
革新的燃焼技術

テーマ名	排気エネルギーの有効利用と機械摩擦 損失の低減に関する研究開発
SIP チーム	損失低減チーム
リーダー大学	早稲田大学 大聖泰弘教授
AICE 分科会	摩擦損失低減分科会
目的	ターボ過給機の性能向上,燃料改質による排熱回 収技術の開発を通じて排気エネルギーを低減する. 従来は経験則に基づいていた摩擦損失メカニズム を解明し,大幅低減を狙う.

SIP

テーマ名	 自動車用内燃機関摺動面潤滑モデルの確立 および設計支援ソフトウェアへの展開
クラスター大学 15	九州大学 八木和行
目的	高精度弾性流体潤滑解析やミクロ,メソ,マクロのモデルを融合した焼付きモデルを構築し、潤滑面の摩擦損失低減を図る

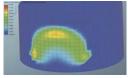
目的達成のための構想

● 実験で観察された現象を再現できるモデルを構築する

アピールポイント

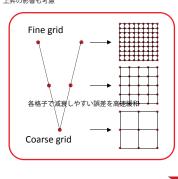
ミクロといった各スケール間の現象を融合する

すべり軸受用高精度弾性流体潤滑解析


研究背景

自動車用内燃機関用流体潤滑解析ソフトの問題点

格子点数が粗い(一方向数十メッシュ程度) 高負荷領域での収束解が得られない 薄膜での解析が不可能


Günter Offner, Tribology Transactions, 56 (2013) 503-515.

研究目的

高負荷のような薄膜まで解析可能な面接触弾性流体潤滑解析モ デルを構築する

多重格子法を用いた高精度流体潤滑解析

多重格子 (Multigrid) 法を用いた超細密格子での潤滑解析 高負荷領域まで対応するため、潤滑油の粘度増加や温度 上昇の影響も考慮

並列計算機を用いた有限要素法の高精度化

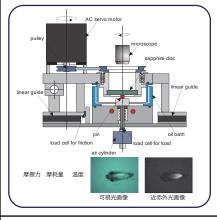
並列有限要素解析アルゴリズムによるソフトウェアと GPU や 解析、弾性変形だけでなく、熱変形も解析

マクロからメソ,ミクロまで繋がった焼付きモデルを構築

その場観察および分析に基づく焼付きモデルの構築

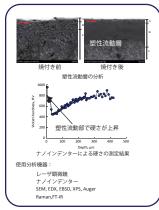
研究背景

焼付きとは、摩擦面の破局的損傷のことを指すが、まだそのメカニズム は明らかになっていない


Y. Wang, et al., Wear, 259 (2005) 1041.

研究目的

焼付き実験を通して現象を明らかにし,現象観察,分析結果に もとづいた焼付きモデルを構築する


焼付き過程のその場観察実験

その場観察焼付き試験機を新たに設計する 可視光,近赤外線光,摩擦力,摩耗量の同期計測を行い,摩擦 面の焼付き挙動を明らかにする

焼付き表面の分析

焼付き試験後の表面分析を行う 表面粗さ、表面層の硬さ、結晶粒径などを調べ 焼付き過程における塑性流動現象を明らかにする

ランダム粗さモデルに基づくオイルシールの低摩擦化

研究背景

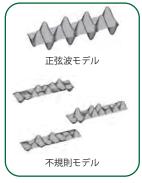
オイルシールの表面粗さ

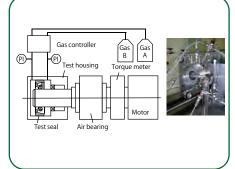
をコントロール

表面粗さのモデル化の現状

正弦波のような規則性を持つ形状での評価がほとんど

研究目的


粗さのランダム性を考慮した潤滑モデルを構築し、オイルシー ルの低摩擦化を図る


オイルシール粗さのモデル化

オイルシールのリップの微視的表面形状をラン ダムモデルで記述しリップ・軸間の油膜形成と 摩擦係数、密封機能に及ぼすランダム性の影響 を数値解析によって調べる

オイルシールの摩擦力測定

オイルシールの摩擦力の測定を行い、リップの表面粗さ、緊迫力など の影響を調べ、ランダムモデルの解析結果を検証して密封機能と低摩 擦を両立する最適表面形状の提案につなげる

