State observers in real-time feedback control

Based on:

- Model of plant intrinsic dynamics and exogenous disturbances,
- Knowledge of (noisy, partial) measurement record over some past time interval,

Goals:

- Predict statistics of possible future measurements as accurately* as possible,
- Utilize feedback to alter these statistics in desired ways.

Controller can maintain jointly sufficient statistics of the past measurement records, updated recursively: the *information state*. In the Kalman filter, e.g., the conditional mean and variance are sufficient statistics for a Gaussian posterior probability distribution on the plant coordinate.

^{*}The most common – but not unique – measure of accuracy is mean-square error.

Quantum filtering: ρ as the *information state*

Quantum measurement-based feedback:

- Information state $\leftrightarrow \rho_{\rm c}$
- Recursive filter ↔ Stochastic Master/Schrodinger Equation
- In the canonical design problem, the plant (S,L,H) is given and we are free to choose a specific way of monitoring the output fields (e.g., homodyne or photon counting) and to design a control law with real-time actuation of plant input fields and/or adjustable parameters in the plant Hamiltonian
- The usual, unconditional Master Equation for the plant can be viewed as the "open-loop"
 Master Equation
- If we implement our measurement-feedback scheme and then re-average over all the noises, we should (formally speaking) obtain a "closed-loop" Master Equation with different properties (although this is not generally feasible in practice)

Quantum filtering & measurement-feedback control

- L. Bouten, R. van Handel and M. R. James, SIAM Review 51, 239 (2009); math.PR/0606118
- L. Bouten and R. van Handel, math-ph/0511021

Itô amplitude-quadrature homodyne Stochastic Master Equation / Kushner-Stratonovich Equation:

$$d\rho_t = -i[H, \rho_t] dt + \sum_{j=1}^n \left\{ \mathcal{D}[L_j] \rho_t \right\} dt + \sqrt{\eta} \, \mathcal{H}[L_1] \rho_t \, \overline{dW}_t$$

"predictor" – the unconditional ME "corrector" – innovation term

- (S,L,H) model has n input-output channels
- ullet We are monitoring channel 1 with quantum efficiency η

$$\overline{dW}_t = dy_t - \sqrt{\eta} \operatorname{Tr}[(L_1 + L_1^{\dagger})\rho_t] dt, \qquad dy_t = I_{\text{hom}} dt$$

$$\mathcal{D}[c]\rho \equiv c\rho c^{\dagger} - \frac{1}{2}(c^{\dagger}c\rho + \rho c^{\dagger}c), \qquad \mathcal{H}[c]\rho \equiv c\rho + \rho c^{\dagger} - \operatorname{Tr}[(c + c^{\dagger})\rho]\rho$$

For least-squares-optimal recursive filter, dW_t is Gaussian white with variance dt

"
$$I_{\text{hom}} dt \sim \sqrt{\eta} \operatorname{Tr}[(L_1 + L_1^{\dagger})\rho_t] dt + dW_t$$
"

Coding and continuous syndrome measurement

Continuous-time "relaxations" of QEC (Ahn, Doherty and Landahl, PRA 65, 042301, 2002)

- Encode state in a stabilizer code
- Continuous QND measurement of syndrome

Continuous syndrome measurement:

- constant qubit-cavity couplings
- cw coherent-state laser probes
- homodyne detection

State observer \rightarrow error-state observer

measurement should yield full information on E but none on encoded state

'Error-state graph' for the bit-flip code

$$M_1 = Z \otimes Z \otimes I$$
 $M_2 = Z \otimes I \otimes Z$

- Continuous QND syndrome measurement ⇒ Markov jump dynamics for error state
- Mapping of error state to syndrome is degenerate

Error-state tracking with a Wonham filter

Ramon van Handel and HM, quant-ph/0511221

Assertion (numerically testable via comparison to SME): optimal filter for the error state can be derived as a *Wonham filter* (Wonham, 1965) for the induced Markov jump process of the error state

$$dp_j = (\sum_{i \neq j} \nu_{ij} p_i - \nu_j p_j) dt + \sum_k \beta_k^{-2} p_j (a_{jk} - \langle M_k \rangle) (M_k - \langle M_k \rangle)$$

• nonlinear filter, much studied in "hybrid stochastic" control theory Filter *stability* results: P. Chigansky and R. van Handel, "Model robustness of finite state nonlinear filtering over the infinite time horizon," Ann. Appl. Probab. 17, 688 (2007).

Error-state graph for the five-qubit code

Stochastic Master Equation:

tochastic Master Equation:
$$\kappa=1,\ a\,r_j=2\langle M_j\rangle at+aw_j$$

$$d\rho=\sum_{i=1}^5\gamma(\sigma_i^\alpha\rho\,\sigma_i^\alpha-\rho)dt+\sum_{j=1}^4\left\{(M_j\rho M_j-\rho)dt+(M_j\rho+\rho M_j-2\langle M_j\rangle)dW_j\right\}$$

$$\alpha\in\{x,y,z\}$$

Jump dynamics of the error state

Continuous syndrome measurement localizes the error state; bit-flip decoherence induces jump-like transitions

Finite measurement strength/sensitivity gives rise to detection delay and quiescent fluctuations

Purity of conditional distribution for the error state

maximize $\langle \psi_{T+\varepsilon} | \psi_0 \rangle$

"know E as well as possible"

entropy or purity of conditional distribution for the error state

- If we know the error state with certainty we can recover perfectly
- Largest conditional probability max_i{p_i} directly related to decoded fidelity
- Purity lost with time because of multiple errors within detection delay
- Purity not monotonic because of transitions and quiescent fluctuations

Simulation results for symmetric Pauli decoherence

- Protocol: when data is "recalled," wait for $\max_i \{p_i\}$ to approach ξ and then decode
- Further work required to derive optimal decision policy

Quantum memory with separated control strategy

$$dp_j = (\sum_{i \neq j} \nu_{ij} p_i - \nu_j p_j) dt + \sum_k \beta_k^{-2} p_j (a_{jk} - \langle M_k \rangle) (M_k - \langle M_k \rangle)$$

Correction Strategies

An error correction strategy consists of the following:

- 1. An increasing sequence of times $\{\vartheta_n\}$ at which we correct.
- 2. A sequence of corrections $\{\zeta_n\}$ to perform at time n.
- 3. **Constraint:** ϑ_n and ζ_n may depend on the syndrome observations but only in a *causal* manner (i.e., the decision to correct at a certain time may only depend on the past observation history).

Queueing model: we do not know in advance when the memory will be accessed, so we presume that it will be read out at a *random* time τ .

The cost of a correction strategy balances our conflicting goals:

$$J_C[\{\vartheta_n,\zeta_n\}] = \mathbf{P}[\text{Wrong syndrome at time } \tau] + C \mathbf{E}[\#\{n:\vartheta_n \leq \tau\}].$$

If C>0 is large, then we give more weight to minimizing the total number of corrections. When C>0 is small, we give more weight to being in the correct syndrome at the readout time.

Optimal Control

Optimal Control Problem

Given a fixed choice for the tradeoff parameter C, find an error correction strategy $\{\vartheta_n^*, \zeta_n^*\}$ which minimizes $J_C[\{\vartheta_n, \zeta_n\}]$.

Can be solved using quantum filtering and dynamic programming.

What does the optimal strategy look like? Separates into several steps:

- 1. First, the syndrome observations a **filtered**. The filter computes the conditional probabilities π_t^i of being in the *i*th syndrome at time *t*.
- 2. The space of all probabilities Π is partitioned into one **continuation** region Π_0 and a correction region Π_j for each possible correction.
- 3. The **optimal strategy**: we do nothing as long as $\pi_t \in \Pi_0$. As soon as π_t enters one of Π_j , $j \ge 1$ we perform the corresponding correction. This brings us back to Π_0 , and the procedure repeats.

Numerical Solution

Ramon van Handel

Finding the optimal strategy comes down to computing the continuation and correction regions Π_0 , Π_j . This can be done numerically.

A simple three qubit code example (red region is Π_0):

Quantum memory with separated control strategy

HM (and R. van Handel), New J. Phys. 11, 105044 (2009)

Spontaneous phase switching in cavity QED

P. Alsing and H. J. Carmichael, Quantum Opt. 3, 13 (1991)

Feedback control: the Mollow doublet

J. E. Reiner, H. M. Wiseman and HM, Phys. Rev. A 67, 042106 (2003)

'Retroactive' quantum jumps

P. Alsing and H. J. Carmichael, Quantum Opt. **3**, 13 (1991) HM and H. M. Wiseman, Phys. Rev. Lett. **81**, 4620 (1998)

$$d\rho = \mathcal{L}\rho dt + i\sqrt{2\kappa\eta} \left\{ a\rho - \rho a^{\dagger} - \text{Tr}\left[\rho\left(a - a^{\dagger}\right)\right]\right\} dW_{t}$$

$$I_{\mathsf{hom}}(t)dt = 2\eta \text{Tr}\left[(-ia + ia^{\dagger})\rho\right] dt + \sqrt{2\kappa\eta} dW_{t}$$

$$dW_{t} \equiv \left\{I_{\mathsf{hom}}(t)dt - 2\eta \text{Tr}\left[(-ia + ia^{\dagger})\rho\right] dt\right\} / \sqrt{2\kappa\eta}$$

Phase bistability and quantum filter projection

P. Alsing and H. J. Carmichael, Quantum Opt. **3**, 13 (1991) Ramon van Handel and HM, J. Opt. B: Quantum Semiclass. Opt. **7**, S226 (2005) H. Mabuchi, Phys. Rev. A **78**, 015801, (2008)

- parameterize sub-manifold of states
- intuition: two coupled "line segments"
- project stochastic equations of motion
- e.g., Hilbert-Schmidt inner product

Bi-Gaussian approximate filter

Ramon van Handel and HM, J. Opt. B: Quantum Semiclass. Opt. 7, S226 (2005)

Physical intuition motivates Gaussian *ansatz*; restriction by geometric methods (D. Brigo et al., M. H. Vellekoop and J. M. C. Clark, ...)

$$d\tilde{\nu}_{t}^{+} = -\gamma_{\perp}(\tilde{\nu}_{t}^{+} - \frac{1}{2})dt + \sqrt{2\kappa\eta}\tilde{\nu}_{t}^{+}(1 - \tilde{\nu}_{t}^{+})(\mu_{t}^{+} - \mu_{t}^{-})(dY_{t} - \sqrt{2\kappa\eta}(\mu_{t}^{+}\tilde{\nu}_{t}^{+} + \mu_{t}^{-}(1 - \tilde{\nu}_{t}^{+}))dt)$$

$$\frac{d\mu_{t}^{+}}{dt} = -g - \kappa\mu_{t}^{+} + \frac{\gamma_{\perp}}{2}\frac{1 - \tilde{\nu}_{t}^{+}}{\tilde{\nu}_{t}^{+}}(\mu_{t}^{-} - \mu_{t}^{+})$$

$$\frac{d\mu_{t}^{-}}{dt} = +g - \kappa\mu_{t}^{-} + \frac{\gamma_{\perp}}{2}\frac{\tilde{\nu}_{t}^{+}}{1 - \tilde{\nu}_{t}^{+}}(\mu_{t}^{+} - \mu_{t}^{-})$$

accomplishes $\sim 10^5 \to 1$ reduction, but relies on knowing sub-manifold