Selective laser ionization of odd-mass number isotopes
(odd-mass selection)

for the partitioning of palladium and zirconium

RIKEN Center for Advanced Photonics

Tohru Kobayashi
Reduction and resource recycling of high-level radioactive wastes through nuclear transmutation

High-level radioactive wastes are transformed into low and mid-level ones and a portion of the rare metals is reused.

http://www.jst.go.jp/impact/en/program/08.html
Our mission in ImPACT program

Develop efficient extraction technique of LLFP isotopes ($^{93}\text{Zr}^*$, $^{107}\text{Pd}^*$) aiming at both the nuclear transmutation and recycling.
Isotope separation vs. odd-mass selection

In the case of palladium (Pd)

Mixture of palladium isotopes in HLW

Isotope separation
Wavelength of laser

107

w/ ultra-high resolution laser
No precise spectroscopic data

Odd-mass selection
Non-zero nuclear spin

105
107

Easy

102 104 105 106 107 108 110
220 375 341 212 146 48 g / ton*

*JAERI-M 91-147
Difference in the electronic state structure of palladium between even-mass \((I=0)\) and odd-mass \((I\neq 0)\) isotopes

Even-mass number isotopes \((I = 0)\)

- **4d\(^9\)5d**
 - \(J = 0\)
 - \(m_j = -1, 0, +1\)

- **4d\(^9\)5p**
 - \(J = 1\)
 - \(m_j = -1, 0, +1\)

Odd-mass number isotopes\(^{105, 107}\)Pd \((I = 5/2)\)

- **4d\(^9\)5d**
 - \(J = 0\)
 - \(m_f = -7/2, -5/2, -3/2, -1/2, +1/2, +3/2, +5/2, +7/2\)
 - \(F = J + I\)

\(F = 5/2\)

- **4d\(^9\)5p**
 - \(J = 1\)
 - \(m_f = -3/2, -1/2, +1/2, +3/2, +5/2, +7/2\)
 - \(F = 3/2, 5/2, 7/2\)

\(F = 5/2\)
Selection rules for electronic transition absorption of photons

\[\Delta J = 0, \pm 1 \]

Total angular momentum \(F = J + I \)

☆ Linear polarization

Rule
\[\Delta m_J = 0 \]
\[\Delta m_F = 0 \]

Nuclear spin
\[I = 0 \]

Easy to maintain

Nuclear spin
\[I \neq 0 \]

Not easy to maintain

☆ Circular polarization

Rule
\[\Delta m_J = \pm 1 \]
\[\Delta m_F = \pm 1 \]

Nuclear spin
\[I = 0 \]

+1 for LHC and -1 for RHC.

Nuclear spin
\[I \neq 0 \]

We need to choose proper combination of electronic states of particular \(J \) to realize selective excitation and ionization.
Original scheme proposed by Hao-Lin Chen (1980)

2-LHC lasers + ionization laser: 3 lasers

Only odd-mass isotopes absorb the 2nd laser photon

\[m_J = -1 \quad 0 \quad +1 \quad m_F = -\frac{7}{2} \quad -\frac{5}{2} \quad -\frac{3}{2} \quad -\frac{1}{2} \quad +\frac{1}{2} \quad +\frac{3}{2} \quad +\frac{5}{2} \quad +\frac{7}{2} \]

Even-mass isotopes \((I = 0)\)

Odd-mass isotopes \(^{105},^{107}\)Pd \((I = 5/2)\)
Drawbacks of the original scheme

For selective excitation

- Using two circularly polarized lasers
 - Not easy to maintain polarization
 - Not suitable for multi-pass optics

For ionization

- Non-resonant ionization Low efficiency

As for the Cost

- Totally 3 lasers for selective ionization
 - High initial and maintenance costs
We have developed 2-laser scheme.

For selective excitation
 • Using two // linearly polarized lasers
 Easy to maintain polarization
 Suitable for multi-pass optics

For ionization
 • Resonant ionization = High efficiency

As for the Cost
 • Reduced number of lasers to 2
 Less initial and maintenance costs
2-laser scheme

Original scheme (2-step excitation + ionization)

2-laser scheme (2-step excitation/ionization)

Ionization laser

autoionizing states

Even + Odd

Even - odd separation

Even + Odd

Even + Odd

Odd

Even + Odd

Even + Odd

Ionization continuum

Need to confirm if negligible or not.

Non-resonant ionization

Even - odd separation

Even + Odd

Even + Odd

Even + Odd

Resonant ionization

Even + Odd

Ionization limit

Spectroscopic investigation of autoionizing states
Selective (//) and non-selective (⊥) excitations

\[4d^9(2D_{3/2})nd \ (J = 1) \]

Selectivity

Non-selectivity
Selectivity check

\[\text{Selectivity check} \]

105\text{Pd}^+ > 99.7 \%

Non-selective

Selective

The result suggests transition to ionization continuum is negligible.
Zirconium: Tuning ω_3 in search of $J=0$ state

$J = 2 \Rightarrow 1 \Rightarrow 1 \Rightarrow 0 \Rightarrow$ ionization

Selective excitation with 3-// linearly polarized lasers

1064 nm

ω_3 scan

Reported by Niki

$^{91}\text{Zr}^+ > 98.6\%$

$\beta > 575$

30 times larger intensity than the previous report.

Dr. Niki’s line
Effort to increase ion yield (Pd)

Simple multi-pass optics

Coaxial 2 laser beams

Vapor of Pd \(1.1 \times 10^{-5} \text{Vs} @ 12.0 \text{Ås}^{-1} = 1.4 \times 10^{12} \text{ions/pulse}\)

- 0.21 g/day @ 10 kHz
- 77 g/year @ 10 kHz

10-pass

Single-pass
Road to practical realization

• High power lasers
• Large volume multi-pass optics

High-level nuclear waste (HLW) 20 ton/year
Pd 27 kg/year

Our value 77 g/year

The difference will be overcome in the near future.
Acknowledgements

This research is carried out in collaboration with Dr. Clayton R. Locke, Dr. Takashige Fujiwara, and Dr. Yutaka Nagata under the direction of Dr. Katsumi Midorikawa.

This research is funded by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).