ディーゼル燃焼チーム グループ1

★京都大学, 広島大学, 長崎大学, 鳥取大学, 産業技術総合研究所. 滋賀県立大学

★はグループ長

噴射による混合気制御

研究の目的と内容

研究目的

- 各グループの研究で導かれるコンセプトの検証と、その効果をより引き出す 混合気形成方法の提案
- ·CFD等噴霧·混合気形成·燃焼計算の高精度化

研究内容

- ・柔軟な噴射制御による燃焼改善(混合気制御)
- 二噴射弁(DIS)搭載試験機関による熱発生率の制御法の検討
- 高噴射圧力、多段噴射を活用した燃焼制御法の検討
- ・噴霧の非定常特性データの収集と解析・モデル化(噴霧形成モデルの開発) LAF, L2F, LIF等光学手法を用いた噴霧発達, 微粒化, 混合気形成の計測・解析, およ び上記モデルの検証
- ニードルの挙動、ノズル内部流動, 噴孔出口流の特性解析(X線測定, ノズル模型実 験)と数値モデルの構築

研究成果

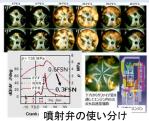
- ・効率、排気、騒音の点から望ましい混合気配置と実現法(噴射方法)の提案
- ・噴霧形成モデルの構築、CFDとの連携および検証

混合気制御 噴霧形成モデル (鳥取大) (京大) o n 通路面積 DIS 流量係数 **CFD** (Dual Injector 単気筒機関 (産総研) CFD噴霧・燃焼計算の境界条件 (出口流速,拡がり,乱れ) 噴射可変化 CFDによる噴霧・混合気 熱発生率制御 混合気配置と燃 形成・燃焼計算の検証 zPCI等新燃焼 焼との関連解析 (長崎大,広大,滋賀県大) 少量噴射データ 混合気形成方法の提案・検証 高精度·汎用的CFD燃焼計算

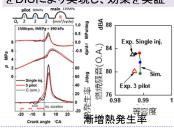
グループ1の研究内容

主な研究成果

混合気制御


従来の課題

噴射制御の制約により、効 率・排気・騒音の点から望ま しい熱発生率パターンの作 成が困難


本研究のアプローチ・成果

二つの独立した噴射系・ノズ ルを持つ燃焼系(DIS)を構築. 柔軟な噴射制御により高効 率・低騒音の燃焼パターンを 作成(右に結果を例示).

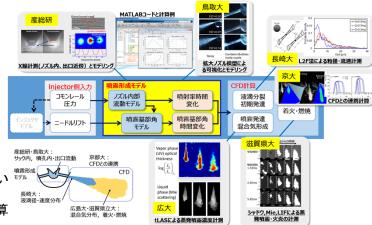

多段噴射における二つの噴射弁を 使い分け、メイン噴射分割比の選択 によるスモーク排出低減効果を示し. 可視化機関を用いた噴霧・火炎撮 影により、その理由を考察

低負荷においてPCCI燃焼の熱 発生率ピーク直前に漸増する熱 発生率を加えることが低騒音と高 等容度の両立に有効と考え、これ をDISにより実現し、効果を実証

噴霧燃焼に与る燃料量を減らして冷 却損失を低減し、高等容度を得るこ とをねらいとした燃焼法(zPCI)を提 案し、単気筒試験機関を用いて熱効 率向上効果を検証中

噴霧形成モデル

従来の課題


CFD計算では、噴射量の少ない場合に、準定常噴霧が主体の噴 射量の多い場合と同じ噴孔出口条件を与えると、噴霧発達の再 現に問題があり、経験にもとづいて条件を設定する必要があった.

研究の内容

- X線計測、ノズル模型実験により、ニードルの動き、サック内の 流れ、ならびに噴孔出口流の関係を求め、数値モデル化する.
- ・モデルによる結果をCFDの入力として噴霧・混合気形成を計算、 噴霧発達, 微粒化特性, 混合気分布の実測値と比較・検証する.

研究の成果

- ・噴射初期・終期の小リフト時に噴孔出口流の拡がりが非常に大きい など、少量噴射特有の非定常的な噴霧特性を明らかにした.
- ・ニードルリフト(NL)とレール圧力から噴孔出口流速・拡がり角を計算 する数値モデルを構築、CFDとの連携計算と検証を実施。
- ・経験に頼っていた噴孔出口条件をNLの時間経過から求めることが でき、軽い負荷で噴霧・混合気形成の計算を行える可能性を示した。

噴霧形成モデルと研究の分担

今後の展開

- ・新燃焼法(zPCI)の検討継続と熱効率向上効果の検証
- ・噴霧形成モデルについて, 微粒化の非定常特性の予測法確立と, 多様なノズルへの対応