Terahertz sensing and imaging based on carbon nanotubes:

Frequency-selective detection and near-field imaging

Yukio Kawano

RIKEN, JST PRESTO

ykawano@riken.jp

http://www.riken.jp/lab-www/adv_device/kawano/index.html

Outline

1. THz detector:

Frequency-tunable THz detector using a carbon nanotube

2. Near-field THz imaing:

On-chip near-field THz probe integrated with a detector

<u>3. THz imaging application to semiconductor research</u> Simultaneous imaging of THz radiation and voltage

<u>4. Summary</u>

2DEG (Electro

Voltage

What is terahertz (THz) wave?

Detector Source, Imaging, Spectroscopy.... All basic components remain undeveloped

Why can a carbon nanotube be used as a THz detector?

Photon-assisted tunneling: Tien-Gordon model

Experimental setup

Transport properties (without THz irradiation)

THz irradiation effect: THz frequency dependence

Y. Kawano et al., J. Appl. Phys., 103, 034307 (2008)

Satellite currents by THz irradiation

Linear dependence on THz-photon energy

Evidence for: THz photon-assisted Tunneling (Frequency-tunable THz detection)

THz irradiation effect: THz power dependence

Performance as a THz detector

Earlier highly sensitive detector: < 0.3K

Future improvement

(1) Sensitivity

Readout of a single THz-excited electron by quantum point contact

(2) Frequency tunability

Fabrication of a double quantum dot

<u>(3) THz camera</u>

Two-dimensional array of many carbon natnobues

N. R. Franklin *et al.*, APL **81**, 913 (2002)

Outline

1. THz detector:

Frequency-tunable THz detector using a carbon nanotube

<u>2. Near-field THz imaing :</u>

On-chip near-field THz probe integrated with a detector

3. THz imaging application to semiconductor research:

Simultaneous imaging of THz radiation and voltage

<u>4. Summary</u>

^C2DEG (THz detector)

Voltage

2DEG (Sample)

THz radiation

2DEG (Electro

THz imaging applications

Nondestructive Inspection

Defect inspection of space shuttles

• Medicine

Imaging of cancer cells

Astronomy

Far-infrared image of Magellanic clouds

• Materials Science

Semiconductor Superconductor Organic conductor Carbon nanotube etc.

Towards improvement in spatial resolution:

Near-field technique

1) Aperture type: Small aperture (tapered optical fiber or wave guide)
 2) Apertureless type: Small scatterer (STM/AFM probe)

Why is the development of near-field THz imaging difficult?

- Lack of high transmission wave line
- Low sensitivity of commonly used detectors

Several pages have been deleted because they contain unpublished data.

Outline

1. THz detector:

Frequency-tunable THz detector using a carbon nanotube

2. Near-field THz imaing:

On-chip near-field THz probe integrated with a detector

<u>3. THz imaging application to semiconductor research :</u> Simultaneous imaging of THz radiation and voltage

<u>4. Summary</u>

^C2DEG (THz detector)

Voltage

2DEG (Sample)

THz radiation

2DEG (Electro

THz imaging application to materials science

THz imaging application to materials science

Combined system of a THz microscope and an electrometer

Y. Kawano et al., Phys. Rev. B 70, 081308(R) (2004).

Electrometer, Sample, THz detector: fabricated from GaAs/AIGaAs heterostructure wafers

Motivation: Electron density mapping for each Landau level

Our technique:

Combination between THz microscope and electrometer

THz imaging --- Spectroscopic information
Voltage imaging --- Transport information

Combined system of a THz microscope and an electrometer

Electrometer, Sample, THz detector: fabricated from GaAs/AIGaAs heterostructure wafers

Scanning electrometer

Imaging of voltage distributions

Y. Kawano et al., Appl. Phys. Lett. 84, 1111 (2004). Y. Kawano et al., Appl. Phys. Lett. 87, 252108 (2005).

Mapping of voltage & THz cyclotron emission

Y. Kawano et al., Phys. Rev. B 70, 081308(R) (2004).

Separate distributions of ground-state and excited-state electrons

Ionized impurity scattering

Period: 0.05~0.2µm

Acoustic phonon scattering

Drift velocity $E/B \times Scattering$ time τ

 $=3 \times 10^3 \,(\text{m/s}) \times 10 \sim 100 \,(\text{ns})$

=<mark>30~300μm</mark>

Macroscopic size effect of THz emission images

Y. Kawano et al., Phys. Rev. Lett. 95, 166801 (2005).

(Length: 4mm)

Size effect arising from a long equilibrium length of excited electrons

Future perspective: Research on Graphen with Near-field THz Imaging

K. S. Novoselov et al., Nature **438**, 7065 (2005)

Summary

(1) Carbon nanotube THz detector (2) On-chip near-field THz probe 5.0 4.5 Drain 4.0 3.5 4.2THz 0.5 Current (pA) Source Deleted image SWNT 2.5THz 600 nm 1.6THz 1.5 1.0 1.4THz 0.5

(3) Simultaneous imaging of THz radiation and voltage

THz off

-0.80 -0.75 -0.70 -0.65 Gate voltage (V)

0.0

