

Japan-China-Korea Green Technology Forum, 14 March 2012, JST Tokyo Headquarters, Tokyo, Japan

Water Footprinting for Sustainable Development and Wise Management of Global Water

Taikan OKI

Institute of Industrial Science, The University of Tokyo

special thanks to

Drs. Naota Hanasaki (NIES) and Yadu Pokhrel

Conventional Water Resources Assessment

Potentially Available Water Resources per Capita in 2000

Virtual Water Balance in Countries (m³/c/y) in 2000

- •7 out of top 10 importing countries are seriously poor in water resources.
- •7 out of top 10 exporting countries are rich in water resources.
- •Denmark (10) and India (18) are water stressed but exporting RW in net.

World Water Resources Considering Virtual Water Trade

Potentially Available Water Resources per Capita in 2000

Water Resources Assesment Considering VW trade

22 Countries were classified into "seriously stressed" in 2000 by conventional water resources assessment.

15

Virtual Water Transfer

North to South: <u>52 billion</u> m³ yr⁻¹

Huang-huai-hai → Southeast 13
Huang-huai-hai → South-central 13
Northeast → South-central 13
Northeast → South-central 13

Real Water Transfer

South to North: 43 billion m³ yr⁻¹

South to North Water Transfer Project, SNWTP
East Route of SNWTP 15

Middle Route of SNWTP 13

West Route of SNWTP

(Source: Liu et al., 2008, *Nature*. Courtesy from Prof. Dr. Junguo Liu, Beijing Forestry University, China)

Can we quantify water withdrawals by sources?

- **♦** The source of evapotranspiration
 - *** Precipitation**
 - *** Irrigation water**
 - >Stream flow
 - > Reservoirs and ponds
 - > Renewable groundwater
 - **≻**Fossil groundwater

Low environmental impact Sustainable Low opportunity cost

High environmental impact Less-sustainable High opportunity cost

model

Step 1

Global water resources model H08

Requirements

- 1.Simulate both water availability (streamflow) and water use at daily-basis
- 2.Deal with interaction between natural hydrological cycle and anthropogenic activities3.Applicable for future climate change simulation

Enhancement of the H08 model

Global flows of virtual water export

Virtual water export (total)

Total 545km³ yr⁻¹

Virtual water export (irrigation)

Total 61km³ yr⁻¹

Virtual water export (Nonlocal/Nonrenewable Blue Water)

Total 26km³ yr⁻¹

model

Step 2

MODELS: MATSIRO & H08

Slide 14

- Land Surface Models (LSMs) are designed to be coupled with GCMs
 - No Human Impacts (HI) representation
- Numerous Global Hydrological Models (GHMs) with HI representation exist, but
 - Mostly designed for offline simulations
 - Simple ET parameterizations (energy balance not considered)
 - Vegetation dynamics/Carbon cycle not accounted

H08: Hanasaki et al. (2008a, 2008b)

- ✓ Land surface hydrology scheme is a simple **Bucket Model**
- **Vegetation**: accounted implicitly

MATSIRO: Takata et al. (20003)

- Further, new irrigation scheme for MATSIRO LSM is developed
- Water table dynamics and a newly developed pumping

東京大学

Synthesized Global Water Cycle

Historical Reservoir Storage & Irrigated Areas

- Reservoir storage and irrigated areas largely increased from 1950s
- ☑ 1950—2000 simulation is conducted:
 - ➡ Simulations: MAT-NAT-NCC (no HI), MAT-HI-NCC (with HI)
 - Forcing data: NCC (Ngo-Duc et al., 2005)
 - Historical Reservoirs/Land Use Change/Irrigated Areas Data:
 - ✓ Compiled from various sources: time-varying gridded datasets

Sea Level Change: Anthropogenic TWS Contributions

Sea Level Rise (mm yr-1)

Other factors that potentially affect sea level change:

- √ Land use change/deforestation: partly accounted by land use change data
- ✓ Wetland drainage, atmospheric water content change: relatively small
- √ Various factors are not fully <u>independent</u>: coupled <u>land-atmosphere simulations</u>

1961-2003

Pokhrel, Ye, et al.: Anthropogenic terrestrial water storage contributions to global sea level change, in Preparation.

1990

 $_{2000}^{-3}$ GW: +0.99 \pm 0.07 mm/yr Dam: -0.39 \pm 0.02 mm/yr

TWS: $-0.10 \pm 0.05 \, \text{mm/yr}$

IRR: +0.03 mm/yr

Net: $+0.53 \pm 0.08 \,\text{mm/yr}$

1961-2003 SLC:

Net: +0.74 (IPCC:+0.7) mm/yr

1993-2003 SLC:

Net: +1.50 (IPCC:+0.3) mm/yr

1993-2003

model

Step 3

Groundwater Pumping Scheme

A thick bottom layer (90m) is added that acts as a deep groundwater aquifer and serves as a **source of water for pumping**

Unsaturated Soil:

$$\overline{P + I - ET - R_{gw} - Q_s} = 0$$

Groundwater Aquifer:

$$R_{gw}$$
 - GW_{pt} - Q_{gw} = S_{y} . $\Delta S/\Delta t$
 R_{gw} = G_{f} - C_{f}

The first fully integrated
Surface Water /
Groundwater / Human
Impacts model within the
framework of global LSM

Global Groundwater Depletion

- ✓ Both <u>withdrawal</u> and recharge are simulated
- √ Groundwater depletion is estimated as the difference of withdrawal and <u>recharge</u>

Global total ~370 km³/y

Wada et al, 2010: ~290 km³/y

100

150

200

20

300

Groundwater Use: Validation in US Aquifers

Almost 30% of GW withdrawals for irrigation in the US.

~97% of GW withdrawals from the aquifer are used for irrigation.

Groundwater Depletion (High Plains Aquifer)

Figure 2. Cumulative change and total ground water in storage in the High Plains aquifer, predevelopment to 2007 (modified from McGuire, 2006).

USGS reports considerable decline in groundwater storage/levels in recent years.

Remarks

- **◆Integrated model of natural hydrology & anthropogenic activities is under development.**
 - ***** Capable of assessing the source and path of water withdrawals for agricultural productions
 - ***** Can assess non-sustainable water usages
- **♦** Human activities are changing the hydrological cycles even on the global scale:
 - ** Storing in artificial reservoirs, exploiting fossil ground water, and the changes terrestrial water storages are changing the sea level.

