Cation Vacancies in Nitride Semiconductors: A Possibility of Intrinsic Ferromagnetism

In collaboration with Dr. Yoshihiro Gohda (Univ of Tokyo)

GaN, InN & AIN:

Direct-gap Semiconductors with band gaps,

Environment-friendly semiconductors for optoelectronic devices

But that's not all

Ferromagnetic behavior in GaN doped with magnetic impurity

- Hysteresis has been observed even at Room temperature in Gd-, Cr-, Eudoped GaN
- Gigantic magnetic moment of 4000 μ_{B} per Gd atom in epitaxially grown sample, and more in implanted sample

Tearguchi et al: SSC (2002), Asahi et al: JPhys C (2004)

Dhar et al: PRL (2005), APL (2006)

GGA (+U) Calculations for Atomic Vacancy in Gd-doped and undoped GaN and other Nitrides

Consider:

- Atomic structure, electron states and spin states of mono-, di- and tri-vacancy for various charge states?
- Interaction among vacancies and Gd atom?
- > Have found:
 - Cation mono-vacancy, di-vacancy and trivacancy are spin-polarized. Vc: (degenerate gap state)³, 3µB
 - They interact ferromagnetically and thus likely to be responsible for gigantic magnetic moment.

Some details of GGA (+U) calculations

- Ga: (3d), (4s), (4p), N: (2s), (2p) and Gd: (5s), (5p), (4f), (5d), (6s) as valence states
- > Core states treated in PAW scheme
- > GGA by Perdew, Burke and Ernzerhof
- > Hubbard U (6.7 eV) and J (0.7 eV) for 4f states following the work in the past
- > Plane-wave basis set with 400 eV cutoff
- Supercell model with 96 576 atomic sites

Vacancies in Si

Quantitative agreement: Sugino& Oshiyama, PRL (1992); Saito & Oshiyama, PRL (1994), Ogut & Chelikowski, PRL (1999)

<u>Rebonding</u> that gains covalent energy, though cost of distortion, is a principal factor

1-23,2009

Vacancy in GaN

Symmetry keeping breathing relaxation is a principal factor

Nitrogen is too small to rebond!

Then,

 \Rightarrow

what has been overlooked is: Exchange interaction among gap states originated from N dangling bonds

Possibility of spin polarization

Spin-Polarized Cation Vacancy in Nitrides

 V_{Ga} in GaN

Electron orbitals responsible for spin

Nearly degenerate 3-fold defect levels near valence-band top split due to exchange interaction, causing spin polarization with $\mu = 3\mu_B$

Energy gain due to spin polarization = 0.5 eV ~ 0.9 eV

Vc is a magnetic "imperfection" with the configuration of (the gap state)³

Structural Bistability in Divacancy: Exchange Splitting vs Electron Transfer through Breathing Relaxation

A. Oshiyama: JST-DFG Workshop Kyoto, Feb 21-23, 2009

 a'_{1}

Which Structure? How much is the Spin?

Trivacancy: Charge-state dependent spin center

Gd 4f is spin polarized in GaN: μ = 7.0 μ _B

- > Gd 5d electrons contribute to chemical bonding with N
 - Electronic structure remains semiconducting
- > Gd 4f states are half-filled and spin polarized
 - $\mu = 7.0 \ \mu_B$

Ferromagnetic Coupling between Gd and 2 V_{Ga}

- > N-related defect states in the band gap as in V_{Ga}
- Outward breathing relaxation for both V_{Ga} and Gd : No Jahn-Teller Effect

Ferromagnetic interaction among 2 V_{Ga} and Gd, resulting in μ = 13.00 μ_B

Magnetic Moment Increases with Increasing Number of V_{Ga}

- > Linear increase in μ with the number of V_{Ga}
 - \bullet Due to 3 holes arising from V_{Ga} with the minority spin
- > Gigantic magnetic moment observed in experiments
 - Highly attributable to magnetism due to Ga vacancies

Energetics among Several Spin Configurations

- > Ferromagnetic configuration most stable, even for the case without Gd: ΔE_{AFM-FM} =1.12 eV
 - ⇒ Indicative of intrinsic ferromagnetism due to Ga vacancies

Ferromagnetic vs Antiferromagnetic: $\Delta E = E_{AFM} - E_{FM}$

Spin Configuration	E (meV)	$\mu\left(\mu_B\right)$
$Gd{\uparrow}Gd{\uparrow}V_{Ga}{\uparrow}V_{Ga}{\uparrow}$	0	10.00
$Gd{\uparrow}Gd{\uparrow}V_{Ga}{\uparrow}V_{Ga}{\downarrow}$	272	7.00
$Gd{\uparrow}Gd{\downarrow}V_{Ga}{\uparrow}V_{Ga}{\uparrow}$	41	3.00
$Gd{\uparrow}Gd{\downarrow}V_{Ga}{\uparrow}V_{Ga}{\downarrow}$	233	0.00

2 Gd + $2V_{Ga}$ with the distances of 6.43 A and 8.30 A

Site arrangement	d [A]	ΔE [meV]	$\mu_{FM} \left[\mu_B \right]$	$\mu_{AFM} \left[\mu_B \right]$
$V_{Ga}@A - V_{Ga}@B$	8.30	9	6.0	0.0
V_{Ga} ($aA - V_{Ga}$ (aC	6.43	- 18	6.0	0.0
$V_{Ga}@A - V_{Ga}@D$	4.53	19	6.0	0.0
V_{Ga} ($aA - V_{Ga}$ (A_{perp}	10.48	2	6.0	0.0
$V_{Ga}@A - V_{Ga}@A_{palla}$	11.14	1	6.0	0.0
V _{Ga} – V _{Ga} (ZincBlende)	9.09	- 33	6.0	0.0
Gd@A – Gd@B	8.30	0.0	14.0	0.0
Gd@A – V _{Ga} @B	8.30	1	10.0	4.0
Gd@A – V _{Ga} @C	6.43	38	10.0	4.0
Gd@A – V _{Ga} @D	4.53	1	10.0	4.0

2 Spins at various sites at the distance *d*

Cation sites depicted above

Generally, ferromagnetic favored !

A. Oshiyama: JST-DFG Workshop Kyoto, Feb 21-23, 2009

Possible Origin of Ferromagnetism

- RKKY (Ruderman-Kittel-Kasuya-Yosida) interaction through carriers, postulated for magnetic semiconductors in the past, are unlikely. No free carriers in the present case
- > Coupling of V_{Ga} spin in wultzite network through small covalency is certainly important

???

To Conclude,

- > GGA calculations have clarified:
 - Cation mono-vacancy, di-vacancy and trivacancy in GaN are spin-polarized, depending on their charge states.
 - Divacancy shows structural bistability caused from exchange splitting and electron transfer accompanied with breathing distortion
 - The vacancy spins interact ferromagnetically, indicating intrinsic ferromagentism in GaN, and thus likely to be responsible for gigantic magnetic moment observed

Gohda & Oshiyama: PRB 78, 161201(R) (2008) & unpublished results