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10 PETA FLOPS COMPUTER

will operate in 2011
RIKEN Next-Generation Supercomputer (Kobe, Japan)



We are facing with

high dimensional, heterogeneous,
huge data related to genes and
their products.

Computational resources
are enormously required.



Large-Scale High Dimensional Data

DNA microarray data
0O(10%)

Asiou/a1ajdwooul/Bulssin




SNPs (Single Nucleotide
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Association Analysis of Dr. Kamatani

(RIKEN Center for Genomic

Haplotypes and e s
Phenotypes

 Within 20,000 haplotype blocks, there are
500 haplotype blocks with more than 20
loci. But it requires 1,200 days for
computation on 10 TPLOPS computer

e It just requires only 12 days on 10
PFLOPS computer.



Computational Strategy for
Understanding Biological Systems

Gene Network Database Management System for

Computation from Data Dynamic Biological Pathways

@

Protein subcellular Iocallzation

“«

Expression data Literature

[ oo | &{ J
P-P interaction microRNA network
Proteomics data | |

Data Assimilation for Fusing Simulation Models

\
Binding site

and Personal Datawith Supercomputer




Software Platform for
Systems Biology

Cell lllustrator Online |eeee

https://cionline.hgc.jp

Commercially available from BIOBASE



Software Tool for Modeling and
Simulation

XML format Cell System Markup Language CSML and Cell System Ontology
CSO for describing biological systems with dynamics and ontology

Nagasaki M, Doi A, Matsuno H, Miyano S. Genomic Object Net: I. A platform for
modeling and simulating biopathways. Applied Bioinformatics. 2003; 2: 181-4.



Pathway Database Search Module

e Pathway models in CSML format are stored into one uniform database
and it is possible to search the database with various search options via
GUI interface.

TRANSPATH 8.4
(BIOBASE) is supported.
Mar/2008.

It is possible to
support other pathway
models if converted
into the CSML format.



BIOBASE TRANSPATH Pathway Library
Module

More than 1,000 TRANSPATH pathways (Signal Transduction Pathway and
Gene Regulatory Network) are supplied. All pathways can load, edit, save
and simulate on CIOA4.0.

— Support pathways supplied
in TRANSPATH 8.4
(BIOBASE).

— Academic user can register
and use the academic
version of TRANSPATH.

— Curated 100,000 reactions
and 100,000 molecules in
Human and Mouse.

GNI Ltd. and the University of Tokyo



Project Management Module

User can store the pathway model, related
experimental data and report to the server
side.

The each stored project on server can be
shared with other permitted users (read,
write or both permission.)

Public pathway models — latest signal
transduction pathway, metabolic pathway
and gene regulatory network — (same
models in http://www.csml.org/ ) can
access from the GUI interface of the
module.




Pathway Parameter Search Module

e For a ClO pathway model, the module executes the user specified multiple
initial conditions at once and displays the result with 2D or 3D plots.

( The module needs to activate other two simulation related modules in
advance.)

GNI Ltd. and the University of Tokyo



Mining Large-Scale Gene
Network Structures from
Gene Expression Data

el arge-scale (>300) siRNA gene
knock-down

eDrug responses in time-course
eMicroarray measurements




Bayesian Network and - QL
Nonparametric Regression

Gene Knockdown/Knockout

Gene network

Microarray gene
expression data



Bayesian networks

gl

DAG encoding the Markov assumption.

g4 g2
®o—0
g3

The joint density can be computed by
the product of the conditional densities.

f (Xil""’ Xip |OG) = ijzlfj(xij |pij 191')

’|Xi1 = Py =Xz %)

eImoto, S., Goto, T., Miyano, S. Estimation of genetic networks and functional structures
between genes by using Bayesian network and nonparametric regression. Pacific
Symposium on Biocomputing. 7:175-186, 2002.

*Imoto, Kim, Goto, Aburatani, Tashiro, Kuhara, Miyano (2003). Bayesian network and
nonparametric heteroscedastic regression for nonlinear modeling of genetic
networkJ. Bioinformatics and Comp. Bioal., 1(2), 231-252




Nonparametric regression

We consider the additive regression model:

Xij — ml(pi(lj))+ ot rnqj (pi(qjj)) +gj y
where £, N(0,0%)and p; = (p{,.... p).

Here m, ( ) Is a smooth function from R to R.



Nonlinear Bayesian network model




Criterion for selecting good networks

BNRC Score
Bayesian Network and Nonparametric Regression Criterion

BNRC(G) =-2log 7 H f(X::0,)7(0, |21)d0,

=-2logz, —rlog(2zn™)
T Iog‘Jz(ée)‘ —2nl, (ée | X,)

We choose the graph that minimizes the
value of the BNRC score.



Dynamic Bayesian Network Model for
Time-course Gene Expression Data

De pendence between
time points

Lo De pendence between genes
Measurementin time-course
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Imoto, S., Higuchi, T., Goto, T., Tashiro, K., Kuhara, S., Miyano, S. Combining microarrays and biological

knowledge for estimating gene networks via Bayesian networks. J. Bioinformatics and Com putational
Biology. 2(1):77-98, 2004.

Kim, S., Imoto, S., Miyano, S. Dynamic Bayesian network and nonparametric regression for nonlinear
modeling of gene networks from time series gene expression data. Biosystems, 75(1-3), 57-65, 2004.



Computational Complexity of Searching
Good Networks is Very High!

e Determining the optimal Bayesian
network is computationally
Intractable (NP-hard)

W2.34x1072 possible networks for 20 genes
W2.71x10138 possible networks for 30 genes

M1.21x101° possible networks for 9 genes
A brute force approach would take
years of computation time even on a
supercomputer.




Optimal Gene Networks are Hard to Find

« Optimal networks can be .{:;ﬁz\}

found for 30 genes with
SUN Fire 15K (100CPU)

supercomputer in a day.

*Finding Optimal Models for Small Gene Networks. Ott, S., Imoto, S.,
Miyano, S. Pacific Symposium on Biocomputing, 9: 557-567, 2004.
*Ott, S., Miyano, S. Finding optimal gene networks using biological
constraints. Genome Informatics. 14:124-133, 2003.

*Ott, S., Hansen, A., Kim, S.-Y., and Miyano, S. Superiority of
network motifs over optimal networks and an application to the
revelation of gene network evolution. Bioinformatics. 21(2):227-238,
2005.



Supercomputer System (2003-2008)

The Computational Center for Genome Research

Renewed in January 2003

HITACHI HA8000, 8xSunFire 15K,
2xSunFire 6800, SGI Origin3900T

1,428 CPUs, 145 TB

Budget:
100,000,000JPY /year
for 6 Year Lease,
80,000,000JPY for
electricity/year

All Japan Users: 500
75% from U. Tokyo,
25% from Others
50 very intensive users

g

Human Genome Center

Institute of Medical Science University of Tokyo



Strategic Computational Initiative

Next Supercomputer System for 2009-2014

w Human Gennme Center
..................................

Renewed In January 2009

B January 2009: 75 TFLOPS at peak & 1 PB Disk Space
PC Cluster (Sun Microsystems)
Large Shared Memory Machine (SGI Altix)
Lustre File System (Sun Microsystems)

B January 2011: 225 TFLOPS at peak & 4PB Disk Space



Mining Gene Networks In
Human Umbilical Vein
Endothelial Cell (HUVEC)

Search for Drug
Target Pathways

Courtery by Cristin Print, University of
Auckland




Endothelial Cells (EC)
play key roles in disease

m Vessel growth (angiogenesis)
m Vessel regression (apoptosis)
Cancer
Cardiovascular disease
etc.
= Inflammation
Atherosclerosis
Vasculitis
etc.




First Case
HUVEC Gene Networks

Searching Drug Target Pathways
Using Fenofibrate




HUVEC treated with
Fenofibrate

e Fenofibrate is:
e Agonist of PPARa

o Drug for disorder of lipid metabolism
(hyperlipidaemia)

e Our aim is to:
Elucidate fenofibrate-related gene network based on
25 M fenofibrate dosed

Time-course response arrays against fenofibrate (six time
points (0, 2, 4, 6, 8 and 18 hours) in duplicate)

270 gene knock-down arrays by siRNA



Selection of Genes for Knock-
Down

o351 transcription factors, signaling

molecules, receptors and ligands were
selected based on knowledge of their
relevance to transcriptional regulation in EC.



Computational Strategy

Stimulus



Computational Strategy

 Imoto S, Tamada Y, Araki H, Yasuda K, Print
CG, Charnock-Jones SD, Sanders D, Savoie
CJ, Tashiro K, Kuhara S, Miyano S.
Computational strategy for discovering
druggable gene networks from genome-wide
RNA expression profiles. Pacific Symposium
on Biocomputing, 11, 559-571, 2006.



Estimated Feno-related Network
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Downstream of PPAR
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Evaluation (An Example)

Focus on GO: OPPARG

“Lipid metabolism™
“Fatty acid metabolism™



PPARa

peroxisome proliferative
activated receptor, alpha

T

Fatty acid beta-oxidation

ITPR3
retinoic acid receptor, inositol 1,4,5-triphqsphate
gamma receptor, type\3
/ D/ EHHADH Kassam et al.
enoyl-Coenzyme A, 2000) J. Biol.
dodecenoyl-Coenzyme A hydratase/3-hydroxyacyl E:h em)
delta ISOK Coenzyme A dehydrogenase :
L4 SREBF1
interleukin 4 sterol regulatory element
binding transcription factor 1

/ Knight et al. (2005) Biochemical. J.
Cholesterol metabolism N

HSD1/B4 \ LDLR

hydroxysteroid (17-beta) low density
dehvdroaenase 4 lipoprotein receptor

Fan et al. (1998) J. Endocrino. Bernal-Mizrachi et al. (2003) Nat. Med.

\ 4




Druggable Gene Network?

e 17 (out of 42) lipid metabolism genes have
more children than PPARa (listed in the Table
below).

« Some of listed genes in the Table have
already targeted by pharmaceutical
companies.

Druggable: Nat. Rev. Drug Discov. 1:727-30, 2002



In Silico Search of Drug Target Pathways
with Gene Network Computation

HUVEC
With PETA FLOPS

Compution ot gene network of 1000
genes affected by Fenofibrate

N

Current Supercomputer (HGC)

Only 3% of Human Genes

Several Thousands of
Transcripts

N



Second Case

HUVEC Gene
Networks

TNF-o and New Hub Genes
Regulating Inflammation and
Apoptosis




HUVEC treated with TNF-q,

Tumor Necrosis Factor (TNF)-a
EC regulates
the entry of leucocytes into damaged tissues and their activation

blood vessel structure by their coordinated morphogenesis into vessels
Vessel regression (appoptosis)

EC functions are influenced by TNF-a

Elucidate TNF-a stimutaed gene network
Stimulation with TNF-a (10ng/mL)
Time-course response arrays
8 time points (0, 1, 1.5, 2, 3, 4, 5, 6) in triplicate
351 gene knock-down arrays by siRNA



Dynamic Bayesian Network with
Nonparametric Regression found five
hubs all of which are known to play key
roles in TNF-a related EC processes.




TNF-o Network computed from microarray
data of 351 siRNA knock-downs




Evaluation of TNF-o Networks and
Discoveries

(1)

(2)

Many of the topological hubs in the
network are already known to occupy key
positions in signhaling cascades that
ultimately control transcription.

Literature analysis of ten networks
topological hubs (with more children)



Discovery: Gene X is akey rolein
Inflammation regulated in EC

1. X has 38 children in our network

2. Knocking down X and analyzed EC
secretion of five chemokines using
cytometric bead arrays.

3. Itwas proved that gene X plays a key role
In inflammation EC.



Discovery: Gene Y regulates TNF-
Induced appoptosis

1. Y has 20 children in our network

2. Knocking down Y and analyzed EC
with/without TNF-a.

3. Y modulates the effect of TNF-oo on EC
apoptosis pathway.




Summary of Discovery

e The network model predicted known
regulatory hubs and previously
uncharacterized hubs, which our experiments
confirmed were regulators of EC apoptosis
and inflammation.



Literature (IPA) and Our
Network

e We found that transcript-to-transcript
relationships predicted by the published
literature (IPA) did not correlate well with
those found within our data.

e |t suggests that lineage-specific data sets
may be very important for systems biology.



IVIITTHTTTY Fatlivwayo

from Case-Control
Analysis Microarray
Data

Case Control
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Can we see the difference of the systems?




Meta Gene Profiler (MetaGP)

MetaGP is a statistical
test for detecting
differentially-expressed
gene sets (meta genes),
rather than individual
genes, from the gene set
libraries (e.g., pathways,
GO terms, etc.).

plntegrated — 1:MetaGP(pli‘/\ ! pn)

R e pi : the p-value of the ith

gene in the gene set
Gupta, P.K., R. Yoshida, S. Imoto, R. Yamaguchi, and S. Miyano,

Statistical absolute evaluation of gene ontology terms with
gene expression data, LNBI, 4464: 146-157, 2007.



Test for a Set of Genes

Secondly analysis:
test for a set of genes with the same functional annotation

Functional Annotations: Pathways, Gene Ontology, etc.

Case Control

gl test sl
Set A: 2 — — 2

Cancer Related © ©
g3 [ pA 1] g3

_ test i

Set B: G N | ¢am) | D C

Diabetes Related g Tl D g

B

4

Obtain p-values for the sets of genes with
Meta Gene Profiler

Higher interpretability



Ninjin’'yoeito (NYT) for remedying degraded
myelin sheath of nerves

"NYT Experiments
Cuprizone (CUP) for demyelination

]

MetaGP analysis of

gene expression 0
(306) data from CUP/NYT
treated-mice using 306
MetaGP test TFs and their binding %
gene sets ;

—

Yamaguchi, R., Yamamoto, M., Imoto, S., m M T + N~

Nagasaki, M., Yoshida, R., Tsujii, K., Ishiga, A., g § K= § g o k

Asou, H., Watanabe, K., Miyano, S. Identification = = \
Cup Cup+NYT NYT

of activated transcription factors from microarray Treatments \

gene expression data of Kampo-medicine treat:
mice. Genome Informatics. 18, 119-129, 2007. Changes by CUP and/or NYT No change by NYT only



MetaGP with BIOBASE TRANSPATH
Database

Pathway ID 1

Pathway ID 2

Pathway ID 3

Pathway ID 4

819 pathways
are screened
by

Cell lllustrator
Online
+TRANSPATH



Cell lllustrator Online Analysis
ety Name: MKP X —/ MBP mmmm

ERK2 MBP 0.896887 1.09E-08 1.32E-09
7 (EXP4) 7th C 0.989038  0.120053  1.85E-05
. P (probe
protein
3 (p<0.01, p<0.05, p>0.05)
KKK _
p=1.85E-05 .
T e (Case L Case
*CIO

MetaGP
Pathway p



Sets of Significant Pathways (p<0.01)

— Total: 819 pathways

P<0.01 ‘

Union(A,B,C,D,E,F,G)
W3: 199

1619
el - Pathway
The Other ( )
W3: 620
W7: 200 D: NYT+CUP F: NYT+CUP pathway

& NYT & CUP

G: NYT+CUP
W3:0
W7:0

A: NYT
W30 E: NYT&CUP
W7:0




Data Assimilation for
Biological Systems

Technology which “blends”
simulation models and
observational data “rationally”.

Peta FLOPS Computing for
Biomedical Research Applications




Application of Data Assimilation
Technology

<~ O O
General/lncomplete Y O 3
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25 2
= 2 o
<. O S5
. g’_) g
s 25
/ . / v 5 o
I o
-
o
*Discrepancy from reality
sLow predictability

Spuajg, yorym ABjouyos |




Prediction of Typhoon Trajectory

— by Simulation only. l

— by Data AssimilationL S

(Taken from NI, Japan) e . /- o




A First Step

Data Assimilation of EGF Receptor

Pathway Dynamic Model and SILAC
Proteome Time-Course Data




EGF Receptor Pathway Dynamic
Model in CSML using Cell Illustrator

XML format\

for dynamic
pathway
models )

Entities: 53
Processes:115

-O0MNEeCctors: ™23
Parameters: 63
HFPNe model on Cell Illustrator 3.0



List of Main Processes

Table 1: Biological facts obtained from the literature and assigned to processes in the HFPNe model in Figure 2. #1:
Corresponding processes in the HFPNe. #2: Corresponding sub-pathw ays in Figure 2.

Biological phenomena from experimental data in the literature #1 #2 Type of biological process Reference
Binding of EGF to EGFR induces the dimerization of the receptors resulting in T1 i Association [29]
autophosphorylation of the receptors. - ; rssociat on
T3 i Phos phor ylation
¢-Chl binds to the tyrosine-phos phorylated EGFR and simultaneously c-Chl is tyrosine phos phor yiated. T4 i Association [43]
T5 i Phos phor ylation
c-Chl catal yses ubiquitination of EGFR. T6 i Ubiquitination
The ubiquitinated EGFR is degraded bythe proteas ome/l ysos ome. T7 i Degradation
Va2 hinds to tyr osine-phos phor ylated EGFR viaits SH2 domain andis tyrosine phosphoryated by T8 ii Association [24][33][42]
EGFR. T9 ii Phos phor ylation
Va2 activates Racl by promoting the exchange of bound GDP for GTP. T10 ii Exchange [7
Activated R ac/Cdc42 induces activation of MEKKs. We model ed one MEKK as repr esentative of T11 ii Activation [10][21][28][
MEKKs that mediate p38MAPK phosphor yiati on.
Activated MEKK phosphor ylates MKK3/4/6/7. P hos phoryl ated MKK3/4/6/7 phos phorylate p38MAPK. T12 ii Phos phor ylation
We modeled MKK3/4/6/7 as one protein for simplification. 13 r Phos phor yiation
Grb2 associates with tyrosine-phos phoryl ated EGFR. T14 i Associati on [18][19]
Shc binds to the tyr osine-phos phor ylated EGFR. T15 i Associati on [35][37]
Shc is tyr osine phos phorylated and interacts with Grb2 T16 iii Phos phor ylation [40][41][46]
T17 iii Associati on
Sos1 binds to Grb2. T18 i Associati on [4]
Complexof Sosl associated with EGFR catalyzes Ras GTP/GDP exchange. T19 i Exchange [20]




Generalized State Space
Model

m. = f(mt_l,Wt,(g) System model

Y, = Hmt + & Observation model
M, : state vector at time t, f :simulation devise, t=1K T

yt : observation vector at time t, H : observation matrix,
2
& ~ N(0,07) : observation noise



State Space Model and HFPN

DA to obtain

P(M,,6]Y,)
M; ={m K ,m;}

YT :{yliK ,

Yr}

Using recursive estimation
algorithm: Particle Filter

/

N

For parameter
estimation, we
used 10,000
particles in this
study

le.

_/




Posterior distributions of the parameters P(@]Y,)

m3, True:1.9292 m9, True:1.5474 |

Initial value

2 3
k2, True:0.05 k3, True:0.5

n2 _n3i _n4a [1E 10 1h 2
s1, True:2.2 s3, True:1.4

2 3 2 b 1 2 3 1
m6, True:0.2511 mi, Irue:1.£20{




Observation Data:
Protein Quantification by LC-MS/MS

: MS
protein

LC s
Nano-
)

stable isotope / = @ &
13C

e

stable isotope
13C15N

oyt Blagoev B, Kratchmarova |, Kristensen DB, Steen H, Pandey A, Mann M: Stable
iIsotope labeling by amino acids in cell culture, SILAC, as a simple and accurate
approach to expression proteomics. Mol Cell Proteomics 2002, 1:376-386.



Pathway Decomposition
Too many (637?) parameters!

J




Data Assimilation Result




Preparing Hypothesis Models

Model 1 (original) L Hypothesizec
Model 2 ___, regulations
Model 3
Model\ /2 Model 10 (control)
Model 5 bviously worse model

Model 6  Model 7 Model 8 Model 9



Preparing Hypothesis Models

Model 1 Model 2 Model 3 Model 4 Model 5
MIK /\'J’ <>
B0 p3sMAPK < ' "ﬁ'\A -
MKP
S e
Model 6 Model 8 Model 9 Model 10
= control




Model Selection

Model Selection

better 4 —

=51

— —_— — Nagasaki, M., Yamaguchi, R.,
Yoshida, R., Imoto, S., Doi,
A., Tamada, Y., Matsuno, H.,
Miyano, S., Higuchi, T.
Genomic data assimilation for
estimating hybrid functional
Petri net from time-course
gene expression data.

- Genome Informatics. 17(1).

T = 46-61, 2006.

WOrse ' |

m1 m2 m3 md mS mé m7 m8 m9% mid

Models

=52

=53

Maximum Marginal Like lihood Score
-54

original



Preparing Hypothesis Models

Model 1 Model 2 Model 3 Model 4 Model 5
MK - <&
£ p38|v|/!ﬁ'< d - "§<}

MKP
i R o
Model 6 Model 7 Model 8 Model 9 Model 10
- - - - control
— —




Model Selection

Model3
Model7 Model6
Model9 Model8
——1 Hypothesized

Model6
Model9

____, reqgulations
Model5
Model7

Model8



Currently ...

Data assimilatiop” chnology is successfully
appliedtoa s ale simulation model and
ourse data.

Quantitative proteome

New hypotheses

Very recently ...
One hillion particles are proven
effective for parameter estimation

from short time-course data.

Nakamura, K., Yoshida, R., Nagasaki, M., Miyano, S., Higuchi, T.
Parameter estimation of in silico biological pathways with particle

filtering towards a petascale computing. Pacific Symposiw

63 Biocomputing. 14. In press.




Current Supercomputer is NOT Enough.
PETA FLOPS Computing!



Thank you for patience



