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Nanophotonic Computing Based on Optical Near-Field Interactions
between Quantum Dots
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SUMMARY We approach nanophotonic computing on the basis of op-
tical near-field interactions between quantum dots. A table lookup, or
matrix-vector multiplication, architecture is proposed. As fundamental
functionality, a data summation mechanism and digital-to-analog conver-
sion are experimentally demonstrated using CuCl quantum dots. Owing to
the diffraction-limit-free nature of nanophotonics, these architectures can
achieve ultrahigh density integration compared to conventional bulky opti-
cal systems, as well as low power dissipation.
key words: nanophotonics, optical signal processing, optical near-field,
information processing, nanophotonic computing

1. Introduction

To accommodate the continuously growing amount of data
traffic in communication systems [1], optics is expected to
further enhance the overall system performance by perform-
ing certain functional behavior [2]. In this regard, so-called
all-optical packet switching has been thoroughly investi-
gated. Also, the application of optical features, such as par-
allelism, in computing systems has been investigated since
the 1970s [3], [4]. However, many technological difficulties
remain to be overcome; one problem is the poor integrability
of the hardware due to the diffraction limit of light, which
is much larger than the gate width in VLSI circuits. This
results in relatively bulky hardware configurations.

Nanophotonics, on the other hand, is free from the
diffraction limit since it is based on local electromagnetic in-
teractions between a few nanometric particles, such as quan-
tum dots (QDs), via optical near-fields [5]. From an archi-
tectural perspective, this drastically changes the fundamen-
tal design rules of optical functional systems.

In this paper, we propose a nanophotonic comput-
ing architecture composed of table-lookup operations, as
schematically shown in Fig. 1. A large amount of lookup-
table (routing table) data can be recorded by configuring the
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Fig. 1 An architecture for nanophotonic computing: High-density par-
allel table lookup based on nanophotonics. Internal device operation is
based on near-field interactions between quantum dots, whereas input data
can be either globally irradiated via far-field light or individually addressed
through far- to near-field conversion.

sizes and positions of QDs, and by implementing the re-
quired logical operation mechanisms for each entry, based
on near-field interactions. Since the internal device func-
tions are based on uni-directional energy transfer via near-
field interactions, which is prohibited for far-field light, as
discussed in Sect. 3, input query data to the nanophotonic
lookup table may be supplied globally by far-field light by
tuning its operating frequency so that it does not interfere
with the internal device operations.

This paper is organized as follows. In Sect. 2, we relate
the table lookup operations and arbitrary digital computa-
tions to inner product operations with an appropriate data
representation. Section 3 discusses their nanophotonic im-
plementation. As an important sub-function, a data sum-
mation mechanism based on optical near-field interactions
between QDs is shown. Also, its proof-of-principle experi-
ment is demonstrated using CuCl QDs in a NaCl matrix. As
an extension of the table lookup operation, or matrix-vector
multiplication, Sect. 4 discusses digital-to-analog conver-
sion by configuring the coupling strength between QDs. Its
experimental verification is also shown. Finally, Sect. 5 con-
cludes the paper.

Copyright c© 2005 The Institute of Electronics, Information and Communication Engineers
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2. Nanophotonic Computing Architecture Based on
High-Density Table Lookup

This section discusses the overall processing architecture.
We begin with a concrete example of a packet forwarding
application, which is an important function in routers; in
this application, the output port for an incoming packet is
determined based on a routing table. For such functions, a
content addressable memory (CAM) [6] or its equivalent is
used; in a CAM, an input signal (content) serves as a query
to a lookup table and the output is the address of data match-
ing the input. All optical means for implementing such
functions have been proposed, for instance, by using planar
lightwave circuits [7]. However, since we need separate op-
tical hardware for each table entry if based on today’s known
methods, if the number of entries in a routing table is on the
order of 10,000 or more, the overall physical size of the sys-
tem becomes unfeasibly large. On the other hand, by using
diffraction-limit-free nanophotonic principles, huge lookup
table can be configured compactly.

First, we begin by relating the table lookup problem to
an inner product operation. We assume an N-bit input sig-
nal S = (s1, · · · , sN) and reference data D = (d1, · · · , dN).
Here the inner product S • D =

∑N
i=1 si • di will provide a

maximum value when the input perfectly matches the refer-
ence data. However, the inner product is, in fact, not enough
to determine correct matching of the input and reference.
This can be demonstrated as follows. Assume, for exam-
ple, a 4-bit input S = (1010), and two items of reference
data D1 = (1010) and D2 = (1110). Both inner products
result in a value of 2, but the correctly matching data is only
D1. That is to say, the exclusiveness of the matching oper-
ations should also be considered. Correct matching can be
achieved by calculating also the inner product of the inverted
input signal and reference data. Inversion is, however, a dif-
ficult function to implement optically. One possible option
is to properly design the modulation format [8], for instance,
by representing a logical level by two digits, such as Logic
1=“10” and Logic 0=“01.” Then, an N-bit logical input is
physically represented by 2N bits, which makes the inner
product equivalent to the matching operation.

For packet data transfer, an operation known as longest
prefix matching is important [9]. In this operation, a “don’t
care” state is required. In the above format, it can be simply
coded by “11.” Then, the resultant multiplication of a don’t-
care bit with an input bit will be 1 for either Logic 0 or 1.

Suppose that the reference data in the memory D j ( j =
1, · · · ,M) and the input S are represented in the above for-
mat. Then, the function of the CAM will be to derive j that
maximizes S • D j. A nanophotonic implementation of such
a function can be implemented in a highly dense form, as
shown in Sect. 3. In addition, a large array of such inner
product operations will allow a massively parallel process-
ing system to be constructed.

Consequently, multiple inner products are equivalent
to a matrix-vector multiplication, which is capable of imple-

Fig. 2 (a) Inner product operation as a table lookup. (b) Summation
mechanism in quantum dots. (c) Inter-dot interaction via an optical near-
field.

menting a wide range of parallel computations [4]. As a sim-
ple example, digital-to-analog conversion will be demon-
strated by tuning the near-field interaction strength, as dis-
cussed in Sect. 4.

Furthermore, arbitrary combinational logic can be re-
formulated as a table lookup operation; more specifically,
any computation is equivalent to performing a lookup in a
table where all possible input/answer combinations are pre-
recorded. For example, consider a two-input, two-bit ADD
operation, A + B. In the ADD operation, the third-bit of
the output (the carry bit) should be logical 1 when the sec-
ond bits (that is, the 21 bit positions) of both inputs are 1,
regardless of their first bits, that is, when (A, B) = (1*, 1*).
Therefore, following the data representation format intro-
duced above (Logic 1 = 10, Logic 0 = 01, and don’t care
= 11), the table lookup entry D should be (10111011) so
that any input combination satisfying (A, B) = (1*, 1*) will
provide a maximum inner product S • D. This procedure is
summarized in Fig. 2(a).

3. Data Summation Using Near-Field Interactions

As discussed in Sect. 2, the inner product operations are the
key functionality of the present architecture. The multiplica-
tion of two bits, namely xi = si•di, has already been demon-
strated by a combination of three quantum dots [10], [11].
Therefore, one of the key operations remaining is the sum-
mation, or data gathering scheme, denoted by Σxi, where all
data bits should be taken into account.

In known optical methods, wave propagation in free-
space or in waveguides, using, for example, focusing lenses
or fiber couplers, well matches such a data gathering scheme
because the physical nature of propagating light is inher-
ently suitable for global functionality such as global sum-
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mation. However, the level of integration of these methods
is restricted due to the diffraction limit of light. In nanopho-
tonics, on the other hand, the near-field interaction is inher-
ently physically local, although functionally global behavior
is required.

Here we implement a global data gathering mecha-
nism, or summation, based on the uni-directional energy
flow via an optical near field, as schematically shown in
Fig. 2(b), where surrounding excitations are transferred to-
wards a quantum dot QDC located at the center. As a funda-
mental case, we assume two quantum dots QDA and QDB,
as shown in Fig. 2(c). The ratio of the sizes of QDA and QDB

is 1 :
√

2. There is a resonant quantized energy sublevel be-
tween those two dots, which are coupled by an optical near-
field interaction [10]–[12]. Therefore, the exciton popula-
tion in the (1,1,1)-level in QDA is transferred to the (2,1,1)-
level in QDB [10], [12]. It should be noted that this inter-
action is forbidden for far-field light [13]. Since the intra-
sublevel relaxation via exciton-phonon coupling is fast, the
population is quickly transferred to the lower (1,1,1)-level
in QDB. Similar energy transfers may take place among the
resonant energy levels in the dots surrounding QDC so that
energy flow can occur. One may worry that if the lower en-
ergy level of QDB is occupied, another exciton cannot be
transferred to that level due to the Pauli exclusion princi-
ple. Here, thanks again to the nature of the optical near-field
interaction, the exciton population goes back and forth in
the resonant energy level between QDA and QDB, which
is called optical nutation [10]–[12]. Finally, both excitons
can be transferred to QDB. The lowest energy level in each
quantum dot is coupled to a free photon bath to sweep out
the excitation radiatively. The output signal is proportional
to the (1,1,1)-level population in QDB.

Numerical calculations were performed based on quan-
tum master equations in the density matrix formalism. The
model Hamiltonian of the coupled two-dot system is given
by

H = �

(
ΩA U
U ΩB

)
(1)

where �U is the optical near-field interaction, and �ΩA and
�ΩB respectively refer to the eigenenergies of QDA and
QDB. The equation of motion is given by the Liouville equa-
tion:

ρ̇(t) = − i
�

[H, ρ(t)] (2)

where ρ is the density operator. We used seven bases where
either zero, one, or two excitons occupy the (1,1,1) level in
QDA, the (2,1,1) level in QDB, and the (1,1,1) level in QDB.
Assuming inter-dot near-field coupling (U), exciton-phonon
coupling (Γ), and relaxation to the radiation photon bath (γA

for QDA and γB for QDB), within the Born-Markov approx-
imation [14], we can derive multiple differential equations.
In the following, we assume U−1 = 50 ps, Γ−1 = 10 ps,
γ−1

A = 2
√

2 ns, and γ−1
B = 1 ns as a typical parameter set.

First, we consider an initial condition where there are

Fig. 3 Time evolution of the population of the lower level of QDB in a
two-exciton system (solid curve) and a one-exciton system (dashed curve).
Dotted curve shows the population when QDA has an exciton in a two-
exciton system; Nutation is observed.

two excitons in the system: one in QDA and the other in
QDB (two-exciton system). The population of the (1,1,1)-
level in QDB is related to the output signal, whose time evo-
lution is shown by the solid curve in Fig. 3. Incidentally, the
population when QDA has an exciton is denoted by the dot-
ted curve in Fig. 3. Nutation is observed as expected since
the lower level of QDB is likely to be occupied and the inter-
dot near-field interaction is faster than the radiative relax-
ation at each dot.

We then compare the population dynamics between
one- and two-exciton systems. The dashed curve in Fig. 3
shows the time evolution of the population in the lower level
of QDB, where, as an initial condition, one exciton exists
only in QDA. Physically the output signal is considered to
be the radiative relaxation from the lowest energy level of
the output QD, which is related to integration of the popula-
tion in the lower level of QDB. By numerically integrating
the population between 0 and 5 ns, we can obtain the ratio
of the output signals between the two- and one-exciton sys-
tems, namely, 1.86:1, which reflects the number of initial
excitons, or the summation mechanism.

A proof-of-principle experiment was performed to ver-
ify the nanoscale summation using CuCl quantum dots in a
NaCl matrix, which has also been employed for demonstrat-
ing nanophotonic switches [10] and optical nano-fountains
[15]. We selected a quantum dot arrangement where small
QDs (QD1 to QD3) surrounded a “large” QD (QDC), as
schematically shown in Fig. 4(a). Here, we irradiate at
most three light beams with different wavelength, 325 nm,
376 nm, and 381.3 nm, which respectively excite the quan-
tum dots QD1 to QD3 having sizes of 1 nm, 3.1 nm, and
4.1 nm, respectively. The excited excitons are transferred
to QDC, and its radiation is observed by a near-field fiber
probe. Notice the output signal intensity at a photon energy
level of 3.225 eV in Fig. 4(b), which corresponds to a wave-
length of 384 nm or a QDC size of 5.9 nm. The intensity
varies approximately as 1:2:3 depending on the number of
excited QDs in the vicinity, as observed in Fig. 4(b). The
spatial intensity distribution was measured by scanning the
fiber probe, as shown in Fig. 4(c), where the energy is con-
verged at the center. Hence, this architecture works as a
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summation mechanism, counting the number of input chan-
nels, based on exciton energy transfer via optical near-field
interactions.

Such a quantum-dot-based data gathering mechanism
is also extremely energy efficient compared to other optical
methods such as focusing lenses or optical couplers. For
example, the transmittance between two materials with re-
fractive indexes n1 and n2 is given by 4n1n2/(n1 + n2)2; this
gives a 4% loss if n1 and n2 are 1 and 1.5, respectively.
The transmittance of an N-channel guided wave coupler is
1/N from the input to the output if the coupling loss at each
coupler is 3 dB. In nanophotonic summation, the loss is at-
tributed to the dissipation between energy sublevels, which
is significantly smaller. Incidentally, it is energy- and space-
efficient compared to electrical CAM VLSI chips [16]–[18],
as shown in Table 1.

We should also note, in terms of interconnections, that
the input data should be commonly applied to all lookup ta-
ble entries, which allows another possible interconnection
mechanism. Since the internal functionality is based on en-
ergy transfer via optical near-field interactions and it is for-
bidden for far-field light, global input data irradiation, that
is, broadcast interconnects, via far-field light may be possi-
ble; this is now being investigated [19].

Fig. 4 Experimental results of the nanometric summation. (a) A quan-
tum dot arrangement. (b) Luminescence intensity for three different num-
bers of excited QDs. (c) Spatial intensity distribution of the output photon
energy.

Table 1 Power dissipation and cell size comparison with electrical CAM
VLSI chips and optical waveguides.

4. Digital-to-Analog Conversion Using Near-Field In-
teractions

In the summation mechanism shown in Sect. 3, the cou-
pling strengths between the input QDs and the output QD
is uniform. However, these coupling strengths can be in-
dependently configured, for instance, by modifying the rel-
ative distances. Theoretically, this corresponds to config-
uring U of the Hamiltonian in Eq. (1). For instance, con-
sider three input QDs, QD0 to QD2, as schematically shown
in Fig. 5(a). By choosing U−1 of 410 ps, 240 ps, and 50 ps
between QD0 to QD2 and the output QD, respectively, the
simulated time evolution of the output population is sum-
marized in Fig. 5(b). The time integral of the output popu-
lations originating from QD0 to QD2 between 0 and 5 ns is
approximately in a ratio of 1:2:4. This leads to a digital-to-
analog conversion formula given by

d = 20s0 + 21s1 + 22s2 (3)

where d is the output, and s0, s1, and s2 represent the pres-
ence/absence of excitations in QD0 to QD2 respectively.
Here each of the inputs si is optically applied to the system
whose frequency is resonant with the (1,1,1)-level in QDi. It
should be noted that they are not coupled to the other QDs
(i.e., input QD j ( j � i) and the output QD) since the corre-
sponding energy levels are optically forbidden for the other
QDs. Also, the initial state of the system is considered to be
one in which an exciton is excited at each dot.

In the experiment, CuCl QDs in a NaCl matrix were
used, as in Sect. 3, and three different input light frequencies
were assigned to the three-bit input. Here, the output signal
is considered to be the radiative relaxation from the low-
est energy level of the output QD, which is observed with
a near-field fiber probe at a wavelength of 384 nm. One re-

Fig. 5 (a) Digital-to-analog (DA) conversion. The near-field coupling is
tuned so as to satisfy the relation for DA conversion. (b) Time evolution
from each of the input bits to the output. (c) Experimental results of the
output intensity level as a function of 3-bit input combinations.
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mark here is that not every excited exciton produces the out-
put signal; for instance there will be loss due to relaxation
at each of the input QDs when the output energy level is
occupied. However, such effects may not be serious since,
as discussed in Sect. 3, nutation occurs among resonant en-
ergy levels and the relaxation rate at the output QD, which
is the largest in the system in terms of size, is smaller than
that at the input QDs. Figure 5(c) shows output signal in-
tensity as a function of the presence (1) or absence (0) of
the input excitation, as specified by (s2, s1, s0), which were
respectively 381.3 nm, 376 nm, and 325 nm. The output in-
tensity is approximately linearly correlated to the input bit
set combination, which indicates the validity of the digital-
to-analog conversion mechanism. Compared to known opti-
cal approaches, such as those based on space-domain filter-
ing and focusing lenses [3], [4], or optical waveguides and
intensity filters [20], the nanophotonic approach achieves a
significant higher spatial density.

5. Discussion

In summary, an architecture for nanophotonic computing
is proposed; the architecture is based on table lookup us-
ing near-field interactions between quantum dots (QDs).
As well as content addressable memories, digital logic and
matrix-vector multiplication can be implemented in this ar-
chitecture. As fundamental functional elements, a data sum-
mation mechanism and digital-to-analog conversion are pre-
sented, and their proof-of-principle experiments are demon-
strated using CuCl QDs. Owing to its high spatial density
and low power dissipation, a massive array of such func-
tional components will be useful in applications such as
massive table lookup operations in networking and infor-
mation processing systems.

Generality of processing remains an open issue since it
requires random access memories, and other design strate-
gies, such as binary decision diagrams [21], are another
possible candidates. Memory is also an extremely impor-
tant subject for optical networks to replace the bulky opti-
cal fiber loops used for buffering [22]; the possibility of us-
ing nanophotonic devices in these applications is now being
pursued [11]. The extremely high spatial density will also
lead to novel system design concepts, for instance, in re-
dundancy or fault tolerance [23]. In addition, further inves-
tigation of system application issues is indispensable, such
as interconnections [24], [25], the fabrication limitations of
nanostructures [26], and new applications unachievable by
other technologies.
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