

The case of Gd-doped GaN

KLAUS H. PLOOG

Paul Drude Institute for Solid State Electronics, Berlin, Germany www.pdi-berlin.de

Outline

- 1. Motivation and previous work
- 2. Growth of Gd-doped GaN
 - Growth conditions and Gd incorporation
 - Structural properties
- 3. Magnetic properties of Gd-doped GaN
 - Magnetic hysteresis and FC and ZFC measurements
 - Colossal magnetic moment per Gd atom
 - XLD and XMCD measurements
 - Magneto-photoluminescence
- 4. Empirical model for colossal magnetic moment
 - Empirical model
 - Magnetic phases and anisotropy
 - Influence of defects on ferromagnetism
- 5. Conclusions

Spintronics

Generation, conservation, manipulation of coherence of electronic states and of their magnetic spin properties

Electrical injection of polarized carrieres

Ferromagnetic semiconductor, metal or half-metal?

Magnetic semiconductors

Europium Chalcogenides (EuO, EuS, EuSe)

S. Von Molnar, S. Methfessel "Giant negativef magnetoresistance in ferromagnetic Eu1-xGdxSe" J. Appl. Phys. 38 (1967) 959

L. Esaki, P. Stiles S. von Molnar "Magneto internal field emission in junction of magnetic insulators" Phys. Rev. Lett. 19 (1967) 852

P. Kasuya and A. Yanase "Anomalous transport phenomena in Eu-chalcogenide alloys" Rev. Mod. Phys. 40 (1968) 684

E. L. Nagaev "Physics of Magnetic Semiconductors" (Mir, Moscow, 1983)

II-VI compounds alloyed with Mn(Cr)

[(Cd,Mn)Te, (Zn,Mn)Se]

J. K. Furdyna and J. Kossut (Eds.) Semiconductors and Semimetals, Vol. 25 (Academic Press, New York, 1988)

IV-VI compounds alloyed with Mn

[(Pb,Sn,Mn)Se]

T. Story, H. H. Galazka, R. B. Frankel, and P. A. Wolf, Phys. Rev. Lett. 56 (1986) 777

Theoretical models

Dietl et al. [Science 287(2000)1019] proposed a Zener-like exchange mediated by itinerant holes. The transition-metal (TM) ions provide a local spin, and the delocalized holes mediate a RKKY-like interaction between the localized TM moments resulting in ferromagnetic behavior.

Based on this model, high Curie temperatures were predicted for Mn- doped wide-gap semiconductors with high hole concentrations.

However: Experimental results obtained by different groups from TMdoped wide-gap semiconductors are controversely discussed and often not reproducible

In general the actual exchange mechnism in ferromagnetic semiconductors is still a matter of controversy.

K. Nielsen, S. Bauer, M. Lübbe, S.T.B. Goennenwein, M. Opel et al.

"Ferromagnetism in epitaxial (Zn,Co)O films grown on ZnO and Al_2O_3 " Phys. Status Solidi A203 (2006) 3581

T. Fukumura, H. Toyosaki, and Y. Yamada

"Magnetic oxide semiconductors" Semicond. Sci. Technol. 20 (2005) S103

S. J. Pearton, W. H. Heo, M. Ivill, D. P. Norton and T. Steiner

"Dilute magnetic semiconducting oxides" Semicond. Sci. Technol. 18 (2004) R59

S. A. Chambers and R. F. C. Farrow

"New possibilities for ferromagnetic semiconductors" MRS Bulletin 28 (10) (2003) 729

Theoretical models:

In addition to the proposal of Dietl et al., the first-principle calculations of Katayama-Yoshida et al. [Semicond. Sci. Technol. 17 (2000) 377] have indicated that TM-doping of GaN should lead to ferromagnetic material.

Experiments:

Numerous attempts were made to synthesize single-phase GaN alloyed with Mn, Cr, Fe, Co, V.....

For a review see: A. Bonanni, Semicond. Sci. Technol. 22 (2007) R41

The experimental results obtained by different groups from TM-doped GaN are a matter of controversy (insulating material, precipitation, phase separation, spinoidal decomposition).

Rare-earth (RE) doping of GaN

- Sharp RE intra-f-shell optical transitions allow light emission in the visible to infrared spectral range
 - Eu-doped GaN \rightarrow 623 nm emission
 - Er-doped GaN \rightarrow 1.55 µm emission
- Isovalent RE³⁺ ions on Ga lattice sites form electrically inert centers (no deep gap states)
- Ref:
 P. N. Favennec et al., Electron Lett. 25 (1989) 718

 Y. Q. Wang and A. J. Steckl, Appl. Phys. Lett. 82 (2003) 402

 J. S. Filhol et al., Appl. Phys. Lett. 84 (2004) 2841
- Magnetic coupling of partially filled 4f-orbitals of RE³⁺ ions possibly weaker than d-orbitals in transition metals
- Gd has both partially filled 4f and 5d orbitals
 → new coupling mechanism?

Ref: M. Hashimoto et al., Jpn. J. Appl. Phys. 42 (2003) L1112 N. Teraguchi et al., Solid State Commun. 122 (2002) 651

Outline

- 1. Motivation and previous work
- 2. Growth of Gd-doped GaN
 - **Growth conditions and Gd incorporation**
 - Structural properties
- 3. Magnetic properties of Gd-doped GaN
 - Magnetic hysteresis and FC and ZFC measurements
 - Colossal magnetic moment per Gd atom
 - XLD and XMCD measurements
 - Magneto-photoluminescence
- 4. Empirical model for colossal magnetic moment
 - Empirical model
 - Magnetic phases and anisotropy
 - Influence of defects on ferromagnetism
- 5. Conclusions

- Reactive (NH₃) molecular beam epitaxy (R-MBE)
- 4N (99,00%) Gd ingots from Stanford Mater. Corp.,
- $T_e = 950 1300^\circ$ C (\rightarrow below melting point of Gd)
- 6H-SiC(0001) substrates, $T_s = 810^{\circ}$ C, no buffer layer
- Growth rate = 0.6µm/hr
- (2 x 2) surface reconstruction
- Atomically flat surface with monolayer steps
- Unity sticking coefficient of Gd on GaN(0001) up to 10¹⁹ cm⁻³

Gd-doped GaN layers are insulating ("dilute magnetic dielectric")

Gd concentration vs Gd/Ga flux ratio

Unity sticking coefficient of Gd up to 10¹⁹ cm⁻³

SIMS depth profiles of Gd-doped GaN layers

Flat Gd doping profiles

AFM surface image of GaN:Gd (1x10¹⁹ cm⁻³)

rms roughness: 0.14 nm
ptv roughness: 3 nm
} 1 µm x 1 µm scan

X-ray diffraction (ω – 2 θ scan)

300" width for symmetric (0002) reflection900" width for asymmetric (1105) reflection

X-ray diffraction (ω – 2 θ **)**

No secondary phase detected

Bright-field cross-sectional TEM

Dark lines arise from screw dislocations Contrast at interface due to dislocation loops

Outline

- **1. Motivation and previous work**
- 2. Growth of Gd-doped GaN
 - **Growth conditions and Gd incorporation**
 - Structural properties
- 3. Magnetic properties of Gd-doped GaN
 - Magnetic hysteresis and FC and ZFC measurements
 - Colossal magnetic moment per Gd atom
 - XLD and XMCD measurements
 - Magneto-photoluminescence
- 4. Empirical model for colossal magnetic moment
 - Empirical model
 - Magnetic phases and anisotropy
 - Influence of defects on ferromagnetism
- 5. Conclusions

Magnetic hysteresis ([Gd] = 6 x 10¹⁶ cm⁻³)

Magnetization saturates at high fields \Rightarrow Ferromagnetism

Superposition of two loops with different H_c and M_r at 2 K ? \rightarrow above 10 K phase with larger H_c and M_r disappears

Details of hysteresis curves

Arrows indicate value of M_r

T dependence of FC and ZFC magnetization

Double-step structure in FC curve below 70 K Step at 10 K indicates phase with larger H_c and M_r

Difference between FC and ZFC magnetization

Inset: Magnetization vs T at 100 Oe

Average magnetic moment per Gd atom

Average moment at 2 K per Gd atom is as high as 4000 μ_B

Values are obtained from the measured magnetization and the measured concentration

Saturation magnetization vs [Gd]

Regime I : M_s increases with [*Gd*] up to percolation threshold Regime II: M_s is independent of [*Gd*] and ρ_{eff} decreases with [*Gd*] Regime III: M_s increases again with [*Gd*] and ρ_{eff} approaches saturation

XANES and XLD measurements from Gd-doped GaN

Probing of Gd L_3 edge in addition to Ga K edge is only possible for high Gd concentrations

XANES = X-ray absorption near edge spectra

XLD = X-ray linear dichroism

XLD spectra at Gd L₃ edge

Comparison of measurements with simulations for Gd on Ga sites and on N sites (antisites)

Normalized XANES and XMCD spectra of GaN:Gd

Difference spectra were taken in magnetic field of 6 T

Magneto-photoluminescence

+1/2>

-1/2>

-3/2>

+3/2>

+1/2>

-1/2>

+3/2>

-3/2>

σ

PL spectra of all samples dominated by (D°,X) transition due to O donors B = 10 T in Faraday geometry (B | | c)

Polarization of sample B has opposite sign as compared to the reference sample

Average Gd to (D°,X) distance $\approx 12 \text{ nm}$ \Rightarrow Gd has a long-range influence on the GaN matrix

Temperature and field dependence of PL polarization

Relative change of the polarization increases with N_{Gd} Polarization becomes negligible only above 16 K (=1.4 meV) \Rightarrow Gd-induced energy splitting > 1.4 meV

Outline

- 1. Motivation and previous work
- 2. Growth of Gd-doped GaN
 - Growth conditions and Gd incorporation
 - Structural properties
- 3. Magnetic properties of Gd-doped GaN
 - Magnetic hysteresis and FC and ZFC measurements
 - Colossal magnetic moment per Gd atom
 - XLD and XMCD measurements
 - Magneto-photoluminescence
- 4. Empirical model for colossal magnetic moment
 - Empirical model
 - Magnetic phases and anisotropy
 - Influence of defects on ferromagnetism
- 5. Conclusions

Empirical model for origins of colossal moment

Gd atoms polarize the matrix

 $p_e = p_{Gd} + p_m v N_o/N_{Gd}; v = 1 - exp(-v N_{Gd})$

 $p_{\rm e}$ decreases as N_{Gd} is increased \rightarrow experimentally observed

Overlap of spheres \rightarrow ferromagnetic coupling

 T_c increases with $N_{Gd} \rightarrow$ experimentally observed

Details of empirical model

Saturation magnetization

$$M_{s} = p_{Gd} N_{Gd} + p_{0} \tilde{v} N_{0} + p_{1} N_{0} \sum_{n=2}^{N_{Gd}} n \tilde{v}_{n}$$

 N_0 = concentration of matrix atoms per unit volume

v = volume of each sphere

$$\widetilde{v}_n = \frac{\left(vN_{Gd}\right)^n}{n!} e^{-vN_{Gd}} =$$

Volume fraction of the regions contained within *n* spheres

Average effective magnetic moment per Gd atom

$$p_{eff} = p_{Gd} + p_1 N_0 v + [p_0 - (p_{0+} p_1 N_{Gd} v) e^{-vN_{Gd}}] \frac{N_0}{N_{Gd}}$$

Fit of experimental M_s vs N_{Gd} data

 $p_{Gd} = 8 \ \mu_B$

Fit parameter	2 K	300 K
	p ₀ = 1.1 x 10 ⁻³ μ _B	8.4 x 10 ⁻⁴ μ _Β
	p ₁ = 1.0 x 10 ⁻⁵ μ _B	≈ 0
	r = 33 nm	28 nm

Three regimes in M_s vs N_{Gd} curve:

I. Spheres are separated and p_{eff} has maximum value

ightarrow M_s increases with N_{Gd} as $\tilde{\nu}$ grows with N_{Gd}

II. N_{Gd} has crossed percolation threshold and $p_1 \approx 0$

 $\rightarrow M_{s}$ independent on N_{Gd}

 $\rightarrow p_{eff}$ decreases with N_{Gd}

III. Entire GaN matrix is polarized

 \rightarrow First term of equation dominates, i.e. M_s increases with N_{Gd}

 \rightarrow p_{eff} starts to saturate (value by amount of p₁N₀v larger than 8 µB)

Colossal Magnetic Moments

Average moment per Gd atom is as high as 4000 μ_B Fit parameter 2 K: $p_m = 1.1 \times 10^{-3} \mu_B$, r = 33 nm300 K: $p_m = 8.4 \times 10^{-4} \mu_B$, r = 28 nm

FC and ZFC curves from Gd-doped GaN

Temperature ranges 1,2,3 refer to three distinct magnetic contributions Contribution 3 determines the Curie temperature

FC curves from GaN with different Gd concentration

Curves are normalized to 100 K values

Relative contribution of 70 K transition is reduced with Gd increase (see inset)

T-dependence of remance and saturation magnetization of Gd-doped GaN

Remanence shows two-step behavior at 10 and 70 K similar to the FC curves Saturation magnetization shows only one step at 10 K

Magnetization curves of Gd-doped GaN measured in two perpendicular directions

Saturation magnetization is smaller along hard axis

Anisotropy energy for out-of-plane measurements is two times higher

Influence of defects on ferromagnetism in Gd-doped GaN

Do intrinsic and/or extrinsic defects play the role of "mediators" in the inter-impurity exchange coupling between the Gd-ions ?

Experiments:

Focussed ion beam (FIB) implantation of 300 keV Gd-ions into GaN layers

Comparison of magnetic properties of as-implanted and annealed GaN:Gd samples

Theoretical model for intrinsic ferromagnetism without free carriers:

G. Cohen et al.

"Vacancy mediated ferromagnetic interaction in TiO₂ doped with magnetic ions" J. Appl. Phys. 101 (2007) 09H106

Magnetization loops from Gd-implanted GaN

Inset shows loops corrected for diamagnetic contribution from substrate

Magnetic moment of Gd in implanted GaN

Value of magnetic moment per Gd atom derived from observed remanent magnetization big change with temperature Insets show observed magnetization as function of Gd concentration

FC and ZFC magnetization in Gdimplanted GaN

Sample A-1: 2 x 10¹⁶ cm⁻³ Sample A-3: 1 x 10²⁰ cm⁻³

Effect of annealing on magnetization of Gd-implanted GaN (lower dose)

300 K magnetization curves before and after annealing (RTA) Inset shows Fc and ZFC magnetization measured at 100 Oe

Effect of annealing on magnetization of Gd-implanted GaN (higher dose)

300 K magnetization curves before and after annealing (RTA)

Inset shows magnetization loop after annealing but before subtracting diamagnetic contribution from substrate

Outline

- 1. Motivation and previous work
- 2. Growth of Gd-doped GaN
 - **Growth conditions and Gd incorporation**
 - Structural properties
- 3. Magnetic properties of Gd-doped GaN
 - Magnetic hysteresis and FC and ZFC measurements
 - Colossal magnetic moment per Gd atom
 - XLD and XMCD measurements
 - Magneto-photoluminescence
- 4. Empirical model for colossal magnetic moment
 - Empirical model
 - Magnetic phases and anisotropy
 - Influence of defects on ferromagnetism
- 5. Conclusions

Conclusions

- Gd-doped GaN films grown by R-MBE are ferromagnetic with Curie temperatures above 300 K
- Ferromagnetic Gd-doped GaN films are insulating and exhibit (D⁽⁰⁾,X) features in photoluminescence
- Colossal magnetic moment per Gd atom is enhanced in Gd-implanted GaN films
- Structural defects may play important role as 'mediators' in the exchange coupling between the Gd impurities
- Empirical model based on polarisation of GaN matrix by Gd impurities explains
 - observed colossal magnetic moment,
 - observed co-existence of two ferromagnetic phases,
 - observed dependence of saturation magnetization on the orientation of the magnetic field
- More sophisticated theoretical models are needed to understand the mechanisms of the inter-impurity exchange coupling in 'dilute magnetic dielectrics' where free carriers are absent (see recent models for Co-doped TiO₍₂₎)

Acknowledgement

Supported by German Federal Ministry for Education and Research

Contributors

S. Dhar A. Ney L. Perez V. Sapega A. Trampert A.D. Wieck (Uni. Bochum) Ms. I. Schuster