JSTトッププレス一覧 > 共同発表

平成28年4月22日

東京大学
日本医療研究開発機構(AMED)
科学技術振興機構(JST)

ゲノム編集のための新たな「はさみ」のかたち
~CRISPR-Cpf1の構造解明~

ポイント

近年、生命の設計図である遺伝情報(ゲノムDNAの塩基配列)を書き換える「ゲノム編集注1)」技術が注目されています。微生物のもつCas9タンパク質注2)(DNA切断酵素)の発見により効率的なゲノム編集が可能になり、医学・生命科学研究に革命がもたらされました。さらに、昨年、Cpf1注3)とよばれる新規のタンパク質もゲノム編集に利用できることが報告されました。しかし、Cpf1がはたらく分子機構は不明でした。今回、東京大学 大学院理学系研究科の山野 峻 大学院生、西増 弘志 助教、石谷 隆一郎 准教授、濡木 理 教授の研究グループはMassachusetts Institute of TechnologyのFeng Zhang博士らとの共同研究により、Cpf1の分子構造を決定し、そのはたらきを原子レベルで解明することに成功しました。本研究結果から、Cpf1を用いたゲノム編集技術の効率化が期待されます。

<発表内容>

近年、生命の設計図であるゲノムDNAの塩基配列を書き換える「ゲノム編集」とよばれる技術が大きな注目を集めています。ゲノム編集技術は革新的な実験技術として医学・生命科学研究の現場において瞬く間に普及し、すでに多くの画期的な研究成果を生み出しています。さらに、動植物の品種改良や遺伝子治療といった応用も期待されています。現在、ゲノム編集にはCas9とよばれるタンパク質が利用されています。昨年、Cas9に加え、Cpf1とよばれる新規のタンパク質もゲノム編集に利用できることが報告されました。Cpf1はCas9と同様にガイドRNAと結合し、ガイドRNAの一部(ガイド配列)と相補的な2本鎖DNAを見つけ出して切断します(図1)。したがって、ガイド配列を変更することによりゲノムDNAのねらった場所を切断することができます。Cpf1とCas9はどちらもガイドRNAと協働して標的DNAを切断するはたらきをもちますが、DNAの「切り口」が異なります。すなわち、Cas9は2本鎖DNAを切断し平滑末端注4)をつくるのに対し、Cpf1は突出末端注5)をつくります(図1)。また、Cpf1はCas9よりも短いガイドRNAと結合してはたらきます。これまでに本研究グループはCas9の分子構造を決定し、そのDNA切断機構を明らかにしてきました。しかし、Cpf1がDNAを切断する分子機構は謎に包まれていました。

本研究グループはCpf1、ガイドRNA、標的DNAからなる複合体を結晶化し、大型放射光施設SPring-8注6)(兵庫県)およびSwiss Light Source(スイス)においてX線回折データを取得し、その立体構造を解明しました。その結果、Cpf1はCas9と大きく異なる立体構造をもつことが明らかになりました(図2)。特に、DNAの「はさみ」としてはたらく部分の構造はCpf1とCas9において大きく異なっていました。この構造の違いはCpf1とCas9によるDNAの「切り口」の違いとよく一致していました。これまでに立体構造を基にCas9の分子構造を改変した新規の研究ツールが開発されてきました。したがって、今回の研究成果は、Cpf1を改変した新規のゲノム編集ツールの開発につながることが期待されます。

本研究は、文部科学省(2014年度)・日本医療研究開発機構(AMED)(2015年度以降)革新的バイオ医薬品創出基盤技術開発事業「新規CRISPR-Cas9システムセットの開発とその医療応用」(研究代表者:濡木 理)、科学技術振興機構(JST) 戦略的創造研究推進事業「立体構造にもとづく次世代ゲノム編集ツールの創出」(研究代表者:西増 弘志)の一環で行われました。

<参考図>

図1 Cpf1とCas9によるDNA切断機構

図2 Cpf1-ガイドRNA-標的DNA複合体の結晶構造

RuvC、Nucとよばれる部分がDNAを切断する「はさみ」としてはたらく。

<用語解説>

注1) ゲノム編集
生命の設計図であるゲノムDNAの塩基配列を改変する技術。CRISPR-Cas9(clustered regularly interspaced short palindromic repeats/CRISPR associated proteins)の発見により迅速・簡便なゲノム編集が可能になった。
注2) CRISPR-Cas9、Cas9タンパク質
微生物のもつ獲得免疫機構のひとつ。Cas9はガイドRNAと結合し、ガイドRNAの一部(ガイド配列)と相補的な2本鎖DNAを切断する機能をもつ。したがって、ガイド配列を交換することにより任意の塩基配列をもつDNAを切断することができる。Cas9の機能は2012年に解明された。Cas9タンパク質をCRISPR-Cas9とよぶこともある。
注3) CRISPR-Cpf1、Cpf1タンパク質
微生物のもつ獲得免疫機構のひとつ。2015年に発見された。Cpf1タンパク質はガイドRNAと結合し、ガイドRNAの一部(ガイド配列)と相補的な2本鎖DNAを切断する。したがって、ガイド配列を交換することにより任意の塩基配列をもつDNAを切断することができる。Cpf1タンパク質をCRISPR-Cpf1とよぶこともある。
注4) 平滑末端
2本鎖DNAを形成するDNA鎖のどちらも突出していない末端構造。
注5) 突出末端
2本鎖DNAを形成するDNA鎖の片方が突出している末端構造。
注6) SPring-8
兵庫県の播磨科学公園都市にある、理化学研究所が所有する放射光施設で、その運転管理はJASRIが行っている。SPring-8の名前はuper hoton ring-8GeVに由来する。放射光とは、電子を光とほぼ等しい速度まで加速し、電磁石によって進行方向を曲げた時に発生する、細く強力な電磁波のこと。SPring-8では、この放射光を用いて、ナノテクノロジー、バイオテクノロジーや産業利用まで幅広い研究を行っている。

<論文情報>

タイトル Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA
著者名 Takashi Yamano, Hiroshi Nishimasu, Bernd Zetsche, Hisato Hirano, Ian M. Slaymaker, Yinqing Li, Iana Fedorova, Takanori Nakane, Kira S. Makarova, Eugene V. Koonin, Ryuichiro Ishitani, Feng Zhang, and Osamu Nureki
掲載誌 Cell
doi 10.1016/j.cell.2016.04.003

<お問い合わせ先>

<研究に関すること>

濡木 理
東京大学 大学院理学系研究科 生物科学専攻 教授
Tel:03-5841-4392
E-mail:

<AMEDの事業に関すること>

日本医療研究開発機構(AMED)
戦略推進部 医薬品研究課 革新的バイオ医薬品創出基盤技術開発事業担当
〒100-0004 東京都千代田区大手町1-7-1
Tel:3-6870-2219 Fax:03-6870-2244

<JST事業に関すること>

科学技術振興機構(JST)
戦略研究推進部 ライフイノベーショングループ
〒102-0076 東京都千代田区五番町7 K’s五番町
Tel:03-3512-3525 Fax:03-3222-2067
E-mail:

<報道担当>

東京大学 大学院理学系研究科・理学部
特任専門職員 武田 加奈子、教授・広報室室長 山内 薫
Tel:03-5841-0654
E-mail:

日本医療研究開発機構(AMED) 経営企画部 企画・広報グループ
Tel:03-6870-2245

科学技術振興機構 広報課
Tel:03-5214-8404 Fax:03-5214-8432
E-mail: