ETH Zurich – JST Workshop on Medical Research

15th – 16th of September 2008, ETH Zurich

Session 3

Predictive biomarker for molecular target drugs- proteomic and glycobiological approach

Kazuto Nishio, MD PhD

Department of Genome Biology Kinki University School of Medicine

Biomarkers Definition

Biomarkers are

a characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes,

or

pharmacologic responses to a therapeutic intervention'.

Biomarkers Definitions Working Group (2001) Clin. Pharmacol. Ther. 69, 89–95

The need for better predictive markers

The average response rate to drug treatment is not acceptable.

Slide: Paul Warning, Genentech (modified)

Molecular target therapy

Target: Molecules

Oncology New Drug Approvals (FDA) 2001-2006

Chabner AACR 2006

Molecular Targeted Drug 67 % (2015 > 75%) (27 % Patient Selection)

□ Non-Targeted Drug 33%

Approved Mol Target Drugs (small molecules and antibodies)

Drugs	Target	Application**	FDA	Japan
Rituxan	CD20	BCLL	1997	2001
Herceptin	Her2*	breast ca	1998	2001
Gleevec	Bcr-Abl/Kit*	CML, GIST	2001	2001
Iressa	EGFR *	NSCLC	2003	2002
Velcade	Proteasome	MM 2003年	2007	2007
Avastin	VEGF	CRC	2004	2008
Erbitux	EGFR *	CRC	2004	applied
Tarceva	EGFR *	NSCLC, panc ca	2005	2007
Nexavar	Multi-kinases *	RCC	2005	2007
Sutent	Multi-kinases *	GIST, RCC	2006	applied
Sprycel	Bcr-Abl/Src*	CML ^{**} , Ph+ALL	2006	applied
		K		

Dept Genome

Biomarkers for patient selection

Compounds	Target	Tumors	Diagnosis	
Herceptin	Humanized anti HER2 Ab	Overexpression of HER2	IH (Hercep test) FISH	
Rituxisan	Chimeric anti CD30 m-Ab	CD20 (+) B-cell non Hodking lymphoma	I H FCM	
Gleevec	bcr-abl / c- kit-TKI	1.CML 2. GIST with KIT (CD117)+g	Chromosomal test Gene analysis IH	
Irinotecan	Topo I inhibitor	NSCLC or ovarian ca. e.g.	Invader assay (UGT1A1gene polymorphism)	

Draft Preliminary Concept Paper — Not for Implementation

Drug-Diagnostic Co-Development Concept Paper

Draft — Not for Implementation

New, more informative trial designs

Approach: Pair <u>diagnostic with therapeutic</u> I dentify responders and non-responders Prevent toxicity Monitor response

Answer series of questions, e.g., Which dose is correct for which sub-population? Which sub-population should be treated?

Biomarker study for target based drugs

- Feasibility
- Power for prediction
- Sensitivity
- Accuracy : false positive e.g.

Search for biomarkers in surrogate tissue (circulating samples)

- 1. EGFR somatic mutation in circulating tumor cells in lung cancer
- 2. Gene expression profile in PBMC
- 3. Serum proteomics
- 4. Multiplex ELISA using bio beads
- 5. Glycoprofiling

EGFR mutation

Other Exon 19 del 13%.

2237_2251 del15; 2237_2254 del18; 2237_2255>T (complex); 2236_2250 del15; 2238_2255 del18; 2238_2248>GC (complex); 2238_2252>GCA (complex); 2239_2247 del9; 2239_2253 del15; 2239_2256 del18; 2239_2248TTAAGAGAAG>C (complex) 2239_2258>CA (complex); 2240_2251 del12; 2240_2257 del18; 2240_2254 del15; 2239_2251>C (complex); 2235_2252>AAT (complex)

Sensitivity of transfected cells with deletional mutation to EGFR-TKI

Dept Genome Biology

Impact of EGFR mutation on the response to EGFR-TKI (N=616)

Paez et al., Science 2004 Lynch et al., NEJM 2004 Pao et al., PNAS 2004 Huang et al., CCR 2004 Tokumo et al., CCR 2005 Mitsudomi et al., JCO 2005 Han et al., JCO 2005 Kim et al., CCR 2005 Cotes-Funes et al., Ann **Oncol 2005** Cappuzzo et al, JNCI 2005 Chou et al., CCR 2005 Taron et al., CCR 2005 Takano et al., JCO 2005

Analysis of circulating DNA

Detection of Epidermal Growth Factor Receptor Mutations in Serum as a Predictor of the Response to Gefitinib in Patients with Non – Small-Cell Lung Cancer

Hideharu Kimura,^{1,4,5} Kazuo Kasahara,⁵ Makoto Kawaishi,^{1,2} Hideo Kunitoh,² Tomohide Tamura,² Brian Holloway,⁶ and Kazuto Nishio^{1,3,4}

Clin Cancer Res 2006;12(13) July 1, 2006

Editorial

A Blood-Based Test for *Epidermal Growth Factor Receptor* Mutations in Lung Cancer

□□Commentary on Kimura et al., p. 3915

Daphne W. Bell and Daniel A. Haber

School of Medicine Dept Genome Biology Search for biomarkers in surrogate tissue (circulating samples)

- 1. EGFR somatic mutation in circulating tumor cells in lung cancer
- 2. Gene expression profile in PBMC
- 3. Serum proteomics
- 4. Multiplex ELISA using bio beads
- 5. Glycoprofiling

proteomics using LC-MS/MS

Identification of target proteins bind to EGFR-TKI

Base-peak Chromatograms of Chemical Pulldown Samples

Proteomic approach to detect biomarkers to predict gefitinib-response

PR vs. SD (Pre)

OS ~ G (1076.5 / 74.8) pre

 $R^2=0.73$

Mass Spectrometry to Classify Non–Small-Cell Lung Cancer Patients for Clinical Outcome After Treatment With Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors: A Multicohort Cross-Institutional Study

Fumiko Taguchi, Benjamin Solomon, Vanesa Gregorc, Heinrich Roder, Robert Gray, Kazuo Kasahara, Makoto Nishio, Julie Brahmer, Anna Spreafico, Vienna Ludovini, Pierre P. Massion, Rafal Dziadziuszko, Joan Schiller, Julia Grigorieva, Maxim Tsypin, Stephen W. Hunsucker, Richard Caprioli, Mark W. Duncan, Fred R. Hirsch, Paul A. Bunn Jr, David P. Carbone

Conclusion This MALDI MS algorithm was not merely prognostic but could classify NSCLC patients for good or poor outcomes after treatment with EGFR TKIs. This algorithm may thus assist in the pretreatment selection of appropriate subgroups of NSCLC patients for treatment with EGFR TKIs.

J Natl Cancer Inst 2007;99:838-46

	Training set	Validat	Validation sets		Control sets	
0	Italian A/Japan		5000 (Polish early
Outcome	A and B ($n = 139$)	Italian B ($n = 67$)	ECOG (n = 96)	Italian C ($n = 32$)	VU (n = 61)	stage ($n = 65$)
Classification from MALDI						
MS algorithm, No. (%)						
Good	105 (75.5)	39 (58.3)	69 (71.9)	20 (62.5)	41 (67.2)	44 (67.7)
Poor	33 (23.7)	27 (40.3)	27 (28.1)	12 (37.5)	20 (32.8)	21 (32.3)
Undefined	1	1	0	0	0	0
Overall survival						
HR (95% CI)	0.45 (0.19 to 0.63)	0.5 (0.24 to 0.78)	0.4 (0.24 to 0.70)	0.74 (0.3 to 1.6)	0.81 (0.4 to 1.6)	0.9 (0.4 to 1.9)
Log-rank P	<.001	.0054	<.001	.42	.54	.79
Median time to death, days (good/poor)	441/148	207/92	306/107	163/141	729/312	1430/1233
Time to progression						
HR (95% CI)	0.5 (0.23 to 0.74)	0.56 (0.28 to 0.9)	0.53 (0.33 to 0.85)	N/A	N/A	N/A
Log-rank P	.0031	.02	.007	N/A	N/A	N/A
Median time to progression, days (good/poor)	161/63	84/61	98/58	N/A	N/A	N/A
Multivariable analysis of						
overall survival†						
HR (95% CI)	ND	0.74 (0.55 to 0.99)	0.53 (0.30 to 0.94)	ND	ND	ND
Wald P	ND	.048	.03	ND	ND	ND

Table 3. Outcomes in the patient sets included in this analysis*

Multicohort Cross-Institutional Study

Study Design To distinguish prognostic and predictive biomarkers

Pneumonitis induced by gefitinib ILD: interstitial lung disease

Pretreatment

Comparison of chromatogram of typical ILD / non-ILD baseline samples

Dept Genome Biology

How to identify group-specific peptide signals *i-OPAL* approach

Application to the gefitinib ILD CCS

Profile chart of candidate marker signals

Distribution of 47 patients profiles using tentative signal set

(Case-Pre 11, Case-Post11, Control-Pre 12, Control-Post 13sample)

Search for biomarkers in surrogate tissue (circulating samples)

- 1. EGFR somatic mutation in circulating tumor cells in lung cancer
- 2. Gene expression profile in PBMC
- 3. Serum proteomics
- 4. Multiplex ELISA using bio beads
- 5. Glycoprofiling

Multiplexing with Colored Bead Sets

Bio-Plex TM ELISA Assay System

The levels of cytokines in plasma from NSCLC patients received gefitinib detected by BioPlex (Luminex)

		4.	5.	6.	7.	8.
100 Color Codes = Multiple Measurer 100 Simultaneous Tests With Color Separ	nents Microspheres as ation Molecular Carriers	Capturing the Target Molecule	Tagging the Reaction	Beads in a Fluid Stream	One Laser Excites Molecular Tags	Second Laser Excites Microsphere
		No.		X		
Using a two-dye method, Luminex produces 100 distinct bead sets. Bio-Plex uses these uniquic coded beads to identify assays in a single tube	ety color- multiple probes are bound to proved. the boad.	While suspended in a test sample, the bound probes collect molecules.	Fluorescently-labeled reporter tags bind to the sample molecule.	Precision fluidics align the beads in single file, and pass them through the lasers one at a time.	Reactions are measured for Fluorescence intensity and reported in real time.	Fluorescence intensity of the bead identifies the reaction.

The cytokine levels at pre-treatment in NSCLC patients

IL-13 IL-17 G-CSF GM-CSF TNF-a IFN-γ MCP-1 MIP-1b

		• 1161.51 ~		• 3/5 78	• 1305.13		
(pg/mL)	(pg/mL)	$(pg/mL) = {\circ} 1019.97 \simeq$	$(pg/mL) \approx \frac{6052.57}{6052.57}$	(pg/mL) ~ 500.25	(pg/mL) • 149.38	(pg/mL)	(pg/mL)
40 E +	8 E •	200	350g	³⁰ E	≈ 30 r •	200 F	300F
35	7 ह	•	300	25			250 •
30	6	150	240		25	150 .	
25	5 .	E	250	20	20		200
20	4	100	200	15	15	100	150
15	3		150		15	-	:
10	2	s. [100	10	10	so - •	100-
			50	5 .	5 :	•	50
			30			:	
0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01

The minimum detectable dose for each cytokine was 0.01mg/ml.

MIP-1b levels between patients with and without gefitinib-induced dermatitis

Plasma MIP-1B (pg/mL)

MIP-1b is a candidate for predictive marker to predict skin toxicity.

Kimura et al. Lung Ca, 2005 de Biologu

Bio-Plex[™] ELISA Assay System for angiogenesis inhibitors

 Angio-1 panel (angiopoietin-2, follistatin, G-CSF, HGF, IL-8, leptin, PDGF-BB, PECAM-1, VEGF)

2. Angio-2 panel
(IL-6R, MMP-9, TIMP-1, TIMP-2, Endostatin, P-selectin, ICAM-1, VCAM-1, Tie-2, PAI-1, MIF, uPAR)

Search for biomarkers in surrogate tissue (circulating samples)

- 1. EGFR somatic mutation in circulating tumor cells in lung cancer
- 2. Gene expression profile in PBMC
- 3. Serum proteomics
- 4. Multiplex ELISA using bio beads
- 5. Glycoprofiling

Current situation of glycomics

The bottleneck of current glycomics research is time-consuming and non-precise purification using <u>column chromatography</u>.

Concept of BlotGlyco

Samples Including released glycans (Ex.Glycoproteins Serum, plasma Cells,Tissue treated by PNGase)

Speedy, one-pot solid phase process to obtain perfectly purified and labeled glycan.

Reaction mechanism of BlotGlyco

Applying BlotGlyco into crude mixture

*Hz: hydrazide group (-NHNH₂)

Aldehyde of reducing end of glycan is bound to hydrazide of BlotGlyco beads. (covalent bonding)

endure harsh wash. Every impurities even peptides can be completely removed.

Quantitative reliability of BlotGlyco

Correlation between concentration of glycan and peek area *Maltoheptaose solution was used.

*Detectable from 0.1 mM solution (2 pmol Maltoheptaose) *Standard curve shows linearity in the range of 0.1 mM to 5 mM.

N-glycan profile obtained from 5µL human serum

49 kinds of N-glycans were detected from 5μ L human serum.

Identification of predictive biomarkers for response to trastuzumab using glycobiological analysis

Serum samples of breast cancer patients received with trastuzumab monotherapy

Trastuzumab (Herceptin): anti-HER2 Ab

Representative data of plasma *n*-glycan profile measured using MALDI-TOF-MS

Dept Genome Biology

(Left)

Expression of plasma N-glycan and clinical response.

The expression of plasma 2534 m/z N-glycan was significantly lower in patients with progressive disease (PD).

(Right)

Kaplan-Meier curve of high (detectable) or low (not detectable) plasma N-glycan groups for progression-free survival (PFS) after trastuzumab treatment.

