R&D Topics: Inspection, Monitoring and Diagnostics Technologies **R&D** Theme: Development of Laser Ultrasonic Visualization Technology for the Degradation Diagnosis of Steel Bridges

Principal Investigator: Junji Takatsubo (Director, Tsukuba Technology Co., Ltd.) Collaborative Research Groups: AIST, Fukken Gijvutsu Consultants Co., Ltd.

R&D Objectives and Subjects

Cross-ministerial Strategic Innovation Promotion Program

Objectives

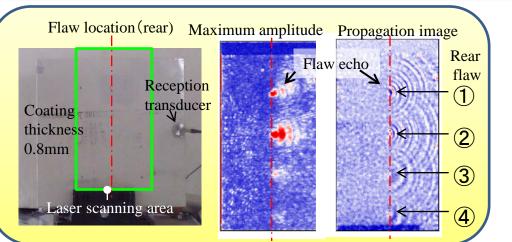
Current crack inspection of steel bridges is carried out using MT(Magnetic Particle Test), but has the following • problems:

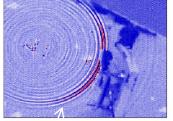
(1) It takes time to tear off the coating

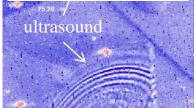
2 Recoating is necessary after inspection

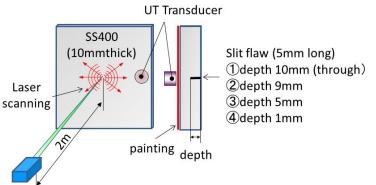
- (3) Internal cracks cannot be detected
- In order to solve the above problems, we will develop a remote measurement system using laser ultrasonic • technology, which can efficiently detect cracks under coating

Subjects


- Development of a high-speed laser-scanning system to measure the video image of ultrasounds propagating in a bridge
- Construction of a laser optic system which enables remote ٠ measurement
- Manufacture of a small and light-weight laser ultrasonic visualization • system
- Development of an image analysis method to detect the location and size of cracks


Current Accomplishments (1/2)

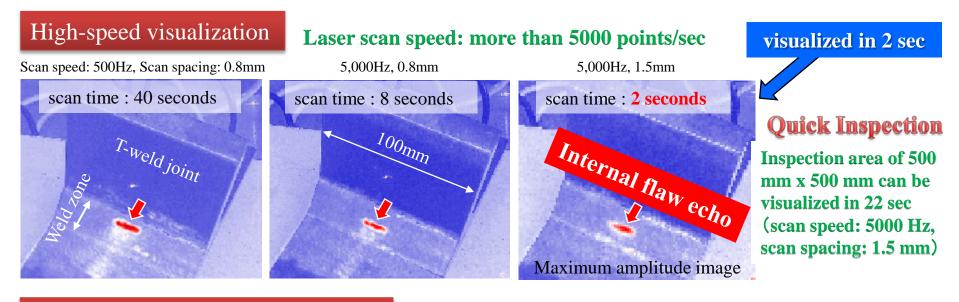

Prototype system can be carried in a small crane bucket with two persons The only instrument in the world that can inspect a steel bridge onsite by a video image of the propagation of ultrasonic waves.


Portable system for field operations

Measured images of ultrasonic propagation on a steel bridge

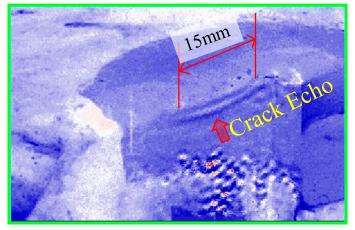
Inspection of coating Inspection of internal cracks that are under coating

Infrastructure Maintenance, Renovation, and Management



Current Accomplishments (2/2)

Efficient for steel bridge inspections


Fatigue cracks that were coated could be detected
Detected crack lengths agreed well with the MT results

Inspection part

Steel bridge on National Road No.50

Inspection area Visualized crack echo (inside the green frame) Infrastructure Maintenance, Renovation, and Management

NON-CONTACT INSPECTION

Using reflection sheets **<u>Remote Inspection System</u>**

Inspection object: Stiffening plate, Welding member

CONTACT INSPECTION

Using contact sensors **Portable Quick Inspection** <u>System</u>

Inspection object: Steel floor

- Cracks of 5 mm in length under • coating can be detected from a position 5 m away (by non-contact inspection).
- Cracks of 1 mm in length under coating can be detected (by contact inspection)

Road bridges, Highways, Railways, Industrial facilities

Infrastructure Maintenance, Renovation, and Management