State observers in real-time feedback control

> plant

feedback controller —

Based on:
* Model of plant intrinsic dynamics and exogenous disturbances,
« Knowledge of (noisy, partial) measurement record over some past time interval,

Goals:
* Predict statistics of possible future measurements as accurately* as possible,

» Utilize feedback to alter these statistics in desired ways.

Controller can maintain jointly sufficient statistics of the past measurement records, updated
recursively: the information state. In the Kalman filter, e.g., the conditional mean and variance
are sufficient statistics for a Gaussian posterior probability distribution on the plant coordinate.

*The most common — but not unique — measure of accuracy is mean-square error.



Quantum filtering: p as the information state

> plant

Quantum measurement-based feedback:

Information state < p,

Recursive filter <> Stochastic Master/Schrodinger Equation

In the canonical design problem, the plant (S,L,H) is given and we are free to choose a
specific way of monitoring the output fields (e.g., homodyne or photon counting) and to
design a control law with real-time actuation of plant input fields and/or adjustable
parameters in the plant Hamiltonian

The usual, unconditional Master Equation for the plant can be viewed as the “open-loop’
Master Equation

If we implement our measurement-feedback scheme and then re-average over all the
noises, we should (formally speaking) obtain a “closed-loop” Master Equation with
different properties (although this is not generally feasible in practice)
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Quantum filtering & measurement-feedback control

L. Bouten, R. van Handel and M. R. James, SIAM Review 51, 239 (2009); math.PR/0606118
L. Bouten and R. van Handel, math-ph/0511021

Ité amplitude-quadrature homodyne Stochastic Master Equation /
Kushner-Stratonovich Equation:
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“predictor” — the unconditional ME  “corrector” — innovation term

e (S,L,H) model has n input-output channels
e We are monitoring channel 1 with quantum efficiency n

AW, = dy, —nTe[(L1+L)pdt,  dys = Inom dt
1
Dlep = cpc’ = 5(c'ep+pcle),  Hdp=cp+pc’ — Trl(c+ cPplp

For least-squares-optimal recursive filter, dW, is Gaussian white with variance dt¢

“ Themdt ~ ATe[(Ly + LY)ps] dt +dW; 7



Coding and continuous syndrome measurement

Continuous-time “relaxations” of QEC (Ahn, Doherty and Landahl, PRA 65, 042301, 2002)

e Encode state in a stabilizer code

e Continuous QND measurement of syndrome

Pedagogical example: three-qubit bit flip code
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Continuous syndrome measurement:

e constant qubit-cavity couplings
* cw coherent-state laser probes
* homodyne detection




State observer — error-state observer
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Goal:
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measurement should yield full information on E but none on encoded state
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‘Error-state graph’ for the bit-flip code
M =2QQ3Q24&1 Mo =221 4

e Continuous QND syndrome measurement = Markov jump dynamics for error state
e Mapping of error state to syndrome is degenerate




Error-state tracking with a Wonham filter

Ramon van Handel and HM, quant-ph/0511221
Assertion (numerically testable via comparison to SME): optimal filter for the error

state can be derived as a Wonham filter (Wonham, 1965) for the induced Markov

jump process of the error state
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e nonlinear filter, much studied in “hybrid stochastic” control theory

Filter stability results: P. Chigansky and R. van Handel, “Model robustness of finite state nonlinear filtering
over the infinite time horizon,” Ann. Appl. Probab. 17, 688 (2007).



Error-state graph for the five-qubit code

XXIYZ e 4°=1024 error states
IXIYT . YXIYZ (I,X,Y,Z for each qubit)
IXIVX XTIV e 3x5=15 edges/state
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Jump dynamics of the error state

Continuous syndrome measurement localizes the error

state; bit-flip decoherence induces jump-like transitions

Finite measurement strength/sensitivity gives rise to

detection delay and quiescent fluctuations




Purity of conditional distribution for the error state

maximize (Y. |vo)

“know E as well
as possible”

entropy or purity of

|::> conditional distribution

for the error state

e |If we know the error state with certainty we can recover perfectly

e Largest conditional probability max{p.} directly related to decoded fidelity

e Purity lost with time because of multiple errors within detection delay

e Purity not monotonic because of transitions and quiescent fluctuations

§ = max;{p;/ Prld;]} “holds” future supremum of max({p,}




Simulation results for symmetric Pauli decoherence

* Protocol: when data is “recalled,” wait for max{p,} to approach & and then decode

e Further work required to derive optimal decision policy




Quantum memory with separated control strategy
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The cost of a correction strategy balances our conflicting goals:

Jol{Un, (.} = P[Wrong syndrome at time 7| + C E[#{n : ¥, < 7}].

If C' > 0 is large, then we give more weight to minimizing the total
number of corrections. When C > 0 is small, we give more weight to
being in the correct syndrome at the readout time.






Ramon van Handel



Quantum memory with separated control strategy
HM (and R. van Handel), New J. Phys. 11, 105044 (2009)
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Spontaneous phase switching in cavity QED
P. Alsing and H. J. Carmichael, Quantum Opt. 3, 13 (1991)
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Feedback control: the Mollow doublet
J. E. Reiner, H. M. Wiseman and HM, Phys. Rev. A 67, 042106 (2003)



‘Retroactive’ quantum jumps

P. Alsing and H. J. Carmichael, Quantum Opt. 3, 13 (1991)
HM and H. M. Wiseman, Phys. Rev. Lett. 81, 4620 (1998)
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Phase bistability and quantum filter projection

P. Alsing and H. J. Carmichael, Quantum Opt. 3, 13 (1991)
Ramon van Handel and HM, J. Opt. B: Quantum Semiclass. Opt. 7, S226 (2005)
H. Mabuchi, Phys. Rev. A 78, 015801, (2008)
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Bi-Gaussian approximate filter

Ramon van Handel and HM, J. Opt. B: Quantum Semiclass. Opt. 7, S226 (2005)

Physical intuition motivates Gaussian ansatz;
restriction by geometric methods (D. Brigo et al., M. H. Vellekoop and J. M. C. Clark, ...)
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accomplishes ~ 10° — 1 reduction, but relies on knowing sub-manifold




