

テーマ名 (タイトル)	排気エネルギーの有効利用と機械 摩擦損失の低減に関する研究開発
SIPチーム	損失低減チーム
	リーダー大学:
	早稲田大学 大聖 泰弘 教授
AICE分科会	ディーゼル燃焼分科会
	摩擦損失低減分科会
目的ターボ	過給機の性能向上、燃料改質による排熱回
収技術の開発を通じて排気エネルギーを低減する。	
従来は経験則に基づいていた摩擦損失メカニズム	
を解明し、大幅低減を狙う。	

排気グループ /41CE

テー	マ名
(タ・	イトル)

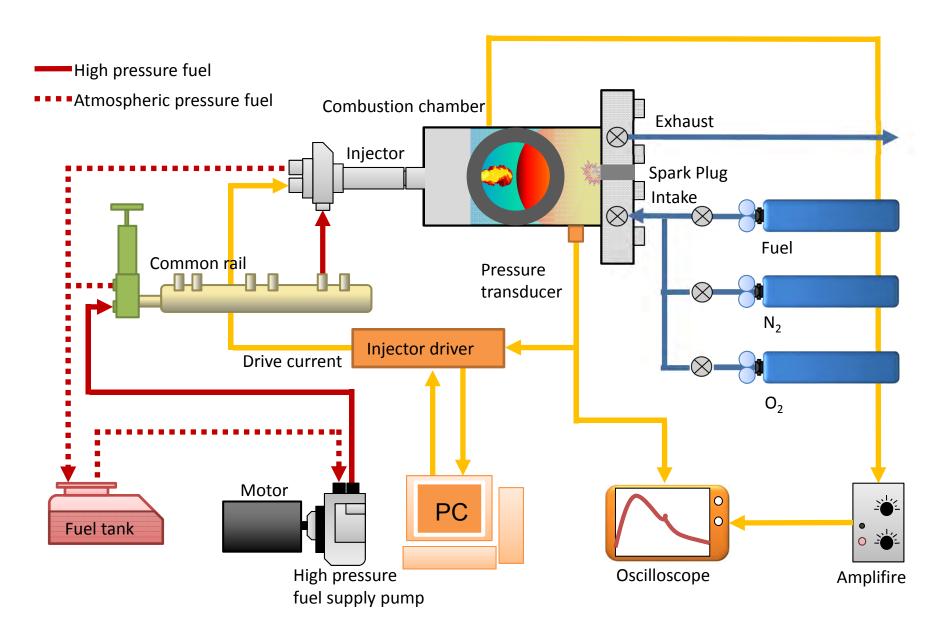
燃料改質ガスの利用技術③ - 光学計測及び電子 顕微鏡解析によるハイブリッド燃焼マイクロパイロット 噴霧火炎内微粒子形成の機構解明と抑制

クラスター大学(5)

明治大学 相澤 哲哉

目的

マイクロパイロット噴霧形成過程の解明及び、ハイブ リッド燃焼による損失低減の実用化の障害となるカーボン デポジットと微粒子形成の抑制方法の創出.確立.実証

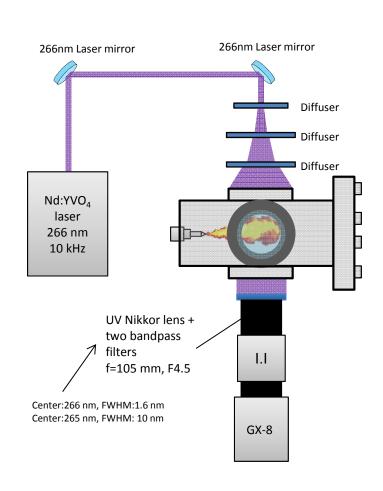

目的達成のための構想

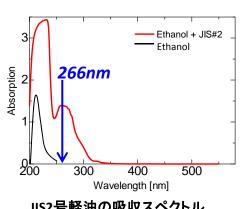
●光学計測及び電子顕微鏡解析による現象解明と、他クラスター大学数値解析結果との比 較検討に基づく抑制コンセプト創出

アピールポイント

- ●光学計測:火炎内微粒子影写真、2色法温度、紫外吸収による燃料(及びOH) 時系列撮影
- ▶透過型電子顕微鏡解析:凝集体サイズ・分布・構造、要素すす粒径・分布・内部構造

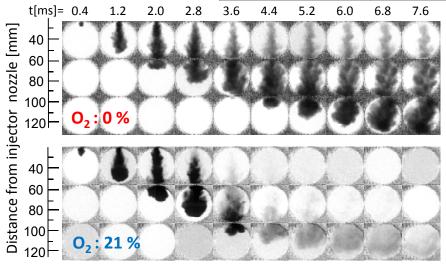
実験装置



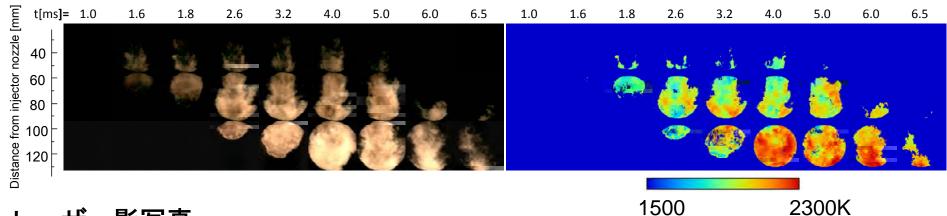

光学計測 (燃料及びOH)

紫外吸収法

目的:ノズル近傍における燃料分布を時系列定性把握


手法:波長可変高周波紫外レーザーを用いたディーゼル噴霧火炎中の燃焼反応物の高速度撮影

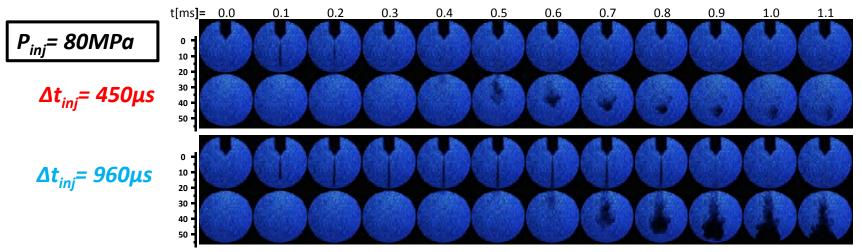
9.5 kg/m ³		
9.5 kg/III		
1070 K		
2.5 MPa		
0 % , 21%		
Injection conditions		
ф 0.14 mm		
80 MPa		
2.3 ms		
JIS#2		



光学計測(火炎内すす及び温度)

直接写真

目的:ノズル近傍における温度分布の把握


手法:2色法を用いたディーゼル噴霧火炎の火炎温度とKL因子の時系列画像計測

レーザー影写真

目的:ノズル近傍における微粒子の生成量の把握

手法: 青色レーザーを用いたディーゼル噴霧火炎の高速度撮影

2015.6.30 SIP「革新的燃焼技術」公開シンポジウム