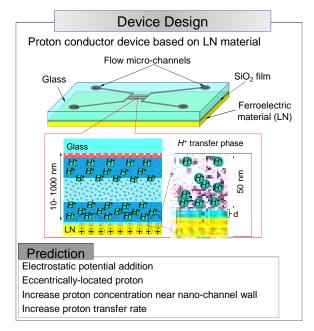
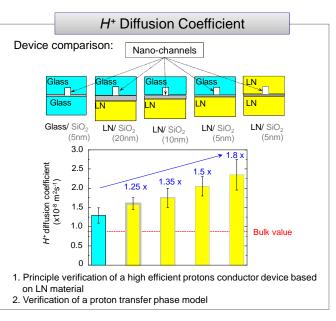
# **Micro-Fuel Cell**

High-Efficient proton conductor Nanochannels array based on a ferroelectric proton transfer phase substrate


Ph. D. Pihosh Yuriy, Ph. D. Yutaka Kazoe (The University of Tokyo)


### 1. Abstract

A micro-fuel cell ( $\mu$ -FC) device on microfluidic chip platform with assistance of a LiNbO<sub>3</sub> (LN) material has been realized.

- 1. Realized high efficient protons conductor device based on LN material
- 2. Designed and fabricated a µ-FC device with assistant of LN material on microfluidic chip platform
- 3. Working principle of the µ-FC device was verified

## 2. Creation of high efficient H<sup>+</sup> conductor device





# 3. Comparison with the conventional Proton exchange membrane (PEM)

| Conventional PEM fuel cell Our Approach<br>Extended-nano fluidics (10 <sup>1</sup> -10 <sup>3</sup> nm):                           |                                                                 | Conventional PEM |                      | Our Approach  |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------|----------------------|---------------|
| Co, External fuel supply (H) Totally integrated light driven fuel cell device                                                      |                                                                 | Nafion           | Mesoporous<br>Silica | Nano Channels |
| PEM H                                                                                                                              | Material                                                        |                  |                      | i jan         |
| PEM degradation                                                                                                                    | Degradation                                                     | Easily           | No                   | No            |
| Cathode Pt Pt Pt Pd Moro-channels<br>Enhanced proton mobility:<br>Nano channel // transfer phase<br>proton exchange membrane (PEM) | Temperature                                                     | 60-120°C         | 60°C                 | r.t.          |
|                                                                                                                                    | Proton<br>conductivity<br>[10 <sup>-2</sup> S/cm <sup>2</sup> ] | 0.8              | 0.6                  | 1.3           |

#### 4. Application

Next generation portable self-powered energy device

#### 5. Patent Licensing Available Patent No.: WO2016/063537

JST/ IP Management and Licensing Group Phone: +81-3-5214-8486 E-mail: <u>license@jst.go.jp</u>