5,6,6,6-ノナ フルオロ - 1 - ヘキサノール(1.1mL,6.8mmol)を加え、同条件下で12時 間撹拌した。

反応混合物を減圧濃縮し、濃縮物をシリカゲルカラムクロマトグラフィー(n-ヘキサ ン)で精製することにより、化合物(4b)(1.1g,2.2mmol)を透明オイル として得た(収率67%)。

[0136]

(物性データ)

¹ H - NMR (500 MHz, DMSO - d₆, ppm); 7.52 (d, J = 8. 2 H z , 2 H) , 6 . 9 0 (t , J = 8 . 0 H z , 1 H) , 4 . 3 1 (t , J = 7 . 0 H z, 2H), 2.77(m, 2H)

[0137]

(2)1,3-ビス(4-ピリジルエチニル)-2-(3,3,4,4,5,5,6,6 , 6 - ノナフルオロヘキシロキシ)ベンゼン(1 d)の合成

得られた化合物(4d)(1.3g,2.6mmol)、4-エチニルピリジン塩酸塩 (1.0g,7.4mmol)、Pd(PhCN)₂Cl₂(61mg,0.16mmo 、及びCuI(20mg,0.11mmol)のジオキサン(6mL)溶液に、トリ 30

t - ブチルホスフィン(0.82mL,0.33mmol;10%ヘキサン溶液)とジイ ソプロピルアミン(1.9mL,14mmol)を加え、全容を、アルゴン雰囲気下、5 0 で17時間撹拌した。反応混合物に酢酸エチル(10mL)を加えて濾過し、濾液に 水(150mL)を加え、エチレンジアミン(1mL)で洗浄後、酢酸エチルで抽出した 。有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮して得られた濃縮物をシリカゲルカラ ムクロマトグラフィー(クロロホルム:メタノール=100:1(v/v))により精製 して、配位子(1a)(874mg,1.6mmol)を黒色固体として得た(収率61 %)。 [0138] 10 (物性データ) 融点: 61-63 ¹ H - NMR (500 MHz, CDCl₃, ppm); 8.64 (d, J = 6.0 H z , 4 H) , 7 . 5 7 (d , J = 8 . 0 H z , 2 H) , 7 . 3 7 (d , J = 6 . 0 H z , 4 H) , 7 . 1 8 (t , J = 7 . 0 H z , 1 H) , 4 . 6 1 (t , J = 6 . 5 H z , 2 H), 2.75 (m, 2H) [0139] ¹ ³ C - NMR (125 MHz, DMSO - d₆, ppm); 160.2 (C), 1 50.0(CH),135.0(CH),129.8(C),125.1(CH),12 4.9(CH),115.9(C),91.3(C),88.7(C),66.2(CH 20 ₂), 31.0(CH₂) [0140]¹ ⁹ F - NMR (470 Hz, DMSO - d₆, ppm); - 82.2 (CF₃), - 1 1 4 . 2 (C F ₂) , - 1 2 5 . 5 (C F ₂) , - 1 2 7 . 3 (C F ₂) **[**0 1 4 1 **]** 元素分析:Calcd for C₂₆H₁₅F₉N₂O:C,57.57;H,2. 79; N, 5.16、 Found: C, 57.77; H, 3.00; N, 4.93 [0142](3)中空遷移金属錯体(2d)の製造 得られた配位子(1d)(5.9mg,10.9µmol)、及びPd(NO₃)₂(30 2.1 mg,9.1 µ mo1)を、ジメチルスルホキシド(0.70m1)中、70 で 3時間撹拌した。 反応混合物にジエチルエーテルを加えたところ、白色固体が析出した。遠心分離して上 澄みを取り除き、真空乾燥することで目的物(5.7mg)を得た(収率56%)。 [0143]得られた中空遷移金属錯体(2d)の物性データは以下の通りである。 ¹H-NMR (500MHz, DMSO-d₆, ppm); 9.27 (br, 96H),7.78(br,96H),7.72(br,48H),7.31(br,24H) , 4.54 (br, 48H), 2.81 (br, 48H) $\begin{bmatrix} 0 & 1 & 4 & 4 \end{bmatrix}$ 40 ¹⁹ F - NMR (470 Hz, DMSO - d₆, ppm); - 82.5 (72 F), - 1 1 4 . 4 (4 8 F) , - 1 2 5 . 8 (4 8 F) , - 1 2 7 . 6 (4 8 F) [0145]CSI-MSは、錯体(2d)のDMSO溶液にCF₃SO₃Naを添加して、カウン ターアニオンをCF₃SO₃⁻に交換した後に測定を行った。 [0146]CSI-MS(CF₃SO₃⁻塩,CH₃CN):m/z;3261.4[M-7(C F₃SO₃⁻)]⁷⁺, 2835.0[M-8(CF₃SO₃⁻)]⁸⁺, 2503.4 [M - 9 (CF ₃ SO ₃ ⁻)] ^{9 +}, 2 2 3 8 . 1 [M - 10 (CF ₃ SO ₃ ⁻)] ¹⁰ ⁺ , 2 0 2 1 . 2 2 [M - 1 1 (C F ₃ S O ₃ ⁻)] ^{1 1 +} , 1 8 4 0 . 2 [M - 1 2 (CF₃SO₃⁻)]¹²⁺ 50

(24)

【0147】

(参考例)上記で得た中空遷移金属錯体(2 a)~(2 d)は、内側に直径約5 n m の空間を持つ。この内部空間は、2 4 個集積されたパーフルオロアルキル鎖の持つ親フッ素性相互作用により、直径約5 n m のフルオラス相として振る舞うことが期待される。そこで、この空間を用いて、親フッ素性相互作用によるフルオラス小分子の包接を検討した。 【0148】

包接の観測は、¹⁹ F - NMRによって行った。この方法は、ホストおよびゲストの両方に含まれる¹⁹ F核に着目したもので、高感度に定量分析を行うことができる。ゲスト 分子を包接するとシグナルの化学シフト値が変化することを利用した解析を行った。

さらに、1次元スペクトルによる解析だけでなく、各種2次元スペクトルによる詳細な ¹⁰ 解析も行った。本研究では、¹⁹F-NOESYおよび¹⁹F-COSYスペクトルによ り¹⁹F-NMRスペクトルの帰属を行い、包接に寄与している部位の特定を検討した。 さらに、¹⁹F-DOSYスペクトルにより、ゲスト分子が確かにホスト分子に包接され ていることも確認した。実験の詳細は以下の通りである。

【0149】

(1)中空遷移金属錯体(2a)によるパーフルオロオクタンの包接

中空遷移金属錯体(2 a)を用いて、パーフルオロオクタン(3, C₈ F₁₈)の包接 を検討した。錯体(2 a)のDMSO-d₆溶液(0.43mM)とパーフルオロオクタ ン(3,液体)を常温で2時間撹拌した。撹拌終了後、静置すると、錯体(2 a)の溶液 とパーフルオロオクタン(3)は、有機層(上層)とフルオラス層(下層)の2相に分離 した。過剰のパーフルオロオクタン(3)を遠心分離により取り除き、¹⁹ F-NMR測 定を行った。

【 0 1 5 0 】

包接検討前後の¹⁹ F - NMRスペクトルを図2に示す。図2(a)に示した錯体(2 a)のみの¹⁹ F - NMRスペクトルでは、6種類の¹⁹ F 核に由来する6本のシグナル がそれぞれ独立に観測された。これを、図2(b)に示した包接検討後のスペクトルと比 較すると、パーフルオロオクタン(3)に由来する新たなシグナル(図2(b):)が 生じたことから、溶液中へのパーフルオロオクタン(3)の溶解を確認した。また、錯体 (2a)に由来するシグナル(図2(b):)に高磁場シフトが観測された。特に、錯 体内に導入したフルオロアルキル鎖の先端部分、すなわち、球状構造の中心部に近い部分 に位置する¹⁹ F 核に由来するシグナルについて高磁場シフトが大きく(F^{d - f}: =0.4 - 1.3 ppm, F^{a - c}: cf. = 0.0 - 0.1 ppm)、この部分の 親フッ素性相互作用が、パーフルオロオクタン(3)の溶解に特に強く関与していること が示唆された。

[0151**]**

次に、観測されたパーフルオロオクタン(3)の溶解に、錯体(2 a)の内部空間への フルオロアルキル鎖の集積が関与していることを裏付けるため、DMSO-d₆へのパー フルオロオクタン(3)単独での溶解、および、配位子(1 a)のDMSO-d₆溶液(8.9mM)へのパーフルオロオクタン(3)の溶解を検討した。錯体(2 a)の溶液と 同様に、DMSO-d₆および配位子(1 a)の溶液と、パーフルオロオクタン(3)を 常温で2時間それぞれ撹拌したのち、過剰のパーフルオロオクタン(3)を遠心分離によ り取り除き、¹⁹F-NMRによる測定を行った。

【0152】

図3(a)にパーフルオロオクタン(3)とDMSO-d₆を混合した場合の¹⁹F-NMRスペクトルを示した。このスペクトルにおいて、外部標準であるトリフルオロ酢酸 に由来するシグナル以外は観測されなかったことから、パーフルオロオクタン(3)単独 ではDMSO-d₆に溶解しないことがわかった。図3(b)に配位子(1a)の¹⁹F - NMRスペクトルを、図3(c)に配位子(1a)とパーフルオロオクタン(3)を混 合した場合の¹⁹F-NMRスペクトルをそれぞれ示した。

【0153】

20

30

このスペクトルにおいて、パーフルオロオクタン(3)に由来する新たなシグナルや配 位子(1a)に由来するシグナルの高磁場シフトは観測されず、混合前後で同一のスペク トルが得られた。このことから、配位子(1a)が存在する場合でも、パーフルオロオク タン(3)はDMSO-d。に溶解しないことが示唆された。

(26)

以上の結果から、錯体(2 a)のDMSO-d₆溶液へのパーフルオロオクタン(3) の溶解が、錯体(2 a)内面にフルオロアルキル鎖を集積した効果によるものであること が明らかになった。

【0154】

続いて、パーフルオロオクタン(3)の溶解が、錯体(2 a)の内部空間への包接によって起こっていることを示すため、¹⁹ F - DOSY測定を行った。図4に示した通り、 錯体(2 a)及びパーフルオロオクタン(3)に由来する各シグナルが全て同一の拡散速 度を持つことがわかった。この拡散係数の値D=0.32×10⁻¹⁰m²s⁻¹(1 o gD=-10.5)は、¹ H - DOSYにより測定した錯体(2 a)単独の拡散係数の値 と同程度であった。これより、ホスト分子(錯体(2 a))がゲスト分子(パーフルオロ オクタン(3))を包接していることを明らかにできた。

【0155】

さらに、錯体(2 a)の濃度とパーフルオロオクタン(3)包接挙動の相関について調 べた。濃度の異なる3種類の錯体(2 a)溶液([2 a]=0.18,0.37,0.5 4 m M)を、それぞれ常温で3と混合した後、過剰のパーフルオロオクタン(3)を遠心 分離により取り除き、¹⁹F-NMR測定を行った。測定結果を図5に示す。各シグナル の積分比からホスト1分子あたりのゲスト分子の包接数を見積った。その結果、[2 a] =0.18,0.37,0.54mMのいずれの場合においても、錯体(2 a)1分子あ たり約5.8分子のパーフルオロオクタン((3)が包接されていることがわかった。言 い換えれば、溶液中に存在するゲスト分子(3)の濃度は、ホスト分子(2 a)の濃度に 比例するということである。これは、ゲスト分子(3)はDMSO-d₆中に存在するホ スト分子(2 a)内部のフルオラス空間にのみ存在するためであると考えられる。 【0156】

前述の通り、DMSO中で錯体(2a)が約5.8分子のパーフルオロオクタン(3) を包接することがわかった。フルオロ鎖の異なる錯体(2b)~(2d)についても、同 様にパーフルオロオクタン(3)の包接を検討した。錯体(2a)~(2d)は、内部に 持つフルオロアルキル鎖の占める体積の違いにより、内部の有効容積の大小がそれぞれ異 なる。また、錯体の持つフッ素原子数の違いにより、親フッ素性相互作用の強さに差があ ると考えられる。

[0157]

まず、錯体(2 a)より長いフルオロアルキル鎖を持つ錯体(2 b)によるパーフルオ ロオクタン(3)の包接を検討した。包接検討前後の¹⁹F-NMRスペクトルを図6に 示す。シグナルの積分比から錯体(2 b)1分子あたりの包接数を見積もると、約2.5 分子のパーフルオロオクタン(3)が包接されていることがわかった。錯体(2 b)は錯 体(2 a)より長いフルオロアルキル鎖を持ち、錯体の内部空間に対してフルオロアルキ ル鎖の占める体積の割合が大きい。分子力学計算によると、錯体(2 a)では内部空間容 積の19%がフルオロアルキル鎖によって占められているのに対し、錯体(2 b)では2 3%が占められている。そのため内部の有効容積が小さく、包接できるゲストの数が少な いのだと考えられる。

【0158】

続いて、錯体(2b)よりさらに長く、分枝のあるフルオロアルキル鎖を持つ錯体(2 c)によるパーフルオロオクタン(3)の包接を検討した。包接検討前後の¹⁹F-NM Rスペクトルを図7に示す。シグナルの積分比から錯体(2c)1分子あたりの包接数を 見積もると、約2.0分子のパーフルオロオクタン(3)が包接されていることがわかっ た。錯体(2c)のゲスト包接数が錯体(2a)、(2b)と比較して少ないことは、先 に述べた錯体(2a)と(2b)の比較と同様に、錯体内部の有効容積の差をもとに議論 10

20

することができる。分子力学計算によると、錯体(2 c)の内部空間に対してフルオロア ルキル鎖の占める体積の割合は2 5 % であり、ゲスト包接数が錯体(2 a)、(2 b)と 比較して少ないことは妥当な結果であると言える。

(27)

【0159】

最後に、錯体(2 a)より短いフルオロアルキル鎖を持つ錯体(2 d)によるパーフル オロオクタン(3)の包接を検討した。包接検討前後の¹⁹F-NMRスペクトルを図8 に示す。錯体(2 d)の場合、ゲスト分子(3)との撹拌後に得られたスペクトルは、撹 拌前のスペクトルと同一であり、錯体(2 d)に由来するシグナルの化学シフト値の変化 や、パーフルオロオクタン(3)に由来する新しいシグナルは観測されなかった。このこ とから、錯体(2 d)の場合はパーフルオロオクタン(3)の包接が起こらなかったこと が示唆される。錯体(2 d)は錯体(2 a)より短いフルオロアルキル鎖を持つため、内 部のフッ素原子が少ない。そのため、ゲストの包接に十分な親フッ素性相互作用を生じず 、包接が起こらなかったのだと考えられる。分子力学計算によるフルオロアルキル鎖の占 有体積比率は14%であった。

第1表に以上の結果をまとめた。

[0160]

【表1】

	第 1 表 	occupied vol%	C ₈ F ₁₈ molecules
2a	CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CF ₃	19	5.8
2b	$CF_2CF_2CF_2CF_2CF_2CF_2CF_3$	23	2.5
2c	$CF_2CF_2CF_2CF_2CF_2CF_2CF(CF_3)_2$	25	2.0
2d	CF ₂ CF ₂ CF ₂ CF ₃	14	0.0

【0161】

中空遷移金属錯体(2 a)~(2 d)によるパーフルオロオクタン(3)の包接には長 いフッ素鎖による親フッ素性相互作用が必要であり、かつ、ゲスト分子が存在する内部空 間が必要であることが明らかになった。この、相互作用と有効容積という2つの要素は、 内面に配置するフルオロアルキル鎖の長さにより精密に制御可能であり、配位子合成の段 階において自在に設計することができる。すなわち、比較的単純な単位構造を設計するこ とにより、錯体内部のフルオラス空間の性質を容易に、かつ正確に変化させることができ る。

【図面の簡単な説明】

【0162】

【図1】12個の遷移金属化合物(M)と、24個の二座有機配位子(L)とから構成される本発明の中空遷移金属錯体の立体構造を示す図である。

【図 2 】中空遷移金属錯体(2 a)によるパーフルオロオクタン(3)の包接検討前後の 40 ^{1 9} F - NMRスペクトル図である。

【図3】配位子(1a)、パーフルオロオクタン(3)、及び、配位子(1a)とパーフ ルオロオクタン(3)を混合した場合の¹⁹F-NMRスペクトル図である。(a)が配 位子(1a)の場合、(b)がパーフルオロオクタン(3)の場合、(c)が配位子(1 a)とパーフルオロオクタン(3)を混合した場合である。

【図 4 】中空遷移金属錯体(2 a)によるパーフルオロオクタン(3)の包接検討後の ¹ ⁹ F - DOCYスペクトル図である。

【図 5 】濃度の異なる種類の錯体(2 a)の溶液(0 . 1 8、 0 . 3 7、 0 5 4 m M)と 、パーフルオロオクタン(3)とを混合後、過剰のパーフルオロオクタン(3)を取り除 いた後の^{1 9} F - N M R スペクトル図である。(a)が濃度0.18 m M の場合、(b) 10

50

00

60

5.69

10

が濃度0.37mMの場合、(c)が濃度0.54mMの場合である。

【図 6 】中空遷移金属錯体(2 b)によるパーフルオロオクタン(3)の包接検討前後の ^{1 9} F - N M R スペクトル図である。

【図7】中空遷移金属錯体(2 c)によるパーフルオロオクタン(3)の包接検討前後の ¹⁹F-NMRスペクトル図である。(a)は、錯体(2 c)の-60ppmから-20 0ppmのスペクトル図であり、(b)は、錯体(2 c)とパーフルオロオクタン(3) を混合した後の、-60ppmから-200ppmのスペクトル図であり、(c)は、錯 体(2 c)の-70ppmから-85ppm(左側)、-110ppmから-130pp mのスペクトル図であり(右側)、(d)は、錯体(2 c)とパーフルオロオクタン(3))を混合した後の、-70ppmから-85ppm(左側)、-110ppmから-13 0ppmのスペクトル図である(右側)。

【図 8 】中空遷移金属錯体(2 d)によるパーフルオロオクタン(3)の包接検討前後の ^{1 9} F - N M R スペクトル図である。

【図1】 【図4】 2CF/2CF/2CF/3 12 99 a log D -11.0 -10.5 【図2】 -10.0 (a) complex 2a (e) CF"2CF"2CF"2CF"2CF"2CF d b 【図5】 (b) complex 2a (e) and C₈F₁₈ 3 (O) complex 2a (•) and C₈F₁₈ 3 (O) (a) 0.18 mM 4F 48F x2 6F0 72 TFA 48F. 010 Ŵ 1.00 1.97 88 $233 \\ 123 \\ 233$ -90-110 .115 .120 (b) 0.37 mM 9 TFA 9 9/2 【図3】 00 3.60 4.78 9.46 2.49 (a) C₈F₁₈ (c) 0.54 mM TFA 0 190 (b) ligand 1a TFA ____ -115 -120 -85 111 7.65 3.67 14.88 3.92 TFA 1.00) = 5.65 (c) ligand 1a and C.E.

7.

フロントページの続き

(72)発明者 鈴木 康介 東京都文京区本郷七丁目3番1号 国立大学法人東京大学内

審査官 安居 拓哉

(56)参考文献 特開2004-155660(JP,A) Angewandte Chemie. International Edition, 2004年, Vol.43, p.5621-5625 Journal of the American Chemical Society, 2005年, Vol.127, p.11950-11951

(58)調査した分野(Int.Cl., DB名)
 C 0 7 D 2 1 3 / 3 0
 C 0 7 F 1 5 / 0 0
 C A / REGISTRY(STN)
 JSTPlus/JMEDPlus/JST7580(JDreamII)