Omics approaches reveal clues for mitochondrial disease diagnosis and pathogenesis

> Anu Suomalainen Wartiovaara FinMIT Biomedicum-Helsinki Molecular Neurology Research Program <u>Research.med.helsinki.fi/neuro</u>

> > anu.wartiovaara@helsinki.fi

50 years of mitochondrial medicine

Genetic defect of mitochondrial disease can lie in mitochondrial or nuclear DNA

Nuclear genes encode 1500 proteins targeted to mitochondria

mtDNA: encodes13 proteins

Mitochondrial disorders

Can occur in any tissue, with any symptoms, with any inheritance model

Open questions in mitochondrial diseases

- Why so many different phenotypes?
- Why variable tissue specificity?
- What are the physiological responses to various mitochondrial defects?
- Can any of the processes be affected \rightarrow treatment

Novel tools for diagnosis

Case report: Infantile hypertrophic cardiomyopathy

<u>Clinical</u>

First child of healthy parents Normal pregnancy, neonatal period

4 months:

hypertrophic cardiomyopathy, muscle weakness lactate levels 2-7mmol/l Brain MRI normal, EEG slightly slow

Rapidly progressive disease 10 months: death due to cardiac arrest

Respiratory chain CI, CIII and CIV deficiency in heart

Götz, Tyynismaa et al. Am J Hum Genet 2011

Sequence of all coding gene regions of patient's genome

→ 50-60 million short sequence fragments (FIMM) → 1.5% of the whole genome =exome (18,000 genes)

Comparison to control genome:

-Known variants vs mutations

Enrichment of sequences to exons

Henna Tyynismaa Pekka Ellonen Henrikki Almusa

Results of whole-exome sequencing in the patient

P2	
All variants	65849
Unknown	6323
Map to gene	1549
Homozygous	43
Damaging	7
Mitochondrial	1

Homozygous missense mutation Arg592Trp in the AARS2 gene (putative mitochondrial alanyl-tRNA synthetase)

True disease causing mutation?

Presence in population Absent in 400 control chromosomes

Presence in other CMP families

Functional consequnces

Family 2: prenatal hypertrophic cardiomyopathy

- o Prenatal: extrasystolia
- At birth: poor condition, cardiomyopathy, hyperlactacidemia, death at postnatal day 3
- o Brother died in utero at week 40
- Compound heterozygosity for two AARS2 mutations

Heart Cox Heart

Patient 2

Muscle Cox/Sdh

Cox/Sdh

Muscle Gomori trichrome

Patient 2 has a homozygous missense mutation R592W in the AARS2 gene (putative mitochondrial alanyl-tRNA synthetase) - shared by another patient

Aminoacyl-tRNA synthetases

Charges a tRNA with aminoacid

Specific synthetases for each tRNA-aa pair; mitochondrial and cytoplasmic

tRNA structure specific; recognition often based on anticodon; amino acid specificity lower

Special features of Ala-tRNA synthetases?

No selectivity between Ala, Ser and Gly in the active site

Removal of incorrect amino acid in the editing domain

No anticodon binding domain

Enzyme specifically recognizes conserved G:U base pair in the tRNA acceptor stem

Liliya Euro

Multiple sequence analysis: human AARS2 structure utilizing known bacterial AlaRS structures as template

E.coli AlaRS 36.6 % identity 52.6 % similarity Pyrococcus horikoshii AlaRS 30.1 % identity 42.7 % similarity

L155R affects architecture of the catalytic domain R592W predicted to affect tRNA binding at editing domain

L155R

Amino acylation defect

Ļ

Reduced alanine incorporation to polypeptides

R592W

Editing defect

Misincorporation of amino acids (serine, glycine) into polypeptides

impaired mitochondrial protein synthesis Minor effect in myotube mitochondrial translation

But recovery from translation challenge slow

Tissue specificity? Can variable levels of amino acids explain cardiac manifestation?

Metabolomic analysis: comprehensive two-dimensional gas chromatography combined withi time-of-flight mass spectrometry (Matej Oresic, VTT, Finland)

Alanine increased, no major changes in serine / glycine

Mitochondrial aminoacyl-tRNA synthetase mutations are a common cause of inherited disease

leucoencephalopathy, lactacidosis, brain	2007
stem & spinal cord involvement	
Infantile encephalopathy, cerebellar	2010
degeneration	
myopathy, lactic acidosis and sideroblastic	2010
anemia	
Cardiomyopathy & myopathy	2011
Ovarian dysgenesis & hearing loss	2011
hyperuricaemia, pulmonary hypertension,	2011
infantile renal failure	
	leucoencephalopathy, lactacidosis, brain stem & spinal cord involvement Infantile encephalopathy, cerebellar degeneration myopathy, lactic acidosis and sideroblastic anemia Cardiomyopathy & myopathy Ovarian dysgenesis & hearing loss hyperuricaemia, pulmonary hypertension, infantile renal failure

Conclusions

Mitochondrial dysfunction: an important cause of childhood / infantile cardiomyopathy – hypertrophic & dilated

Mitochondrial translation defects may manifest primarily as early cardiomyopathy

Aminoacyl-tRNA synthetase mutations: an important cause of mitochondrial disease, with wide clinical variability – including CMPs

Exome analysis reveals new syndromes with variable clinical manifestations – not previously recognized as single-gene disorders

Singleton findings without obvious cell phenotype – subtle phenotype may be found if the pathway challenged

Gene search possible from a single patient Major progress in DNA diagnosis & research

Confirms diagnosis & inheritance pattern Provides means for genetic counseling & research of pathogenic mechanism

Thank you

Biomedicum-Helsinki, FinMIT

Henna Tyynismaa Riikka Hämäläinen Alexandra Götz Sofia Ahola-Erkkilä Liliya Euro Pirjo Isohanni Jenni Elo

Collaborators

Tiina Tyni Taneli Raivio Riitta Karikoski Tiina Ojala Johanna Tommiska Anders Paetau

HUCH & Helsinki University

Matej Oresic Tuulia Hyötyläinen Pekka Ellonen, Henrikki Almusa

Kalle Simola, Outi Tammela

VTT FIMM sequencing unit

Tampere Univ, Central Hospital

HELSINGIN YLIOPIS

