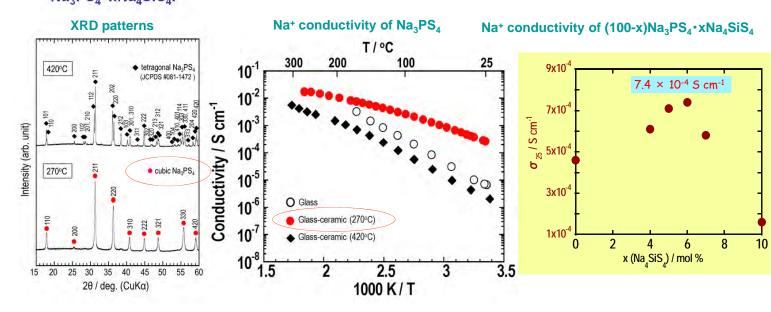
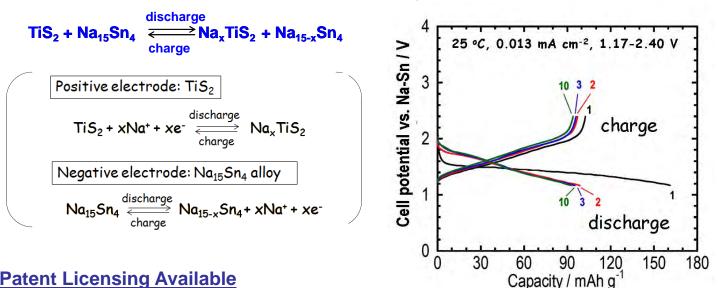
Batteries


## Na<sup>+</sup> Rechargeable Batteries using Novel Na<sub>3</sub>PS<sub>4</sub> Glass-ceramic Electrolytes

## Associate Prof. Akitoshi HAYASHI (Osaka Prefecture University)

- We discovered a novel electrolyte of a cubic Na<sub>3</sub>PS<sub>4</sub> with Na<sup>+</sup> superionic conductivity.
- The conductivity is over 10<sup>-4</sup> S/cm obtained in a glass-ceramic structure.
- All-solid-state Na batteries, with a powder-compressed Na<sub>3</sub>PS<sub>4</sub> electrolyte, functioned as a rechargeable battery at room temperature.


## 1. Novel Na<sub>3</sub>PS<sub>4</sub> Electrolytes

- Cubic Na<sub>3</sub>PS<sub>4</sub> phase is precipitated by the crystallization of the 75Na<sub>2</sub>S·25P<sub>2</sub>S<sub>5</sub> (mol%) glass with heat treatment at 270°C for 1Hr. The Na<sup>+</sup> conductivity is over 10<sup>-4</sup> S/cm.
- (Tetragonal phase of Na<sub>3</sub>PS<sub>4</sub> is known to be formed at 420°C, which has a low conductivity of 10<sup>-6</sup> S/cm.) A higher conductivity is obtained by a partial substitution of Na<sub>4</sub>SiS<sub>4</sub> for Na<sub>3</sub>PS<sub>4</sub>, which is (100-x) Na<sub>3</sub>PS<sub>4</sub>·xNa<sub>4</sub>SiS<sub>4</sub>.



## 2. Rechargeable Na<sup>+</sup> Battery (-Na-Sn / Na<sub>3</sub>PS<sub>4</sub> / TiS<sub>2</sub> +)

The Na<sup>+</sup> battery shows a capacity of ~90 mAh/g (theoretically 240 mAh/g for TiS<sub>2</sub>) with V=1.7 volts (theoretically 1.9V). By a partial substitution of Na<sub>4</sub>SiS<sub>4</sub> for Na<sub>3</sub>PS<sub>4</sub>, the higher capacity of 300mAh/g (theoretically 550mAh/g for amorphous TiS<sub>3</sub> active material) is obtained.



Patent Licensing Available Patent No. : WO 2013/015321 JST/ IP Management & Licensing Group Phone:+81-3-5214-8486, e-mail: <u>license@jst.go.jp</u>