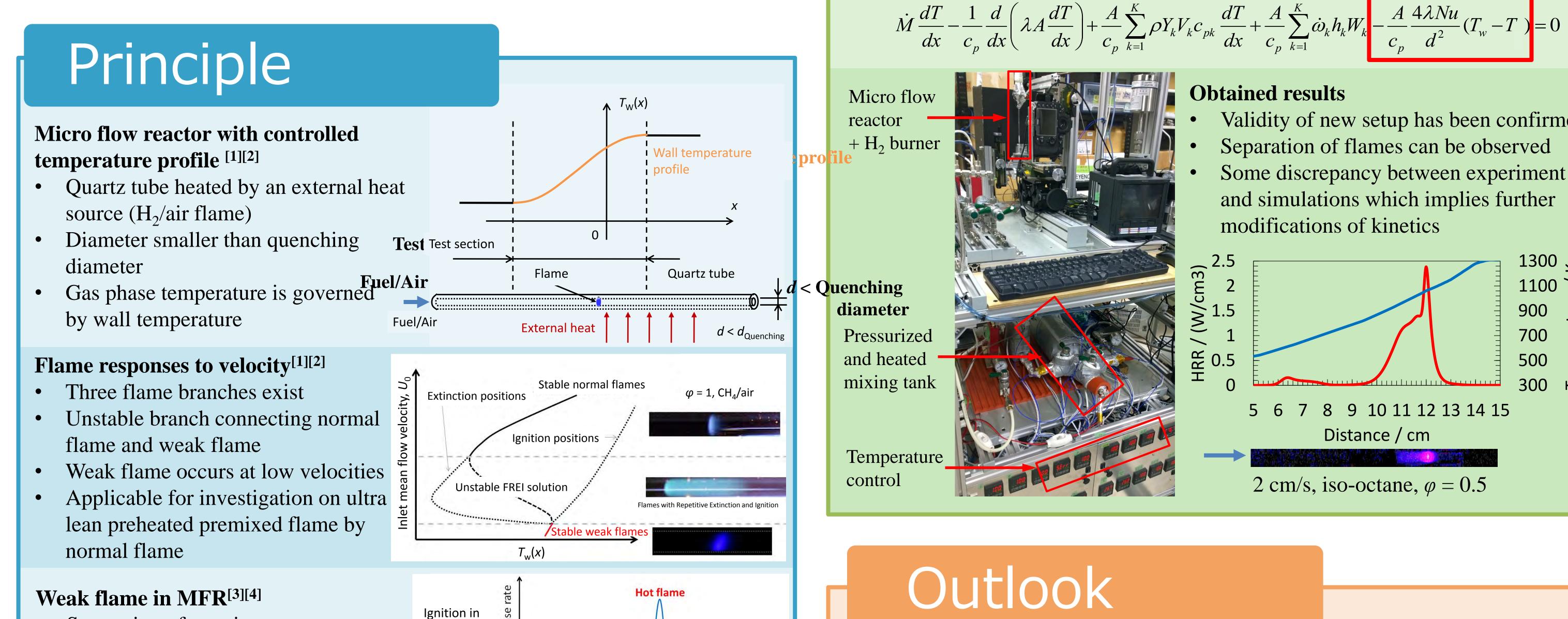
ガソリン燃焼チームクラスター大学17(ノック抑制班)

Institute of Fluid Science, Tohoku University P. Grajetzki, H. Nakamura, T. Tezuka, S. Hasegawa, K. Maruta Weak flame in a micro flow reactor with controlled temperature profile for the investigation of ignition characteristics in lean PRF/TRF/air mixtures

Objective

Background

Ultra lean gasoline combustion allows for higher thermal efficiency Ignition characteristics and mechanisms are not well validated in ultra lean condition Important to avoid engine knocking



Challenges

- Ultra lean combustion usually only possible in high temperature/pressure region
- Common approaches are not steady state (RCM, Shock tube)

Solution

- Investigation by micro flow reactor with controlled temperature profile
- Allows for investigation at atmospheric and elevated pressures and temperatures
- Enables steady state investigation

- temperature gradient allows for more detailed analysis
- Mixing of fuel and air by partial pressure in heated tank
- Very stable and uniform conditions inside the MFR

Numerical simulations

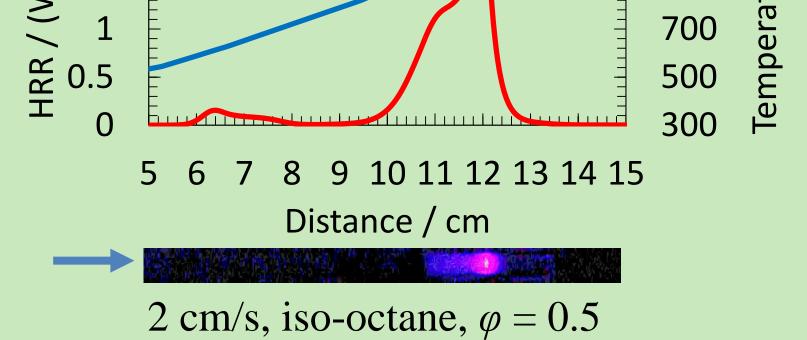
- PREMIX^[5] based 1-D steady code^[1]
- Detailed PRF reaction mechanisms
- Additional term for heat transfer to wall
 - Validity of new setup has been confirmed

Ext.

heat

- Separation of flames can be observed
- Some discrepancy between experiment and simulations which implies further modifications of kinetics

1300 🖌

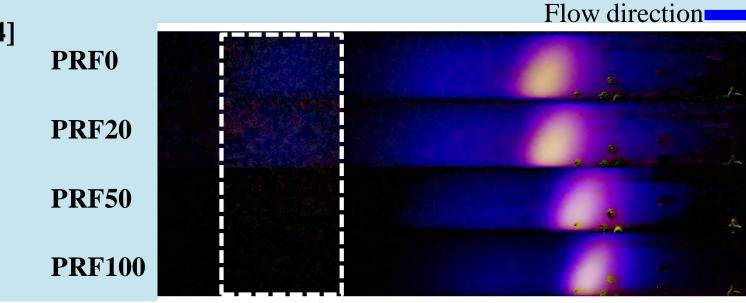

1100

900

- Separation of reaction zones
- Transformation from timescale to time \bullet independent length/temperature scale
- Applicable for investigation about ignition characteristics

Flame structure and octane number^[4]

- Octane number has influence on flame pattern
- For low octane number low \bullet temperature oxidation occurs



Lean combustion

- Ignition properties of various fuel mixtures including n-heptane, iso-octane (PRF) and toluene (TRF) will be conducted.
- Experiments will be done in atmospheric and elevated pressures.
- Mass spectroscopy will be employed for species measurement.
- Numerical simulations will help understand complex ignition properties in ultra lean condition.
- Innovative ignition property index can be developed from data.

Exhaust gas recirculation (EGR)

Micro flow reactor with controlled temperature profile can be employed to

Cool flame

Cool flame

time

Separated hot flames

Wall temperature (experiment) [K]

(blue flame & hot flame)

1200

0.5

RCM and ST

(transient)

n-heptane/air

 $\phi = 1.0$

(steady)

 $U_0 = 2 \text{ cm/s}$

700 800 900 1000 1100 1200 Wall temperature (experiment) [K]

References

[1] K. Maruta, T. Kataoka, N. Kim, S. Minaev, R. Fursenko, Proc. Combust. Inst., 30 (2005), 2429-2436.

[2] S. Minaev, K. Maruta, R. Fursenko, *Combustion Theory and Modelling*, Vol. 11 No. 2 (2007), 187-203.

[3] A. Yamamoto, H. Oshibe, H. Nakamura, T. Tezuka, S. Hasegawa, K. Maruta, Proc. Combust. Inst., 33 (2011), 3259-3266.

[4] M. Hori, A. Yamamoto, H. Nakamura, T. Tezuka, S. Hasegawa, K. Maruta,

Combust. Flame, 159 (2012), 959-967.

[5] R.J. Kee, et al., Sandia National Laboratories Report (1985), No. SAND85-8240.

investigate stable normal flame in EGR case

Research Plan

2015

2016

2017

- Elevated pressure Experiments and simulations for PRF and species and TRF measurement by MS
- Compilation of data and creation of index numbers

2015.6.30 SIP「革新的燃焼技術」公開シンポジウム