H₂ Generator

Innovative method to realize both High Energy Efficiency and Facility Miniaturization

Prof. Hiroshi TAKAMURA (Tohoku University) Prof. Hiroshige MATSUMOTO (Kyushu University)

1. <u>Background</u>

- High efficient and compact "PEFC(Polymer Electrolyte Fuel Cell)" for small and medium-sized offices and homes and high efficient and compact "Hydrogen Fueling Infrastructure" for Hydrogen Vehicles have been required strongly for wide spreading Hydrogen Society.
- Although the conventional "Steam Reforming" method is excellent, there are difficult problems to solve i.e. its slow starting characteristics, very difficult to reduce its size.
- The conventional "POX(Partial Oxidation of Methane)" method, which use the air as an oxidant, has weak points i.e. high cost, easy dilution of Hydrogen.

2. An Innovative "MPOX(Membrane separation process+POX)" method

We developed and invented;

the new hydrocarbon reforming method "MPOX(Membrane separation process+POX)" by using Oxygen Permeable Membranes, which can utilize a part of the Joule heat that is generated during the isolation of oxygen.

- the optimal "Oxygen-Permeable Ceria-based Membrane" which will realize the MPOX method.
 - * MPOX effectively utilizes the free energy generated from partial oxidation reaction to oxygen separation.

	Composition	Oxygen flux density μmol ・ cm ⁻² ・ s ⁻¹	Temp ℃	Ref.
BSCF	Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O ₃	8.6	875	Shao et al, 2001
LSGF	La _{0.7} Sr _{0.3} Ga _{0.6} Fe _{0.4} O ₃	8.2	1000	lshihara et al, 2002
PSAF	Pro _{0.7} Sro _{0.3} Fe _{0.8} Al _{0.2} O ₃	8.2	1000	Takamura et al, 2002
Ceria-MFO	(Ce,Sm ₀)O ₂ -15vol%MnFe ₂ O ₄	10.0	1000	Takamura et al, 2002
LBSFI	(La _{0.5} Ba _{0.3} Sr _{0.2})(Fe _{0.6} In _{0.4})O ₃	10.6	1000	Aizumi et al, 2004

Output gas flow rate

Flow rate and Compositions of reformate gas

MPOX reformer module comprising of CSO.15MFO and ZMG232R (left) and its 20 stacks (right)

To produce 10 liter/min of hydrogen, 20 stacks module is required.

3. New Hydrogen Separation Method by using "Proton"

We invented a new Hydrogen Separation method by using "Proton-Conducting Metal Oxide Electrolyte".

"Electrochemical Hydrogen Pump", only applied by DC voltage, leads to hydrogen separation via selective hydrogen transport from the Anode to the Cathode.

* The new method realize superior efficiency and high mobility comparing to the conventional PSA(Pressure Swing Adsorption) method and Pd-Ag alloy membrane separation method.

4. Patent Licensing Available

Patent No.: WO2007/046314 (JP, US, EP) WO2003/084894 (JP, US) WO2007/060925 (JP, EP) JST/ IP Management and Licensing Group Phone: +81-3-5214-8486 E-mail: license@jst.go.jp

http://www.jst.go.jp/chizai/en