# Oxygenation attenuates aggregation and neurotoxicity of amyloid beta (Aβ) peptide ~New Therapeutic Strategy for the Treatment of Alzheimer's Disease~

### Summary;

Neurotoxicity of aggregated amyloid beta (A $\beta$ ) peptide is considered to be the pathogenesis of Alzheimer's disease. Although therapeutic approaches targeting A $\beta$  have been intensively studied, the disease is currently incurable. Thus, a new approach should be developed to overcome the disease. A research group at The University of Tokyo designed and synthesized a new photocatalyst that can selectively oxygenate A $\beta$ . The oxygenated A $\beta$  exhibits remarkably low aggregation activity and neurotoxicity, indicating that photooxygenation of A $\beta$  is able to attenuate A $\beta$  toxicity. Improvement of such a photocatalyst toward biological application will lead to a new therapeutic strategy for the treatment of Alzheimer's disease.



# <Figure 1> Concept of photooxygenation reaction for Aβ.

Aggregation of A $\beta$  (blue) is inhibited by photocatalyzed oxygenation. A $\beta$  is converted to oxygenated A $\beta$  by binding with oxygen atoms (orange circles).



# <Figure 2> Atomic force microscope (AFM) images of non-oxygenated (left) and oxygenated (right) A $\beta$ . Fibrillar A $\beta$ aggregates are observed when A $\beta$ is not oxygenated (left), while they are not observed when A $\beta$ is oxygenated (right). Thus, oxygenated A $\beta$ is not aggregative.



# <Figure 3> Attenuation of Aβ toxicity by photocatalyzed oxygenation.

Cell viability is decreased due to  $A\beta$  toxicity when the neuronal cells are treated with non-oxygenated  $A\beta$  (Compare a and b). On the other hand, cell viability recovered due to attenuated  $A\beta$  toxicity when  $A\beta$  is oxygenated by visible light irradiation in the presence of the photocatalyst (Compare b, c, and d).

#### Journal Information;

Dr. Atsuhiko Taniguchi, Dr. Daisuke Sasaki, Azusa Shiohara, Prof. Takeshi Iwatsubo, Dr. Taisuke Tomita, Dr. Youhei Sohma\*, Prof. Motomu Kanai\* "Attenuation of the Aggregation and Neurotoxicity of Amyloid-β Peptides by Catalytic Photooxygenation" *Angewandte Chemie International Edition* (2013) First published online: 11 DEC 2013, DOI: 10.1002/anie.201308001

#### **Funding Information;**

(Program) JST ERATO(Project) Kanai Life Science Catalyst Project(Project Leader) Professor Motomu KANAI, The University of Tokyo

#### **Contact Information;**

Professor Motomu KANAI Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, JAPAN e-mail kanai@mol.f.u-tokyo.ac.jp TEL +81-3-5841-4830 FAX +81-3-5684-5206