Development of Microscopic Effective Reaction Theory for Nuclear Transmutation Studies

ImPACT International Symposium on

"New Horizons of Partitioning and Transmutation Technologies with Accelerator System" 2-3 December 2018, at The University of Tokyo

Kazuyuki Ogata

Research Center for Nuclear Physics (RCNP), Osaka University

Kosho Minomo*, Yuen Sim Neoh, and Kazuki Yoshida *FRIB / Michigan State University

This work was funded in part by ImPACT Program_of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).

Plan of this talk

I. Brief summary of our activities / achievements

II. Microscopic description of nucleon-nucleus scattering

M. Toyokawa, M. Yahiro, T. Matsumoto, K. Minomo, KO, and M. Kohno, PRC 92, 024618 (2015).

III. Microscopic effective reaction theory for deuteron scattering

M. Yahiro, KO, T. Matsumoto, and K. Minomo, PTEP **2012**, 01A206 (2012). Y. S. Neoh, K. Yoshida, K. Minomo, and KO, PRC **94**, 044619 (2016). K. Minomo, K. Washiyama, and KO, JNST **54**, 127 (2017).

IV. Toward a more realistic description of one-nucleon knockout processes

S. Weili, Y. Watanabe, M. Kohno, KO, and M. Kawai, PRC **60**, 064605 (1999). *KO, arXiv:1801.09994.*

V. Summary

Role Assignment in PJ3

Publications (peer reviewed journal papers)

- 1. K. Ogata, K. Yoshida, and K. Minomo, "Asymmetry of the parallel momentum distribution of (p,pN) reaction residues", Phys. Rev. C 92 034616 (2015).
- 2. K. Minomo, K. Kohno, and K. Ogata, "*Microscopic coupled-channel calculations of nucleus-nucleus scattering including chiral three-nucleon-force effects*", Phys. Rev. C **93**, 014607 (2016).
- 3. K. Minomo and K. Ogata, "Consistency between the monopole strength of the Hoyle state determined by structural calculation and that extracted from reaction observables", Phys. Rev. C 93, 051601(R) (2016).
- 4. K. Yoshida, K. Minomo, and K. Ogata, "*Investigating α clustering on the surface of* ¹²⁰*Sn via the* (*p*,*pα*) *reaction, and the validity of the factorization approximation*", Phys. Rev. C **94**, 044604 (2016).
- 5. Y. S. Neoh, K. Yoshida, K. Minomo, and K. Ogata, "*Microscopic effective reaction theory for deuteron-induced reactions*", Phys. Rev. C **94**, 044619 (2016).
- 6. K. Ogata and K. Yoshida, "Applicability of the continuum-discretized coupled-channels method to the deuteron breakup at low energies", Phys. Rev. C 94, 051603(R) (2016).
- 7. K. Minomo, K. Washiyama, and K. Ogata, "Deuteron-nucleus total reaction cross sections up to 1 GeV", J. Nucl. Sci. Technol. **54**, 127 (2017).
- 8. Y. Chazono, K. Yoshida, K. Ogata, "Examination of the adiabatic approximation for (*d*, *p*) reactions", Phys. Rev. C **95**, 064608 (2018).
- + 3 peer-reviewed conference proceedings and 18 oral presentations (including a lecture at high school)

Plan of this talk

I. Brief summary of our activities / achievements

II. Microscopic description of nucleon-nucleus scattering

M. Toyokawa, M. Yahiro, T. Matsumoto, K. Minomo, KO, and M. Kohno, PRC 92, 024618 (2015).

III. Microscopic effective reaction theory for deuteron scattering

M. Yahiro, KO, T. Matsumoto, and K. Minomo, PTEP 2012, 01A206 (2012).
Y. S. Neoh, K. Yoshida, K. Minomo, and KO, PRC 94, 044619 (2016).
K. Minomo, K. Washiyama, and KO, JNST 54, 127 (2017).

IV. Toward a more realistic description of one-nucleon knockout processes

S. Weili, Y. Watanabe, M. Kohno, KO, and M. Kawai, PRC **60**, 064605 (1999). *KO, arXiv:1801.09994.*

V. Summary

Phenomenology to Microscopic Theory

TABLE I. Optical-Model Parameters

Neutrons

NUCLIDE	ENERGY (Mev)	REAL V	POTENT R	IAL A	VOL.IM W	AG. POTE RW	NTIAL AW	SURF.IN WD	AG. POT RD	ENTIAL AD	SPIN- Vso	ORBIT RSO	POTENTIAL ASO	SŢ	SR	FIT	NOTE	REF.
AL	1.	40.	1.25*	0.65*				5.0G*	1.25*	0.98*	10.*	1.25*	0.65*	3520	1340	53	15	GIL63
AL	1.5	47.4	1.25*	0.46				6.3G	1.25*	0.98*	10.*	1.25*	0.46	3204		S1	10	KOR68
AL	2.47	48.0	1.14	0.65				8.42	1.19	0.48*	8.0*	1,14	0.65	2530	1270	S2	2	HOL71
AL AT	3.00	47.9	1.13	0.72				7.35	1.08	0.48* 0.68*	8.0≠ 8.0≢	1.13	0.72	2360	1130	52 s1	2	HOLIT
R.L	3.49		1.10	V. U I				0.40	1429	V0 -	0.0*	1.10	0.01	2300		51	L	110107
AL	4.00	49.1	1.20	0.62				7.99	1.26	0.48*	8.0*	1.20	0.62	2290	1090	S 2	2	HOL71
AL	4.56	50.2	1.18	0.59				8.38	1.26	0,48*	8.0*	1.18	0.59	2050	1020	51	2	HOL71
AL	6.09	47.8	1.20	0.67				8.23	1.23	Q.48*	8.0*	1.20	0.67	1880	1070	S 3	2	HOL71
AL	7.	45.5	1.25*	0.65*				9.5G	1.25*	0.98*	8.6	1.25*	0.65*			X 3		BJ058
AL	7.05	49.1	1.20	0.68				7.90	1.20	0.48*	8.0*	1.20	0.68	1800	1040	52	2	HOL71
AL	7.97	49.4	1.20	0.69				12.1	1.30	0.41	9.8	1.20	0.69			S1	2	BRA72
	·			- (<u>ر </u>					P	roje	ctil	e	
ΡĄ	5	i	th	P		— — <i>i</i> th		Р	$\begin{pmatrix} - \\ - \\ - \end{pmatrix}$	55	<i>i</i> th		_		2	τ_{i}	j	-
	$\leq v_i$	ij	+		55		$+\cdot$	$\cdots +$	S	55	=	= [7	τ_{ij}		स		2	
	2	<i>i</i> 1	h		22	-i th			.2	2_2	<i>i</i> th	-				1		YT
ſ		J		ſ		J un			(J un	-						ALL.
T	а <u> </u>			T		_		Т	$\prec =$			Effe	ctive			7	R	5
l	15			L					L			Inte	ractio	n	Ta	irge	t	
	Onar	iton		-	Guo at	on			Mu	ltistor						0-		
	One-s	step			wo-st	cp			IVIU	nusie)							

M. Yahiro, K. Minomo, KO, and M. Kawai, PTP 120, 767 (2008).

Success of microscopic optical potential

No free parameter ("prediction")

Success of microscopic optical potential (ctnd.)

Examination of PHITS

We have validated nucleon-nucleus cross sections implemented in PHITS.

Success of microscopic optical potential (ctnd.)

- NOTE

- We can microscopically describe the nucleon elastic scattering and the total reaction cross section (not shown).
- We cannot describe all the reaction processes of the nucleon-nucleus system.
- Thus, our framework is not ab-initio but an <u>effective</u> microscopic theory

"Predictability" and wide applicability

Plan of this talk

I. Brief summary of our activities / achievements

II. Microscopic description of nucleon-nucleus scattering

M. Toyokawa, M. Yahiro, T. Matsumoto, K. Minomo, KO, and M. Kohno, PRC 92, 024618 (2015).

III. Microscopic effective reaction theory for deuteron scattering

M. Yahiro, KO, T. Matsumoto, and K. Minomo, PTEP 2012, 01A206 (2012).
Y. S. Neoh, K. Yoshida, K. Minomo, and KO, PRC 94, 044619 (2016).
K. Minomo, K. Washiyama, and KO, JNST 54, 127 (2017).

IV. Toward a more realistic description of one-nucleon knockout processes

S. Weili, Y. Watanabe, M. Kohno, KO, and M. Kawai, PRC **60**, 064605 (1999). *KO, arXiv:1801.09994.*

V. Summary

Microscopic description of deuteron scattering

Microscopic Effective Reaction Theory (MERT)

- 1. Degrees of freedom selected (= setting model space)
- 2. Distorting ("Mean-field") potential generated microscopically
- 3. Reaction process due to residual interaction calculated with 1. and 2.

The Continuum-Discretized Coupled-Channels method: CDCC

cf. M. Kamimura, Yahiro, Iseri, Sakuragi, Kameyama, and Kawai, PTP Suppl. **89**, 1 (1986); N. Austern, Iseri, Kamimura, Kawai, Rawitscher, and Yahiro, Phys. Rep. **154** (1987) 126; M. Yahiro, Ogata, Matsumoto, and Minomo, PTEP **2012**, 01A206 (2012).

Description of deuteron breakup process by CDCC

MERT (M-CDCC) for deuteron-induced reactions

Y. S. Neoh, K. Yoshida, K. Minomo, and KO, PRC 94, 044619 (2016).

Deuteron-induced reaction analysis code system (DEURACS)

S. Nakayama, H. Kouno, Y. Watanabe, O. Iwamoto, and KO, PRC 94, 014618 (2016).

✓ CDCC is implemented in DEURACS to evaluate elastic breakup cross sections of deuteron.

FIG. 7. Calculated and experimental TTNYs at several angles for (a) the ${}^{9}Be(d,xn)$ reactions and (b) the ${}^{12}C(d,xn)$ reactions. The solid curves represent the TTNYs derived from the DEURACS calculation. The dashed lines are results of the Monte Carlo simulation codes PHITS.

MERT evaluation for deuteron reaction cross sections

K. Minomo, K. Washiyama, and K. Ogata, Journal of Nuclear Science and Technology, 54, 127 (2017).

Plan of this talk

I. Brief summary of our activities / achievements

II. Microscopic description of nucleon-nucleus scattering

M. Toyokawa, M. Yahiro, T. Matsumoto, K. Minomo, KO, and M. Kohno, PRC 92, 024618 (2015).

III. Microscopic effective reaction theory for deuteron scattering

M. Yahiro, KO, T. Matsumoto, and K. Minomo, PTEP 2012, 01A206 (2012).
Y. S. Neoh, K. Yoshida, K. Minomo, and KO, PRC 94, 044619 (2016).
K. Minomo, K. Washiyama, and KO, JNST 54, 127 (2017).

IV. Toward a more realistic description of one-nucleon knockout processes

S. Weili, Y. Watanabe, M. Kohno, KO, and M. Kawai, PRC **60**, 064605 (1999). *KO, arXiv:1801.09994.*

V. Summary

Spallation cross section taken at RIBF

⁹³Zr at 100 MeV/nucleon

S. Kawase et al., PTEP2017, 093D03 (2017).

Problem on -1N process

 $E_{\rm ex} = E_{\rm F} - E_{\rm kin}$

cf. D. Mancusi et al., PRC 91, 034602 (2015).

kinetic energy of a nucleon inside a nucleus

Outline of the model

✓ SemiClassical Distorted Wave model (SCDW) [QM-INC] is adopted.

S. Weili, Y. Watanabe, M. Kohno, KO, and M. Kawai, PRC 60, 064605 (1999).

$$\begin{aligned} \mathbf{DDX} \text{ for } (\boldsymbol{p}, \boldsymbol{p}'\boldsymbol{x}) \\ \hline \frac{d^{2}\sigma}{dE_{f}d\Omega_{f}} &= C \int d\boldsymbol{k}_{\beta}d\boldsymbol{k}_{\alpha}\,\delta\left(\boldsymbol{K}_{f} + \boldsymbol{k}_{\beta} - \boldsymbol{K}_{i} - \boldsymbol{k}_{\alpha}\right)\delta\left(E_{f} + \varepsilon_{\beta} - E_{i} - \varepsilon_{\alpha}\right) \\ & \times \int d\boldsymbol{R} \left| \bar{\chi}_{f,\boldsymbol{K}_{f}}^{(-)}\left(\boldsymbol{R}\right) \right|^{2} \left[2 - f_{h}^{(\beta)}\left(\boldsymbol{k}_{\beta},\boldsymbol{R}\right) \right] f_{h}^{(\alpha)}\left(\boldsymbol{k}_{\alpha},\boldsymbol{R}\right) \left| \tilde{t}_{NN}\left(\boldsymbol{\kappa}',\boldsymbol{\kappa}\right) \right|^{2} \left| \bar{\chi}_{i,\boldsymbol{K}_{i}}^{(+)}\left(\boldsymbol{R}\right) \right|^{2} \end{aligned}$$

<u>Incoherent sum</u> of contributions from collision points Wigner Transform of nucleon in a nucleus ("Pauli principle")

Schematic illustration of SCDW

Y. L. Luo and M. Kawai, PRC 43, 2367 (1991); M. Kawai and H. A. Weidenmüller, PRC 45, 1856 (1992);
Y. Watanabe et al., PRC 59, 2136 (1999); S. Weili et al., PRC 60, 064605 (1999); K. Ogata et al., NPA 703, 152 (2002);
KO et al., Proc. Kyudai-RCNP Int. Mini Symp. on Nuclear Many-body and Medium Effects in Nuclear Interaction and Reactions (MEDIUM02), p.231 (2003).

DDX for ⁴⁰Ca(p,p'x) at 392 MeV

Exp. data: A.A. Cowley et al., PRC62, 044604 (2000).

Outline of the model

✓ SemiClassical Distorted Wave model (SCDW) [QM-INC] is adopted.

S. Weili, Y. Watanabe, M. Kohno, KO, and M. Kawai, PRC 60, 064605 (1999).

DDX for
$$(p,p'x)$$

$$\frac{d^{2}\sigma}{dE_{f}d\Omega_{f}} = C \int d\mathbf{k}_{\beta}d\mathbf{k}_{\alpha} \,\delta\left(\mathbf{K}_{f} + \mathbf{k}_{\beta} - \mathbf{K}_{i} - \mathbf{k}_{\alpha}\right) \,\delta\left(E_{f} + \varepsilon_{\beta} - E_{i} - \varepsilon_{\alpha}\right) \\
\times \int d\mathbf{R} \left| \bar{\chi}_{f,\mathbf{K}_{f}}^{(-)}\left(\mathbf{R}\right) \right|^{2} \left[2 - f_{h}^{(\beta)}\left(\mathbf{k}_{\beta},\mathbf{R}\right) \right] f_{h}^{(\alpha)}\left(\mathbf{k}_{\alpha},\mathbf{R}\right) \\
\frac{1 \text{ncoherent sum of contributions from collision points}}{\text{from collision points}} \quad \text{Wigner Transform of nucleon in a nucleus ("Pauli principle")} \quad \text{adjustable parameter and } \varepsilon_{\text{ex}}^{(A-1)} \\
\frac{d\sigma}{dE_{f}d\Omega_{f}dk_{\alpha}dR} \longrightarrow \frac{d^{3}\sigma}{d\omega dk_{\alpha}dR} \longrightarrow \frac{d^{2}\sigma}{d\varepsilon_{\beta}d\varepsilon_{\text{ex}}^{(A-1)}} \quad \text{[Pre-Fragment = A-1]} \\
\text{Note: } R \text{ and } k_{\alpha} \text{ determine nucleon s.p. energy, hence the excitation energy of the residual nucleus} \quad \frac{d\sigma}{d\omega} \equiv \frac{d\sigma}{d\varepsilon_{\text{ex}}^{(A)}} \quad \text{Otherwise present = A]} \\
\end{array}$$

Excitation energy distribution

Incident energy dependence

KO, arXiv:1801.09994.

-1N cross sections by neutron

KO, arXiv:1801.09994.

Summary

- □ The microscopic description of nucleon-nucleus elastic scattering and total reaction cross sections at energies higher than about 30 MeV is now feasible.
- We have proposed a framework of the microscopic effective reaction theory (MERT) for describing various direct reaction processes.
 - \checkmark Essential degrees of freedom for the process of interest are taken into account explicitly.
 - \checkmark Microscopic optical potentials between the constituents of the reaction system are used.
 - \checkmark It is not ab-initio but has a wide applicability.

□ As an example of MERT, we use a microscopic CDCC for describing deuteron scattering.

- \checkmark We have improved significantly the deuteron reaction cross sections used by PHITS.
- \checkmark This reduces the energy cost for transmutation with deuteron.
- □ We proposed a new model for describing one-nucleon knockout reactions.
 - ✓ It seems that this model needs further validation/improvement by looking carefully all the data taken in this program (PJ2).