Hidden Markov processes can explain complex sequencing rules of birdsong: A statistical analysis and neural network modeling

Kentaro Katahira1,2,3, Kenta Suzuki3,4, Kazuo Okanoya1,2,3, and Masato Okada1,2,3

1. JST ERATO, Okanoya Emotional Information Project, 2. The University of Tokyo, 3. RIKEN Brain Science Institute, 4. Saitama University
Motivation
- What are neural substrates for sequential behavior?

Sequential behavior
- Speech
- Playing music
- Dancing

Generation

Perception

Learning
Motivation
- What are neural substrates for sequential behavior?

Birdsong

Generation
Perception
Learning

Syllable: a b c d
Frequency
1. Introduction
 - Neural substrates of birdsong
 - Neural network models
2. Statistics of birdsong
 - Higher-order history dependency
3. Statistical models for birdsong
4. Discussion
 - Neural implementation
 - Future directions
Neural activity pattern during singing

Hahnloser, Kozhevnikov and Fee, Nature, 2002
Feedforward chain hypothesis

- Spikes propagate on feedforward chain network

Experimental evidences:

It is suitable for fixed sequences.
But how about variable sequences?
Song of Bengalese finch
- Variable sequences including branching points
Branching-chain hypothesis

- Mutual inhibition between branching chains

(Jin, Phys Rev E, 2009)
Limitation of branching-chain model

- The transition is a simple Markov process
 - The present active chain depends only on the last active chain

Question: Syllable sequences of Bengalese finch songs are Markov processes?
Outline

1. Introduction
 – Neural substrates of birdsong
 – Neural network models
2. Statistics of birdsong
 – Higher-order history dependency
3. Statistical models for birdsong
4. Discussion
 – Neural implementation
 – Future directions
Test of (first order) Markov assumption

Null hypothesis:
The transition probability to next syllable does not depend on preceding syllable (Markov assumption)

\[\begin{align*}
\text{Prob.} & \quad \text{Prob.} \\
b & 0.385 \quad 0.385 \\
c & 0.495 \quad 0.495 \\
d & 0.408 \quad 0.422 \\
e & 0.097 \quad 0.193 \\
\end{align*} \]

\(\chi^2 \) goodness-of-fit test

Significant difference

Second-order history dependency
We found more than one significant second-order history dependency in all 16 birds.
($p < 0.01$ with Bonferroni correction)
Then,…

• The branching-chain model is incorrect?
Two possible mechanisms for history dependency

Hypothesis 1:
Chain transition with higher-order dependency

Hypothesis 2:
Many-to-one mapping from chains to syllables

(Katahira, Okanoya and Okada, Biol. Cybern. 2007)
However...

- The neural activity data from HVC of *singing Bengalese finches* are *not* available.

- We examined two hypotheses based on song data by using statistical models.
Outline

1. Introduction
 – Neural substrates of birdsong
 – Neural network models
2. Statistics of birdsong
 – Higher-order history dependency
3. Statistical models for birdsong
4. Discussion
 – Neural implementation
 – Future directions
Feature extraction - Auditory features

Auditory features
- Spectral entropy
- Duration
- Mean frequency

(c.f. Tchernichovski et al. 2000)
Hidden Markov Model (HMM)

\[p(x|y = i) = \frac{1}{(2\pi)^{D/2}|\Sigma_i|^{1/2}} \exp \left\{ -\frac{1}{2} (x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i) \right\} \]
State transition dynamics in HMM

1st order HMM: \(a_{ij} = p(y_t = j | y_{t-1} = i)\)

2nd order HMM: \(a_{ijk} = p(y_t = k | y_{t-1} = j, y_{t-2} = i)\)

0th order HMM (Gaussian mixture):
\(a_i = p(y_t = i)\)
Relationship between two hypotheses and statistical models

Hypothesis 1:
Chain transition with higher-order dependency

Hypothesis 2:
Many-to-one mapping from chains to syllables

2nd order-HMM

1st order-HMM
Bayesian model selection

Given data (auditory features): \(X = \{x_1, x_2, \ldots\} \)

Model structure \(\mathcal{M} = \{L, K\} \)
- \(L \): Markov order (0, 1, 2)
- \(K \): the number of hidden states

Model posterior: \(p(\mathcal{M} | X) \propto p(X | \mathcal{M}) p(\mathcal{M}) \)

Marginal likelihood: \(p(X | \mathcal{M}) = \int d\theta p(X | \theta, \mathcal{M}) p(\theta | \mathcal{M}) \)
\((\theta: \text{model parameter set}) \quad (\ difficul to compute!) \)

Approximation
\[
\log p(X | \mathcal{M}) \geq \mathcal{F}_\mathcal{M} \quad \text{Lower bound}
\]
\((\text{variational free energy}) \)
\((\text{can be computed by variational Bayes method}) \)
Result – model selection (one bird)

“Best model structure”

- With small number of states
 - 2nd order HMM
- With large number of states
 - 1st order HMM

Number of states, K

Lower bound on log-marginal likelihood

- With **small** number of states □ 2nd order HMM
- With **large** number of states □ 1st order HMM
Results – model selection, cross validation
(averages over 16 birds)

Lower bound on log-marginal likelihood

Predictive likelihood (cross validation)
HMM learns many-to-one mapping

(Similar results were obtained for 30 syllables of the 54 syllables where significant second-order dependency was found)
Outline

1. Introduction
 – Neural substrates of birdsong
 – Neural network models
2. Statistics of birdsong
 – Higher-order history dependency
3. Statistical models for birdsong
4. Discussion
 – Neural implementation
 – Future directions
Summary of results

- Bengalese finch songs have at least second-order history dependency.

This mechanism is sufficient for Bengalese finch song
Mapping onto neuroanatomy

- **HVC** - hidden state (branch state)
- **RA** - auditory features of each syllable

(Katahira, Okanoya and Okada, 2007)
Future directions (ongoing research)

- How the brain can learn this representation?
 - Analysis of development of song from a juvenile period.
 - Developing a network model with synaptic plasticity for learning the many-to-one mapping. (e.g., Doya & Sejnowski, NIPS, 1995; Troyer & Doupe, J Neuropysiol, 2000; Fiete, Fee & Seung, J Neuropysiol, 2007)

- Applying HMMs to spike data recorded from songbird (Katahira, Nishikawa, Okanoya & Okada, Neural Comput, 2010)
Overview of our approach

Neural network model

Constraints

Behavior

Parameter fitting, Model selection

Constraints

Support, Refinement

Statistical model

Mapping

Anatomy, Physiology