「ナノ科学を基盤とした革新的製造技術の創成」 平成19年度採択研究代表者 H22 年度 実績報告

堀 勝

名古屋大学大学院工学研究科·教授

プラズマナノ科学創成によるプロセスナビゲーション構築とソフト材料加工

§1. 研究実施の概要

本研究は、「プラズマナノ科学創成によるプロセスナビゲーション構築とソフト材料加工」の研究 課題のもと、これまでに各大学グループに分かれ以下の研究を実施した。

名古屋大学グループは、大阪大学グループが開発した低インダクタンス誘導結合型プラズマ源 および名古屋大学グループが開発したプラズマ内部パラメータ空間分布計測(ユビキタスモニタ ー)システムを応用したコンビナトリアルプラズマ解析装置を用いて、有機 Low-k 材料のエッチン グプロセスにおける、ラジカル、イオン、電子密度・温度、光など数多く存在する内部パラメータに 基づいたナノプロセスマップの作成に着手した。また、プラズマナノ科学の創成およびそれを基盤 とするプロセスナビゲーションシステムの設計・構築を開始するとともに、革新的プラズマナノエッ チング基盤技術の確立のための基礎実験を行い、以下の成果を得た。

- 1. ユビキタスモニターシステムを搭載したコンビナトリアルプラズマ解析装置を用いたナノプロセス マップの構築、プラズマナノ科学の構築
 - 1) H2/N2 プラズマ有機 Low-k 材料エッチングプロセスにおいて、内部パラメータに基づい たエッチング速度・形状などの加工特性に関するナノプロセスマップを構築。
 - 2) 有機膜エッチングにおける高エネルギーフォトン(紫外光)とラジカルの相互反応、イオン 照射による影響など粒子反応を詳細に評価し、プラズマナノ科学の構築を開始した。
- 2. プロセスナビゲーションシステムの構築
 - 1) 有機膜エッチングプロセスにおいて内部パラメータを基にしたプロセスナビゲーションシ ステムを容量結合型プラズマプロセス装置に搭載し、そのシステムの最適化を開始した。
- 3. 革新的プラズマナノエッチング基盤技術の確立
 - 数 nm サイズの Pt 微粒子をエッチング用マスクとして、有機 Low-k 膜のエッチングを行い、サブナノメートルサイズの直径を有する有機ナノピラーの作成に成功し、革新的有機 膜プラズマナノエッチング技術の可能性を示した。
 - 2) 九州大学グループと共同で研究を進めている自己組織化カーボン膜をマスクとした Low-k 膜エッチングの基礎実験を開始した。

次世代のナノデバイス製造には、無機材料にソフトマテリアル(有機材料)を複合した材料系 が必須であり、有機材料の分子構造の損傷を伴うことなく有機・無機界面の化学結合状態をナノ レベルで制御することが可能な低温でのプロセス技術が必要不可欠である。大阪大学グループで は、独自の低イオンダメージ(5eV 未満)プラズマの発生・制御技術とコンビナトリアルプラズマ解 析装置を駆使し、プラズマとポリマー表面との相互作用の解明を通じて、有機基板上での機能性 薄膜形成技術(界面制御技術)を開発することにより、次世代のフレキシブルデバイスや有機材料 上での機能性電子デバイス形成技術の開発に資することを目指している。本年度はこれまでに、 蓄積してきたプラズマプロセス解析手法、有機層・無機層の分析評価手法ならびに分析データを もとに、以下の成果を得ている。

1. プラズマとポリマー表面との相互作用の解明

- ポリマーへのプラズマ照射におけるイオン衝撃に伴う物理的な損傷形成過程について詳細に調べ、シースエッジでのArイオンエネルギーを制御することにより、結合解離を制御可能であることが明らかとなった。
- 2) イオンエネルギーを閾値以下に制御したプラズマを用いることにより、プロセスダメージを 顕著に抑制可能であることを示した。
- 3)機能性有機分子において電子機能の発現に寄与する π 共役結合(フェニル基)に着目 した実験では、シースエッジのイオンエネルギーを概ね6 eV以下に制御したプラズマによ り、プロセスダメージを顕著に抑制可能であることを示した。
- 2. 有機材料上での機能性無機薄膜形成技術の開発(無機/有機ナノ界面制御)
 - 1) 有機材料上での酸化物機能性材料膜の積層を念頭において, 膜成長初期過程における無機/有機界面の化学結合状態を硬 X 線光電子分光法(HXPES)を用いて調べた。
 - 2) 本研究で開発したコンビナトリアルプラズマプロセス解析装置を用い、ナノスケールの Zn 膜の酸化挙動に関する系統的なデータが得られた。
 - 3) 上記の実験において、無機/有機界面の化学結合状態を分析し、照射する酸素イオンの等価的なドーズにより、有機分子の酸素官能基の制御が可能であることを示した。

九州大学グループでは、有機基板上へのカーボン自己組織化パターン形成の実現のため、有 機基板上への選択的カーボン膜形成の基礎検討と、有機・無機ハイブリッド製膜の実現のための 有機基板上への高品質シリコン結晶膜成長の基礎検討を行い、以下の成果を得た。

- 1. カーボン自己組織化パターン形成の実現について
 - 1) 水素・アルゴンガス流量比とイオンエネルギーについての、微細トレンチのアスペクト比毎 のプロセスマップを昨年に引き続き作成し、データを充実させた。
 - 2) 堆積膜のエッチング特性評価を行った。
 - 3) プラズマ密度を増加させてラジカル生成レートを増加し、異方性製膜の製膜速度を増加 できることを明らかにした。またプラズマ密度と異方性製膜制御の相関を調べた。

- 2. 有機・無機ハイブリッド製膜の実現について
 - 1) ナノ微粒子配置制御実現のため、基板温度をパラメータとしてナノ微粒子をパターン基板 へ堆積した。ナノ微粒子の配置には熱泳動力が重要であることを明らかにした。
 - 2) 結晶シリコンナノ粒子分散アモルファスシリコン薄膜のレーザーアニーリングによる結晶化 を示唆する結果を得た。

§2. 研究実施体制

- (1)名古屋大学グループ
 - ①研究分担グループ長:堀勝(名古屋大学大学院工学研究科、教授)
 - ②研究項目
 - 1. ラジカル・イオン粒子時空間分布計測系の構築
 - 2. デスクトップ型コンビナトリアルプラズマ解析装置用粒子計測技術の構築
 - 3. プラズマプロセスデータベースおよびプラズマ科学ネットの構築
 - 4. プロセスナビゲーションシステムの構築
 - 5. 有機膜の超高選択比・超精密 10nm±5%ナノ加工プロセス技術の構築
- (2)大阪大学グループ
- ① 研究分担グループ長:節原 裕一 (大阪大学接合科学研究所、教授)
- ② 研究項目
 - 1. プラズマとポリマー表面との相互作用の解明
 - 2. 有機材料上での機能性無機薄膜形成技術の開発(無機/有機ナノ界面制御)

(3)九州大学グループ

- ① 研究分担グループ長:白谷正治(九州大学大学院システム情報科学研究院、教授)
- ② 研究項目
 - 1. カーボン自己組織化パターン形成の実現
 - 2. 有機・無機ハイブリッド製膜の実現について

§3. 研究実施内容

(文中に番号がある場合は(4-1)に対応する) ①名古屋大学グループ

1)ラジカル・イオン粒子時空間計測系およびデスクトップ型コンビナトリアルプラズマ解析装置用 粒子計測技術の構築

本研究課題の中核をなす「コンビナトリアルプラズマ解析装置」を構築するうえで、内部パラメー タの空間分布計測を可能とする技術は極めて重要である。本研究では、名古屋大学で開発に成 功しているマイクロホローカソード光源を用いた真空紫外吸収分光法を用いたラジカル絶対密度 計測システムにおいて、光源の高輝度化による高 S/N 比の実現、空間分布計測の簡便化・高分 解能化などを実施するとともに、従来のプローブ法による荷電粒子計測と組合せ、デスクトップ型 コンビナトリアルプラズマ解析用ラジカル・イオン粒子時空間計測技術を構築した。

図 1-1 に、大阪大学グループを主体として開発したコンビナトリアルプラズマ解析装置初号機を ベースに、有機膜エッチングプロセスに適用させたコンビナトリアルプラズマエッチング解析装置

の簡略図を示す。本装置は、2 台の低インダクタ ンス内部アンテナと、側壁の間隔を変化できる機 構を有しており、アンテナに供給する電力および 側壁間隔をコントロールすることで、基板直上に 傾斜プラズマを形成できる。また、マイクロホロー カソード光源を用いた真空紫外吸収分光システム を備えており、長尺 MgF2 窓を用いたポートを使 用した機構により、プロセスチャンバー内を大気 暴露することなく、計測ポイントを移動でき、簡便・ 迅速な空間分布計測が可能である。本システム に使用するマイクロホローカソード光源は、その内 部構造を最適化により高輝度化の実現に成功し ており、原子状ラジカル密度の空間分布計測の 精度を高めている。さらに、円形のサンプルステ ージの径方向をシングルプローブにより荷電粒子 を計測できるシステムを備えており、ラジカル密度 計測と同ポイントで荷電粒子計測が可能である。

図 1-1 コンビナトリアルプラズマエッチン グ解析装置

本装置を用いて、H₂/N₂ 混合ガスを用いた傾斜プラズマ内の内部パラメータを評価した結果を 図 1-2 に示す。図 1-2(a)は、電子密度の空間分布であり、図 1-2(b)は、水素、窒素ラジカルの密 度分布である。H₂/(N₂+H₂)=0.25 および 0.75 でのそれぞれの計測結果を比較すると、電子密度 分布は、Pure H₂および N₂プラズマ以外では分布形状の変化は観られないが、H および N ラジ カルの密度分布は大きく変化し、H₂ 流量比を増加させることで、25mm のポイント(メインアンテナ 直下)において、N ラジカルで 1.5 倍、H ラジカルで 3 倍程度変化することがわかる。また、単一条

図 1-2 コンビナトリアルプラズマ解析装置における傾斜 プラズマ内部パラメータ空間分布計測 (a)電子密度分 布、(b)ラジカル密度分布

図 1-3 コンビナトリアルプラズマ 解析装置による有機 Low-k 膜エ ッチングレートの空間分布特性

25

件下での電子および各ラジカル密度の分布形状はそれぞれ異なっており、それぞれの影響度が 各ポジションにおいて変化することが予想される。図1-3に各ポジションにおける有機 Low-k 膜の エッチングレートを示す。H2/(N2+H2)=0.25および0.75でのそれぞれの条件下において、空間的 なエッチング速度の分布は大きな差が生じている結果となった。これは、図1-2に示す内部パラメ ータの割合の変化が大きく影響していると考えられ、本装置により、有機膜エッチングプロセスのコ ンビナトリアル的な解析が可能であることが示唆された。また、以上の結果より、構築した空間分布 計測システムを用いることにより、コンビナトリアルプラズマ解析装置内の傾斜プラズマの内部パラ メータの明確なマッピングに成功した。

当該 CREST 研究課題の重要なテーマの一つである内部パラメータを基盤としたコンビナトリア ルプラズマ解析装置を実現するうえで、今回構築した計測システムは、十分に適用可能であること が確認された。本コンビナトリアルプラズマ解析装置を用いて、プラズマナノ科学データベースの 構築を現在遂行中ではあるが、今後、一プロセスにおける取得データ数の更なる増大を目指し、 空間分解能の微細化を進める。

2)プラズマプロセスデータベースおよびプラズマ科学ネ ットの構築³⁾

本研究課題では、当該プロジェクトの最終目的である プラズマプロセスデータベースの構築とプラズマナノ科 学の創成を目指し、図 1-1 に示すコンビナトリアルプラ ズマエッチング解析装置を用いた有機Low-k材料のエ ッチングプロセスの内部パラメータを基盤としたプロセス データの取得を目的とする。今回、本装置を用いて H2/N2プラズマを用いた有機low-k膜のエッチングプロ

0.0 2.0x1d² 4.0x1d² 6.0x1d² 8.0x1d² Ion Flux X H/(H+N) Radical Flux Ratio 図 1-4 内部パラメータに基づいた有 機 Low-k エッチング速度(●、0コンビ ナトリアル解析装置、▲、△従来プラ ズマ装置)

セスにおける加工速度およびトレンチ基板のエッチング形状などの特性をラジカル密度、プラズマ パラメーターなど内部パラメータをもとに評価を行い、ナノプロセスマップの作成に着手した。

図 1-4 に実験で定量的に計測された内部パラメータを関数として、2 条件の $H_2/(H_2+N_2)$ 流量比で評価されたエッチング速度の特性をひとつのグラフで纏めた結果を示す。丸(\bullet : H_2 流量比 75%、

o:25%)でプロットされた点は、コンビ ナトリアルプラズマ解析装置を用いて 得られたデータ(各流量比条件一回 のプロセスで得られた結果)であり、 三角(▲:H₂ 流量比 75%、△:25%) で示されるプロットは従来プラズマ装 置を用いて得られたデータ(10回の プロセスで得られた結果)である。こ の結果からわかるように H₂/N₂プラズ マにおけるエッチング特性は横軸に 示す内部パラメータに対し、従来法 およびコンビナトリアル法での結果は 同一の非線形的な特性を示すことが 確認できる。この実験においては、従 来法では計10回のプロセス実験を行 ったのに対し、コンビナトリアル法で はプロットされる 7 点は一回のプロセ

図 1-5(a) 1 プロセス 1 データを取得する従来法によるエッチング形状の H₂/(H₂+N₂)ガス流量比依存性調 査結果

図 1-5(b) 1 プロセス複数データを取得するコンビナ トリアル法によるエッチング形状の空間分布(内部パ ラメータ)依存性調査結果

スで得られた結果であり、コンビナトリアル法を用いることにより、極めて迅速にプロセス条件の探 索および科学的に反応メカニズムの解明が可能であることがわかる。また上記エッチング速度の 内部パラメータ評価と同時にトレンチ基板のエッチング形状を評価した結果を図 1-5 に示す。この 結果においても、従来法とコンビナトリアル法と内部パラメータに基づいて比較すると、同じ傾向を 示したことから、エッチング速度のみならず形状においても十分に評価可能であることを確認した。 このことから本コンビナトリアルプラズマ解析装置の構築により、有機 Low-k 材料エッチングプロセ スのナノプロセスマップの作成に大きく前進したといえる。

②大阪大学グループ

1) プラズマとポリマー表面との相互作用の解明

有機・無機複合機能材(有機材料を基材あるいは機能層として無機材料と複合化)の形成により 実現するフレキシブルデバイスは、高機能ディスプレー、高効率の太陽電池、さらには医療用デ バイスとしての発展も期待される。特に、可視領域での光透過性に優れた有機半導体は、複数の 機能膜の積層構造化により、太陽電池の高効率化(紫外~赤外の広い波長領域の利用)や発光 素子の多波長化により、これまでにない高機能・多機能デバイスの創成が期待される。 有機材料上での無機材料薄膜の形成では、1)有機材料の表面ナノ領域における低ダメージでの改質(官能基付与)に加えて、2)有機材料上に形成した無機材料薄膜との界面ナノ領域におけるプロセスダメージに関する知見を蓄積し、3)ナノ構造制御を念頭に置いて低ダメージかつ低温でのプロセスを構築していくことが極めて重要である。特に、本課題が研究対象としている有機無機複合構造でのナノ界面現象は、フレキシブルデバイスの開発のみならず、次世代のSi-ULSIの創製に必須のデバイス技術である極短紫外光(EUV)露光用レジストならびに有機系Low-k層間絶縁膜での、プラズマプロセスに伴うイオン照射ダメージならびに紫外線による有機系基材の表面ナノ領域における深さ方向の損傷や最表面における官能基付与の問題という点では共通の研究課題である。

有機・無機複合構造を用いた積層デバイスでは、無機材 料を有機材料上に形成するプロセスが必須である。しかしな がら、有機材料(基板材料あるいは有機半導体等の機能層) の上に無機材料を積層するプロセスでは、膜の緻密性や付 随する電気的な特性の点では、スパッタ製膜をはじめとする プラズマプロセスが有利であるにも関わらず、蒸着プロセス が専ら用いられてきた。これは従来のプラズマプロセスでは、 有機材料表面にプロセス損傷を生じることが避けられなかっ た(あるいはそのように考えられてきた)ことが本質的な要因と いえる。このため、上記の技術的な課題をブレークスルーし、 従来にない画期的な次世代デバイスを創成するには、『有機 半導体の上に無機材料を積層するプロセスに、プラズマプロ セスを適用することは不可能であるのか?』ということを第一

義的な問題として、科学 的な解決策を構築する ことが求められる。

一方,有機分子の化 学結合に対する損傷 (結合の切断あるいは解 離)を生じるのに必要な エネルギーは,結合解 離エネルギーで与えら れ、概ね 10eV 以下の 領域にある。このため、 有機材料に入射するイ オンの運動エネルギー (材料表面に形成される

図 2-1 Ar プラズマ[高周波電力: 1 kW]を照射した PET 表面の C1s XPS スペクトル[照射イオンド ーズ:4.3x10¹⁸ ions/cm²]

図 2-2 Arプラズマ[高周波電力:1 kW]を照射した PET 表面で計測した C1s XPS スペクトル

シースで加速される)を~10 eV よりも十分低く抑制することにより、上記の問題となっているプラズ マプロセスでの損傷を回避できる可能性があるといえる。

そこで、本研究では、プラズマプロセスにおけるイオン衝撃効果(物理的なプロセスダメージ)に 着目し、低インダクタンス内部アンテナを用いて生成した Ar プラズマをポリエチレンテレフタレート (PET) 基板に照射し、表面の化学結合状態をX線光電子分光法(XPS)により分析した^{8,10,12·15)}。 シース端でのイオンエネルギーを変化させた状態で、PET 基板にプラズマを照射した際の化学結 合状態(XPS スペクトル C1s スペクトル)の変化を図 2·1 に示す。PET を構成する C=C·O 結合 ならびに C·O 結合の Ar イオンエネルギーに対する変化に着目すると、イオンエネルギーを 6 eV 程度よりも低く抑制することによりプロセスダメージを抑制することが可能であることを示している。

次いで、フェニル基の存在を示す 291eV 付近の π→π*シェイクアップサテライトの変化をみるため、図 2-1の縦軸を, C-C 結合の光電子収量で規格化して拡大したものを図 2-2 に示す。また、このシェイクアップサテライトの C-C 結合に対する光電子収量(積分強度)の比を図 2-3 に示す。図 2-2 の XPS スペクトルが示すように、5.9±1.5eV のイオンエネルギーではシェイクアップサテライト

が確認出来るのに対し、7.4±1.5eV では消失している。多くの 有機半導体はフェニル基を含む構造をしており、II 共役分子で の電子状態が電気的な機能性を与えていることを考慮すると、 この実験結果はプラズマプロセスにおける照射イオンエネルギ ーを 6eV 以下に低減することにより、有機半導体と無機機能材 料を複合化した積層構造の形成にも道が拓かれる可能性があ ることを示唆している。さらに図 2-3 のイオンエネルギー依存性 は、フェニル基の分解の閾値が数 eV という極めて狭いイオンエ ネルギーの範囲にあることを示唆している。これは、本研究での プラズマ源におけるイオンエネルギー幅が 3eV 程度と極めて狭 いが故に、このように急峻な変化を捉えることが出来ているもの と考える。逆に、高精度な結合制御(ボンドエンジニアリング)に 応用できる可能性を示唆している。

図 2-3 $\pi \to \pi^* \hat{\nu} x + d \rho r y \tau' \hat{\nu} \tau'$ テライトピークの光電子収量の C-C 結合光電子収量に対する比の、シ ースエッジでの Ar イオンエネルギ 一依存性

③九州大学グループ

1)自己組織化パターン形成の実現:カーボン自己組織化マスクを用いたナノ加工技術の開発 「製膜形状制御プロセスマップ構築」

自己組織化パターン形成の実現を目的として、トレンチ基板上へのカーボン薄膜の成膜形状のためのプロセスマップの構築を行っている。成膜形状を決定する内部パラメータは、堆積前駆体であるカーボン系ラジカル、およびエッチング種である H の基板上へのフラックスと膜質を改質する入射イオンの運動エネルギーである。H フラックスを制御する外部パラメータである水素・アルゴン流量比とイオンエネルギーについてのプロセスマップを図 3-1 に示す。トレンチの側壁に堆積するコンフォーマルおよびサブコンフォーマル成膜形状、側壁には堆積せず上面とトレンチ底面にのみ

堆積が生じる異方性成膜形状、さらには上面のみに堆積が生じる成膜形状を実現できている。特に、低イオンエネルギーかつ低水素濃度の領域で上面のみの製膜が実現できる。

図 3-1 トレンチ基板上へのカーボン薄膜の 成膜形状のためのプロセスマップ。

2)有機・無機ハイブリッド製膜の実現:有機基板上への高品質シリコン結晶薄膜の成長 「ナノ微粒子配置制御のためのナノ微粒子のパターン基板への堆積」

有機基板上への高品質シリコン結晶薄膜の成長への応用を目指したナノ微粒子配置制御のため に、ナノ微粒子のトレンチ基板への堆積を行った。図 3・2 にナノ粒子を堆積したトレンチ基板の断 面 SEM 写真と、トレンチの上面と底面のナノ粒子堆積速度のアスペクト比依存性を示す。上面で のナノ粒子堆積速度が最大であり、側面と底面の堆積速度はアスペクト比の増加とともに減少する。 この結果は、ナノ微粒子の付着確率が高いことを示している。ナノ微粒子に作用する熱泳動力の 効果により、付着確率は基板温度とともに増加することが分かった。

図 3-2 トレンチ基板へのナノ微粒子堆積。断面 SEM 写真と基板温度をパラメー タとした上面・底面の堆積速度のアスペクト比依存性

§4. 成果発表等

(4-1) 原著論文発表

●論文詳細情報

- S. Iseki, T. Ohta, A. Aomatsu, M. Ito, H. Kano, Y. Higashijima, and M. Hori, "Rapid inactivation of Penicillium digitatum spores using high-density nonequilibrium atmospheric pressure plasma", Appl. Phys. Lett. Vol. 96, 153704 (2010). doi:10.1063/1.3399265
- C. S. Moon, K. Takeda, S. Takashima, M. Sekine, Y. Setsuhara, M. Shiratani, and M. Hori, "Surface loss probabilities of H and N radicals on different materials in afterglow plasmas employing H₂ and N₂ mixture gases", J. Appl. Phys, Vol.107, Issue 10, 103310 (2010). doi:10.1063/1.3372750
- C. S. Moon; K. Takeda, M. Sekine, Y. Setsuhara, M. Shiratani. M. Hori, "Etching characteristics of organic low-k films interpreted by internal parameters employing a combinatorial plasma process in an inductively coupled H₂/N₂ plasma", J. Appl. Phys., Vol.107, pp.113310 1-8 (2010). doi:10.1063/1.3415535
- 4. S. Takashima, K. Takeda, S. Kato, M. Hiramatsu, and M. Hori, "Surface Loss

Probability of Nitrogen Atom on Stainless-Steel in N₂ Plasma Afterglow", Jpn J. Appl. Phys., Vol.49, pp.076101-1 - 4 (2010). doi: 10.1143/JJAP.49.076101

- Y. Abe, S. Kawashima, K. Takeda, M. Sekine, M. Hori, "Dependence of Surface-Loss Probability of Hydrogen Atom on Pressures in Very High Frequency Parallel-Plate Capacitively Coupled Plasma", Applied Physics Express, Vol.3, No.10, Article No.106001(2010). doi: 10.1143/APEX.3.106001
- A. Malinowski, M. Hori, M. Sekine, W. Takeuchi, L. Lukasiak, A. Jakubowski, D. Tomaszewski, "Modeling considerations and performance estimation of Single Carbon Nano Wall based Field Effect Transistor by 3D TCAD simulation study", Journal Transactions of the Materials Research Society of Japan, Vol. 35, No. 3, pp.669-674 (2010).
- H. Inui, K. Takeda, H. Kondo, K. Ishikawa, S. Makoto, H. Kano, N. Yoshida, M. Hori, "Measurement of Hydrogen Radical Density and its Impact on Reduction of Copper Oxide in Atmospheric-Pressure Remote Plasma Using H2 and Ar Mixture Gases", Appl. Phys. Express, Vol.3, 126101 (2010). doi: 10.1143/APEX.3.126101
- Y. Setsuhara, K. Cho, M. Shiratani, M. Sekine, M. Hori, "X-ray photoelectron spectroscopy for analysis of plasma-polymer interactions in Ar plasmas sustained via RF inductive coupling with low-inductance antenna units", Thin Solid Films, Vol. 518, pp. 3555-3560 (2010). doi:10.1016/j.tsf.2009.11.038
- Y. Setsuhara, K. Cho, K. Takenaka, M. Shiratani, M. Sekine, M. Hori, E. Ikenaga, S. Zaima, "Low-damage surface modification of polymethylmethacrylate with argon-oxygen mixture plasmas driven by multiple low-inductance antenna units", Thin Solid Films, Vol. 518 pp. 3561-3565 (2010). doi:10.1016/j.tsf.2009.11.045
- K. Cho, K, Takenaka, Y. Setsuhara, M. Shiratani, M. Sekine, M. Hori, E. Ikenaga, H. Kondo, O. Nakatsuka and S. Zaima, "Hard X-ray Photoelectron Spectroscopy Analysis for Organic–Inorganic Hybrid Materials Formation", Ceramic Transactions, Vol. 219, pp. 183-188, (2010).
- K. Takenaka, K. Cho, Y. Setsuhara, M. Shiratani, M. Sekine, M. Hori "Development Of a Combinatorial Plasma Process Analyzer for Advanced R&D of Next Generation Nanodevice Fabrications", Ceramic Transactions, Vol. 219, pp. 279-284 (2010).
- K. Takenaka, Y. Setsuhara, K. Cho, M. Shiratani, M. Sekine and M. Hori, "Combinatorial Analysis of Plasma-Surface Interactions of Polyethylene- terephthalate with X-ray Photoelectron Spectroscopy", Japanese Journal of Applied Physics, Vol. 49, pp. 08JA02-1-4 (2010). doi: 10.1143/JJAP.49.08JA02
- 13. Y. Setsuhara, K. Cho, K. Takenaka, M. Shiratani, M. Sekine and M. Hori, "Advanced Research and Development for Plasma Processing of Polymers with

Combinatorial Plasma-Process Analyzer", Thin Solid Films, Vol. 518, pp. 6320-6324 (2010). doi:10.1016/j.tsf.2010.03.055

- Y. Setsuhara, K. Cho, M. Shiratani, M. Sekine and M. Hori, "X-Ray photoelectron spectroscopy analysis of plasma-polymer interactions for development of low-damage plasma processing of soft materials", Thin Solid Films, Vol. 518, pp. 6492-6495 (2010). doi:10.1016/j.tsf.2010.01.057
- Y. Setsuhara, K. Cho, K. Takenaka, M. Shiratani, M. Sekine, and M. Hori, "Low-Damage Plasma Processing of Polymers for Development of Organic -Inorganic Flexible Devices", Surface and Coating Technology, Vol. 205, pp. S355-S359 (2010). doi:10.1016/j.surfcoat.2010.08.031
- 16. K. S. Shin, Y. S. Choi, I. S. Choi, Y. Setsuhara, J. G. Han, "Nano-crystalline silicon thin films grown by the inductively coupled plasma assisted CFUBM at low temperature", Surface and Coatings Technology, Vol. 205, pp S227-S230 (2010). doi:10.1016/j.surfcoat.2010.07.086
- T. Nomura, T. Urakawa, Y. Korenaga, D. Yamashita, H. Matsuzaki, K. Koga, M. Shiratani, Y. Setsuhara, M. Sekine, M. Hori, "Plasma parameter measurements of Ar+H₂+C₇H₈ plasmas in H-assisted plasma CVD reactor", Proceedings of ICRP-7/SPP-28 (2010) DTP-173.
- 18. T. Nomura, T. Urakawa, Y. Korenaga, D. Yamashita, H. Matsuzaki, K. Koga, M. Shiratani, Y. Setsuhara, M. Sekine, M. Hori, "Substrate temperature dependence of feature profile of carbon films on substrate with submicron trenches", Proc. of IEEE TENCON 2010 p. 2213 (2010).
- K. Koga, T. Matsunaga, W. M. Nakamura, K. Nakahara, Y. Kawashima, G. Uchida, K. Kamataki, N. Itagaki, M. Shiratani, "Comparison between silicon thin films with and without incorporating crystalline silicon nanoparticles into the film", Thin Solid Films (in press).
- 白谷正治、節原裕一、関根誠、堀勝, "研究開発の効率を飛躍的に高めるコンビナトリアルプ ラズマ解析装置", 化学工業、VOL.60 NO.5、pp.43-47、2010年5月1日
- 21. 伊藤昌文、堀勝, "プラズマ技術とバイオアプリケーション 非均衡大気圧プラズマのミドリカ ビ殺菌への応用-", 化学工業、VOL.61、NO.6、pp.44-48、2010年6月1日
- 22. 節原裕一, "低インダクタンス内部アンテナを用いたプラズマ源の開発と反応性プラズマプロセスへの展開", プラズマ・核融合学会誌、Vol.87, No.1, pp. 24-33, 2011. B-9
- 23. H. Inui, K. Takeda, K. Ishikawa, T. Yara, T. Uehara, M. Sekine, M. Hori, "Hydrophobic treatment of organics against glass employing nonequilibrium atmospheric pressure pulsed plasmas with a mixture of CF4 and N2 gases", Journal of Applied Physics, Vol.109, Issue 1, 013310 (2011). doi:10.1063/1.3525246

- 24. S. Chen, H. Kondo, K. Ishikawa, K. Takeda, M. Sekine, H. Kano, S. Den, M. Hori, "Behaviors of Absolute Densities of N, H, and NH3 at Remote Region of High-Density Radical Source Employing N2/H2 Mixture Plasmas", Jpn. J. Appl. Phys. 50, 01AE03 (2011). doi: 10.1143/JJAP.50.01AE03
- 25. F. Jia, N. Sumi, K. Ishikawa, H. Kano, H. Inui, J. Kularatne, K. Takeda, H. Kondo, M. Sekine, A. Kono, M. Hori, "Laser Scattering Diagnosis of a 60-Hz Non-Equilibrium Atmospheric Pressure Plasma Jet", Applied Physics, Express 4, 026101 (2011). doi: 10.1143/APEX.4.026101
- 26. K. Takeda, Y. Miyawaki, S. Takashima, M. Fukasawa, K. Oshima, K. Nagahata, T. Tatsumi, M. Hori, "Mechanism of plasma-induced damage to low-k SiOCH films during plasma ashing of organic resists", J. Appl. Phys. 109, 033303 (2011). doi:10.1063/1.3544304

(4-2) 知財出願

- ① 平成22年度特許出願件数(国内 5件)
- ② CREST 研究期間累積件数(国内 6件)