

Carbon Materials for Today and Future Turkish-Japanese Joint Symposium Istanbul Technical University, Istanbul, Turkey March 18-19, 2010

Adsorption Properties of Porous Carbons: Influence of Preadsorbed Water on Gas Adsorption Behavior

Miyawaki, J.; Kanda, T.; Kaneko, K. *Langmuir* **2001**, *17*, 664–669.

Jin MIYAWAKI¹ and Katsumi KANEKO²

¹Institute for Materials Chemistry and Engineering, Kyushu University ²Graduate School of Science and Technology, Chiba University

Outline

1. Introduction

- Characteristics and applications of porous carbons
- Enhanced interaction potential in micropore
- Adsorption characteristics of various molecules in micropore
- 2. Experimental
- 3. Results
 - Remarkable weight increase for water-preadsorbed ACF
 - Gas composition analyses
- 4. Hysteresis-assisted pressure-shift-induced

water adsorption mechanism

- 5. Verification of the mechanism
- 6. Influence of adsorption hysteresis of water or temperature
- 7. Conclusion

Porous Carbons

Micropore

-Strong Adsorption Field-

$$\frac{\text{Steele's 10-4-3 potential}}{\Phi(z) = 2\pi\varepsilon_{sf}\rho_{s}\sigma_{sf}^{2}\Delta\left\{\left(\frac{2}{5}\right)\left(\frac{\sigma_{sf}}{z}\right)^{10} - \left(\frac{\sigma_{sf}}{z}\right)^{4} - \frac{\sigma_{sf}^{4}}{3\Delta(z+0.61\Delta)^{3}}\right\}$$

$$\frac{\text{Overlapping of potentials from face-to-face surfaces}}{\Phi(z)_{pore}} = \Phi(z) + \Phi(H-z)$$

Adsorption Isotherms of Various Gases

Adsorption and desorption isotherms of various gases on ACF P20

Pre-Mixed Gas Adsorption

Slit-shaped micropore

Time dependence after introduction of pre-mixed gas of CH₄ and H₂O (P_W = 2.5 kPa) to ACF P20 at 303 K Measured by Mr. T. Kanda

Experimental

🔹 Sample

Pitch-based Activated Carbon Fiber (ACF): P20

Schematic Illustration of Gas Introduction Steps

Slit-shaped micropore

Effect of Preadsorbed Water

Time dependence of weight change after introduction of mixed gas to H₂O-preadsorbed ACF P20 at 303 K $\phi_w^{ads} = 0.4, P_M = 4.5$ kPa

Possible reason of weight change

- \succ Enhanced adsorption of CH₄
- \succ Additional adsorption of H₂O

Quantitative analysis of gas composition

 $CH_4 \cdots Gas Chromatography$ $H_2O \cdots Karl Fischer method$

Quantitative Analyses of Gas Composition by GC

Hysteresis-Assisted Pressure-Shift-Induced Water Adsorption Mechanism

Adsorption and Desorption Scanning Curves of Water

Adsorption and desorption scanning curves of H_2O on ACF P20 at 303 K

Verification of the Mechanism

Water Adsorption Isotherms of Microporous Carbons

Pitch-based Activated Carbon Fiber P5, P10, P15, and P20 (Adol Co.)

KOH-activated Coal-based Activated Carbon SAC31 (Kansai Coke Co.)

Micropore structural parameters obtained from α_{s} analysis			
	$a_{ m S}$ /m ² g ⁻¹	$W_0 / \text{cm}^3 \text{ g}^{-1}$	<i>w</i> ∕nm
P5	880	0.29	0.67
P10	960	0.41	0.86
P15	1310	0.60	0.94
P20	1800	0.95	1.1
SAC31	2290	1.33	1.2

of H₂O on ACFs at 303 K

Relationship between Adsorption Hysteresis Area and Adsorption Uptake

Time dependence after introduction of mixed gas on H₂O-preadsorbed carbons at 303 K Time dependence for P5 was measured by Mr. T. Kanda. Relationship between area of adsorption hysteresis of H_2O and final adsorption uptake

Temperature Dependence

Time dependence after introduction of mixed gas to H₂O-preadsorbed ACF P20 at various temperatures Relationship between temperature and final adsorption uptake or P_0 of bulk water

Interpretation of Temperature Dependence

COOL

HOT

Conclusion

Hysteresis-Assisted Pressure-Shift-Induced Water Adsorption Mechanism

Thank you for your attention.

İlginiz için teşekkür ederiz.

ご静聴ありがとうございました。

