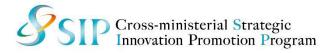
■ R&D Topics : Inspection, Monitoring, and Diagnostics Technologies


R&D Theme : Mole (Small Animals) Hole Detection System Attached to

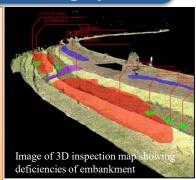
Large Weeding Machine

■ Principal Investigator: Kiyoshi Suzuki (Aero Asahi Corporation)

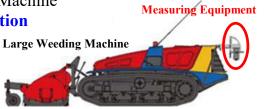
R&D Objectives and Subjects

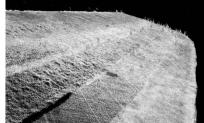
Objectives

Development of a monitoring system for the advancement on inspection of embankment utilizing the measuring system attached to a large weeding machine .


Conventional Inspection

- Inspections on foot consume time and labor, despite shortage of field workers.
- Inspection accuracy depends on inspector's experience.
- Unable to conduct accurate and detailed survey, obstructed by vegetation on surface.

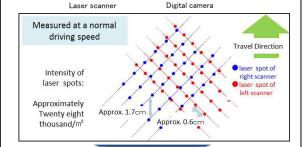

Inspection by the New Monitoring System


- Conduct more efficient inspection and save time and effort.
- Inspect embankment more objectively and quantitatively due to detailed terrain data.
- Detailed survey of embankment will be conducted continuously at low cost.

Subjects (2014-2016)

- Measuring Equipment easily attachable to Large Weeding Machine
 - →Conduct accurate measurement unaffected by vegetation
- Automatic Detection System
 - →Detect deficiencies automatically and provide the information quickly.
- ●Embankment Monitoring System
 - → Provide the results of deficiency analysis to support field inspection

Point cloud of an embankment surface

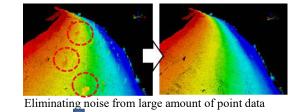

Current Accomplishments (1/2) 2014-2016 SIP Cross-ministerial Strategic Innovation Program

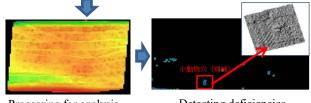
1. Measuring Equipment

• Developed measuring equipment that can be easily attached to the rear of a large weeding machine.

- Acquire high-resolution terrain data simultaneously with weeding.
- Accurate and detailed measurement of embankment unaffected by vegetation

2. Detection Accuracy

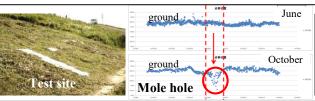

- Able to detect from small- to large-scale deficiencies, such as mole hole to depression of slope.
- Detection accuracy is superior to conventional visual inspection.

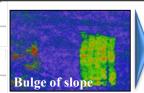


Small- to large-scale deficiencies are detectable.

3. Automatic Detection System

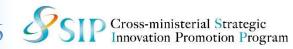
- Developed automatic detection system of deficiencies of embankment utilizing detailed terrain data.
- Processing time was reduced to 20 hours per km of embankment by a newly developed algorithm.

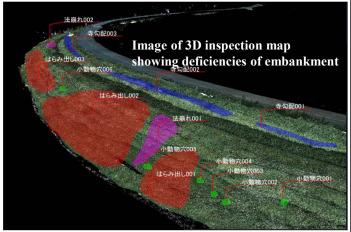


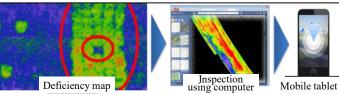

Processing for analysis Detecting deficiencies *image of simplified process of analysis

- Time- and effort-consuming detection was automated.
- Results of analysis can be provided quickly.

Utilization **Example**

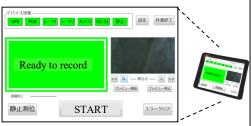

The system detected deficiencies in a test field site.


The detection system is effective in actual field.


Current Accomplishments (2/2) 2014-2016 SIP Cross-ministerial Strategic Innovation Program

4. Field Inspection Support System

- Developed field inspection support system which provide information on deficiencies.
 - Mobile tablet with AR function.
 - Cloud-based computerized inspection system



- **Easier** and more efficient field inspection
- More objective inspection not relying on inspector's experience.
- Upgrading future monitoring system of river embankment by a database of detailed terrain data and inspection results.

5. User -Friendly Operation

- Neither expert knowledge nor skill is necessary for the measurement.
- Weeding operation is not hindered, as minimum operator interaction is necessary for measurement.

- *touch panel operating device (tablet or smartphone)
- **user-friendly operation.**
- easy-to-understand operating manual

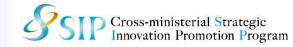
- •no operation necessary during weeding
- •can be used in light rain

• Easy to introduce to the field

Flow of utilization

1. Measuring Equipment

3. Automatic Detection **System**


4. Field Inspection Support System

5. User -Friendly Operation

- O Accurate and detailed measurement of embankment will be continued at low cost.
- O ICT introduction to the field inspection will upgrade the future monitoring system of embankment.

Goals

FRICS (example)

Inspection Support

Inspection support

·photographic map

cloud

deficiency map

Image of management institution

Data Delivery

X-band radar

Secondary Inspector

Visual inspection

·River patrol

Telemeter

Numerical target

- *Detection rate of deficiencies: 90%
- •Lead time of measurement and analysis: 24 hour/km
- •Installation of the measuring equipment to Large Weeding Machine: 100%

Users

River administrators, Weeding-service providers, etc.

How to use/Places of use

Measurements are carried out nationwide every year.

Information of detailed terrain data and inspection results

of the embankment will be stored in a database and provided to users.

Sales method

Measurements are conducted nationwide.

Measurement

• Sale or rental of the equipment

MLIT

River Office

Lend Weeding Machine

Weeding service provider

·Weed, Collect

· Measure, Record

Order weeding etc.

- Provide analysis services
- •Inspection system royalty, etc.

Profit Creation

Societal Imprementation Scheme

Measuring

eauipment

Data

Aero Asahi Corporation

cloud

Cooperative body, Non Profit Organization, Inspection contractor

Primary inspector (cloud worker* tele

worker) · Inspection system operation

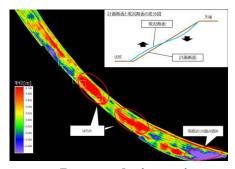
Identify checkpoints

Data Analysis

monitoring

·image

Inspection system operation through the Internet ,etc.


- cloud workers
- senior citizens etc.

Job Creation

Services to Offer

Sale or rental of the equipment

Data analysis service pgrading the maintenance system of embankment

Field inspection support service

Infrastructure Maintenance, Renovation, and Management