High-Temperature Superalloys

Cobalt-based High-Temperature Superalloys

Prof. Emeritus Kiyohito ISHIDA, Prof. Ryosuke KAINUMA Prof. Toshihiro OMORI et al.(Tohoku University)

1. Background

- At power plants and aircraft industry, the thermal efficiency increases with increasing operation temperature. Therefore, the superalloys, which can resist high-temperatures, are strongly required.
- · Both high manufacturability and high workability are demanded at the same time.
- In some applications, the wear resistance at high temperatures is also required.

2. Enhanced Creep Resistance of a New Co-Al-W Alloy

- Co-based alloys' properties as superalloys candidate (compared to Ni-based superalloys)
 - 1) Higher melting point · · · favorable
 - 2) Lower strength · · · · · unfavorable

Precipitation hardening of matrix by ordered phase as in the case of Ni-based superalloys is necessary.

• γ+γ' phase in Co-Al-W was discovered Co-Al-W superalloys

Phase of Newly developed Co-Al-W alloys Precipitated phase was confirmed as γ' phase

	Base Element	Melting Point (K)	Superalloys	Crystal Structure of Superalloys	
	Nickel (Ni)	1,728	Ni-Al-Ti	matrix	γ(FCC)
				Ordered phase	γ'(Ni₃(AI,Ti) with L1₂ structure)
	Cobalt (Co)	1,768	Co-AI-W (this study)	matrix	γ(FCC)
				Ordered phase	γ'(Co₃(Al,W) with L1₂ structure)

Phase diagrams of the Co-Al-W ternary system

γ+γ' phase in Ni-based superalloys for comparison

3. Prospective Applications

Wrought Alloys: application examples

- •The Wrought Alloys by this technology, which has high creep resistance, are expected to be used widely i.e. turbine engine components, auto parts.
- •The Cast Alloys by this technology, which also resist abrasions, are expected to be used at several machining fields i.e. FSW tool.

Fig.1 Creep Resistance Characteristics of A-USC(Advanced Ultra Super Critical) power generation material

Fig.2 Boiler Tube made of A-USC power generation material

Fig.3 COWALOY® springs

Cast Alloys: application examples

Fig.4 Welded Sample (Two Ti plates are welded)

4. Patent Licensing Available

Patent No.: WO2007/032293, WO2007/091576 Patent Family (Contact) JST/ IP Management and Licensing Group

Phone: +81(Japan)-3-5214-8486 E-mail: license@jst.go.jp

