Nuclear Reaction Data for Long-Lived Fission Products

Susumu Shimoura
Center for Nuclear Study
the University of Tokyo

This work was funded by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).
Background for new reaction data

- Nuclear reactions which transmute Long-Lived Fission Products (LLFP) to stable or short lived RI

- Recent world-best accelerators (such as RIBF, J-Parc) in Japan enable us to obtain good nuclear data by using new technology in nuclear science.

- Good simulation software and database of evaluated nuclear data in Japan

Development of new transmutation system
Nuclear reactions for nuclear transmutation by Accelerator

- Nuclear reactions which transmute Long-Lived Fission Product (LLFP: 107Pd, 93Zr, 79Se, 135Cs, 126Sn, (129I, 99Tc)) to stable or short lived RI

Candidates
- Neutron induced reaction
 - Neutron capture
 - Neutron knockout
- Negative muon capture reaction
- Fragmentation/Spallation reaction
- Proton/deuteron-induced fusion-like reaction
Nuclear reactions for nuclear transmutation

- Nuclear reactions which transmute Long-Lived Fission Product (LLFP) to stable or short lived RI Candidates
- Neutron induced reaction
 - Neutron capture \((n,\gamma)\) \(A^Z \rightarrow A^{+1}Z\)
 - Neutron knockout \((n,2n)\) \(A^Z \rightarrow A^{-1}Z\)

\[\begin{align*}
 \text{p/n induced reaction} \\
 (p,xn) \\
 (n,2n),(p,\gamma),(\gamma,n) \\
 \text{spallation (n/p,xpyn)} \\
 \end{align*}\]
Neutron capture cross section (Term./Res.)

ANNRI (Accurate Neutron-Nucleus Reaction measurement Instrument)
LLFP targets (135Cs, 137Cs)
Nuclear reactions for nuclear transmutation

- Nuclear reactions which transmute Long-Lived Fission Product (LLFP) to stable or short lived RI Candidates
 - Negative muon capture reaction
 - Populate highly excited state followed by neutron(s) emission
A picture of Muon Nuclear Capture Reactions on 107Pd Target

(The neutron and γ ray emissions are prompt events: DC muon)

Compound nuclear states (10-20 MeV ?)

Muonic atom

107Pd(μ^-, γ) 107Pd

107Pd(μ^-, 2n)γ

107Pd(μ^-, 3n)γ

107Pd(μ^-, 4n)γ

105Rh

104Rh

103Rh

106Rh

107Rh

107Rh

Stable

$\beta^-\gamma$ decay

$\beta^-\gamma$ decay

$\beta^-\gamma$ decay

$\beta^-\gamma$ decay

Delayed γ-ray spectrum from μ^--107Pd

(The β^- decay and the associated γ ray emissions are delayed events: pulsed muon.)
RI Beam Factory at RIKEN

3 injectors + cascade of 4 cyclotrons
⇒ several to 345 MeV/nucleon
A variety of primary beams (d(pol) to U)
World highest-intensity RI beams
Experiment in Inverse Kinematics

LLFP: ^{107}Pd, $^{93}\text{Zr}^{(+90}\text{Sr})$, $^{135(+137)}\text{Cs}$, ^{79}Se produced as secondary beam

Tagging in event by event and bombard on secondary target @ F8

Reaction Residues measured @ ZD

Secondary Target CD$_2$, CH$_2$, C, Empty Pb,C,Empty

Gas D$_2$, H$_2$, 4atm Empty

Bp+TOF+ΔE +Total Energy

RIBF facility

BigRIPS

ZeroDegree
Fragmentation/Spallation reaction

93Zr@100MeV/u

107Pd@200MeV/u
Reaction data with LLFPs by RIBF-ImPACT

<table>
<thead>
<tr>
<th>Experiments</th>
<th>Beam lines</th>
<th>Settings</th>
<th>Purpose</th>
<th>Energy [MeV/u]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-ImPACT</td>
<td>BigRIPS+ZeroDegree</td>
<td>137Cs 90Sr</td>
<td>Fragmentation/spallation</td>
<td>190</td>
</tr>
<tr>
<td>ImPACT in 2015 spring</td>
<td>BigRIPS+ZeroDegree</td>
<td>107Pd $^{93Zr}/^{90}$Sr 135Cs</td>
<td>Fragmentation/Spallation/Coulomb</td>
<td>100/200</td>
</tr>
<tr>
<td>ImPACT in 2015 autumn</td>
<td>BigRIPS+SAMURAI</td>
<td>93,94Zr 79,80Se</td>
<td>Exclusive measurements</td>
<td>100/200</td>
</tr>
<tr>
<td>ImPACT in 2016 autumn</td>
<td>BigRIPS+ZeroDegree</td>
<td>107Pd 93Zr 126,127Sn</td>
<td>Spallation/Coulomb</td>
<td>100/200</td>
</tr>
<tr>
<td>ImPACT in 2017 autumn</td>
<td>BigRIPS+OEDO/SHARAQ</td>
<td>107Pd 93Zr 79,77Se</td>
<td>p/d induced reaction (d,p) for (n,γ) surrogate</td>
<td>24/30, 30, 20</td>
</tr>
</tbody>
</table>
Neutron induced reaction

- Neutron capture
 - Direct measurements for thermal to resonance region
 - Surrogate reactions \((d,p), (\gamma'',n)\) for higher energy
- Neutron knockout

Evaluated Data from JENDL4

Eval. From \((p,pxn)\)
RIKEN/UT/…

J-Parc ANNRI
(JAEA)

Coulex (“\(\gamma''\),n)
TITech/RIKEN/…

Surrogate \((d,p)\)
UT/RIKEN/…

Evaluated Data from JENDL4
Coulomb dissociation [\(\gamma, n\) reaction]
(Beam of fission fragments) + (Pb targets)

Coulex cross sections

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>present</th>
<th>systematics</th>
<th>Berman</th>
<th>Cb-TDHFB</th>
<th>HFB+QRPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{94}\text{Zr})</td>
<td>403 ± 26 ± 31</td>
<td>388 ± 1</td>
<td>317 ± 1</td>
<td>380</td>
<td>462</td>
</tr>
<tr>
<td>(^{93}\text{Zr})</td>
<td>374 ± 29 ± 30</td>
<td>424 ± 1</td>
<td>-</td>
<td>402</td>
<td>475</td>
</tr>
</tbody>
</table>

Fitting relative energy spectrum assuming response function using TALYS code

\(\sigma_f\): previous result by Berman

Level density: Back-shifted Fermi Gas model
Low-energy beam below 50 MeV/u

OEDO Beam-line

Construction was completed in Mar 2017

OEDO RFD
- $f_{RF} = 18.25$ MHz
- $V_{max} = 400$ kV
- $\text{Gap(H)} = 200$ mm
- $L \ (Z) = 1200$ mm
- $W(V) = 400$ mm

OEDO

STQ
- Bore Radius: 120 mm
- Max. gradient: 14.1 T/m
- Combination: 500-800-500 mm
- Total length: 2700 mm
Low-energy nuclear reaction data for LLFP

- Surrogate reactions (d,p)
- Evaluation of (n,xn) from proton/deuteron induced knockout
- Proton/deuteron-induced fusion-like reaction

- New energy-degrading system at RIBF
Energy compaction by mono-energetic degrader

- **107Pd, 79Se (BigRIPS)**
- **107Pd, 79Se (SHARAQ)**

RF HV: 250kV
Phase: 80 deg.

- **107Pd** 33 MeV/u
- **79Se** 45 MeV/u

Energy measurement from TOF

Energy compaction by mono-energetic degrader

Deg FE9
- Mom. acc. was set to be 0.1% at F1.
- E was also controlled by D magnets.

Deg F5
- 107Pd 33 ± 0.5 MeV/u

Fig. 11 Energy compaction from 172 MeV/u to 45 MeV/u by a wedged-shape degrader.
- The red (black) histogram shows the energy distribution of the 79Se beam with (without) the FE9 degrader. The thickness and angle of the degrader was set to be 6 mm and 20 mr, respectively.

Energy loss from 172.8 ± 3.4 (w/o FE9 deg.) to 46.3 ± 2.7 (w/ FE9 deg.) MeV/u.

- Generally it is hard to tune actual ion transport exactly to the designed one and also a manufacturing of a completely mono-energetic degrader matching to real ion optics is arduous due to an accuracy of energy-loss estimation in the degrader. However, the angle-variable degrader system can be controlled as a mono-energetic degrader with matching to the real ion-optical situation. Therefore, by this degrader system, the ion-optical condition as designed was satisfied against a mismatching of the ion-optical design and the actual setting for the experiment. The performance of this degrader system are detailedly described in Ref. [38].

4.2. Beam focusing

The FE11 focusing through the RFD is demonstrated in Fig. 12.

- The secondary beam was set for 75Se at 50 MeV/u, but the angle-tuning of the FE9 degrader was not optimized.

Deg FE9
- 79Se 45 ± 1.9 MeV/u

- Mom. acc. was set to be 2% at F1.
- E controlled by AT degrader system.
Effects of RF Deflector

- ^{79}Se at 170 MeV/u
- ^{107}Pd at 170 MeV/u (BigRIPS production)

Focusing (FE12)

- RF HV: 250 kV
- Phase: 80 deg.

Beam focusing

- ^{79}Se at 45 MeV/u
- ^{107}Pd at 33 MeV/u (FE12)

- TOF (F3-FE10) [ns]
- X_{FE11} [mm]
- X_{FE12} [mm]

S0X 1D

- RF ON
- RF OFF

Entries: 14987
Mean: -3.46
RMS: 27
Underflow: 13
Overflow: 15
Integral: 1.484e+04

20 mm (FWHM)
Setup of experiments at low energy

- \(^{107}\text{Pd}, \, ^{79}\text{Se}\) (BigRIPS)
- \(^{107}\text{Pd}, \, ^{79}\text{Se}\) (SHARAQ)

- RF HV: 250kV
- Phase: 80 deg.
- Degrader

- Ag, Pd, Rh, Ru, …
 - \(~25\text{ MeV/u}\)

- PI of the outgoing particles; TOF-dE-Range
 - \(~10\text{ mg/cm}^2\)

- SHARAQ QQE mode
$^{93}\text{Zr},^{107}\text{Pd}$ p/d induced reaction

M. Dozono

^{107}Pd (Beam)

^{45}Rh

(Z=45)

$^{44,45,46+}$

Ag

(Z=47)

Pd

(Z=46)

107Pd (Beam)

A/Q

Cross section (mbarn)

Energy (MeV/u)
(n,\(\gamma\)) vs. (d,\(p\))

\[Q_{\text{Se}^80 + \text{Se}^{79}} = 9.91 \text{ MeV} \]

\[Q_{\text{Se}^80 + \text{d}} = 7.69 \text{ MeV} \]

\[
\sigma_{\text{Se}^{79}(n,\gamma)^{80}\text{Se}}(E_n) = \frac{\sigma_{\text{CN}}^{\text{Se}^{80}}(E_n)}{\text{P}_{\text{decay}}^{\text{Se}^{80} \rightarrow \gamma + \text{Se}^{79}}(E^*)}
\]

determined by the optical model potential

determined by (d,p)

Weisskopf-Ewing approximation
V. Weisskopf, DH. Ewing, Phys. Rev. 57, 472('40)
Experimental Setup at OEDO

Recoil particles: TiNA, SSD-CsI (CNS/RCNP/RIKEN)
reaction products: detectors at final focal plane
target: CD$_2$ 4mg/cm2
Beam int~ 10^4 pps at on CD$_2$

coincidence measurement of recoil particles + outgoing particles.
Surrogate for $^{79}\text{Se}(n,\gamma)$ w/o measuring γ rays

$^{79}\text{Se}(d,p)^{80}\text{Se}$

^{79}Se

^{80}Se

$^{78}\text{Se}^*$

$^{80}\text{Se}^*$

4mg/cm2 CD$_2$

SSD(16chx6)+CsI

coincidence meas. of recoil particles & outgoing particles.

$^{79}\text{Se}(n,\gamma)^{80}\text{Se}$

$^{77}\text{Se}(n,\gamma)^{78}\text{Se}$

σ (mb)

E_n (MeV)

Compound by TALYS

ENDF/B-VII.1
Summary

- Nuclear reactions which transmute Long-Lived Fission Product (LLFP) to stable or short lived RI are measured
- Fragmentation/Spallation reactions on p/d were measured at 200, 100, 50 MeV/u @ BigRIPS+ZDS/SAMURAI
- Proton/deuteron-induced fusion-like reaction
- Lower energy LLFP beam is now ready at OEDO beamline
- 77,79Se(d,p) were measured successfully with a newly developed recoil particle tracker TiNA.