JST > Basic Research Programs > ERATO
ERATO
Exploratory Research for Advanced Technology 
戦略的創造研究推進事業(総括実施型研究)
創造科学犠実推進事業
TOP Contact Us Site Map 日本語
HOME Outline of ERATO Research Projects Mid-term/Ex-post Evaluation Application
HOME > Research Projects > Post Project > HOSONO Transparent ElectroActive Materials
HOSONO Transparent ElectroActive Materials
Research Director: Dr. Hideo Hosono
(Professor, Materials and Structures Laboratory, Tokyo Institute of Technology)
Research Term 1999-2004
 
Outline of Research Results
 The Hosono TEAM project explored "today’s stone tools" involving new active properties based on excited electrons in transparent materials as well as novel electronic-active materials.

Research Results
Active function cultivation in an ubiquitous material: 12 CaO·7Al2O3 (C12A7)

Persistent transparent electronic conductor: The light-induced conversion of a typical insulating oxide, 12CaO·7Al2O3, to a persistent transparent electronic conductor was realized. This was the first success to convert a main-group metal oxide to a conductor.

"Dream chemical species": A micro-porous crystal of 12CaO·7Al2O3 was shown to have the ability to encage an abundant number of O- radicals, considered to be a "dream chemical species" because of its very high reactivity.

Novel applications: Using this unique material, a number of important applications were realized: encaged highly concentrated O-; an O- ion beam; a single crystal; RT-stable electride, electrons as anions; a densely sintered body; a cold electron emitter; flash prints see-through circuits.

Frontier cultivation of transparent oxide semiconductors:

Transparent layered oxychalcogenides: A novel 2D electronic structure by forming stacked alternating positive and negative layers of oxides and chalcogenides was realized. This was done by employing a new technique, named as reactive solid-phase epitaxy, producing an epitaxial thin film. An increased band gap led to transparency.

High-performance transparent transistor: The newly developed reactive solid-phase method was used to fabricate a high-quality transparent thin-film composed of a layered complex oxide, the homologous compound InGaO3(ZnO)n (n = 1-200). Using this material, a high-performance transparent FET was produced with a surprisingly high mobility of 80 cm2/Vs, which is comparable to that in currently used Si.

P-N junctions: Several new devices utilizing P-N junctions formed by transparent oxide semiconductors were realized for the first time. These include a transparent diode based on a P-N homojunction (CuInO2) and a UV-LED utilizing a P-N heterojunction (p-SrCu2O2/n-ZnO).

Extended characteristics: The characteristics of transparent conductive oxides (TCOs) were significantly extended: the lowest resistively record for an ITO (13000 ohm-cm) and a UV-transparent TCO, β-Ga2O3 (transparent down to 250 nm).

Method for laser nano-fabrication in transparent dielectrics:

UV CPA femtosecond system: A UV CPA femtosecond system was realized with very good characteristics (110 fs, 290 nm, 3.5 mJ).

Femto laser nano-fabrication: "Holographic encoding of an interfered fs-laser pulse" was developed, resulting in the fabrication of permanent gratings in transparent materials by two-beam interference from a single femtosecond laser pulse. This process allows the direct writing of an optical integrated circuit inside of transparent dielectrics.

DB color center laser written inside LiF only by photons: A miniatured distributed-feedback color center laser was fabricated inside a LiF crystal by encoding laser-active color centers, waveguides, and micro-gratings working as selective reflection mirrors with fs-pulses. RT-lasering was observed.

SiO2 glass for deep/VUV lasers:

Optical fibres: Optical fibers were developed for deep-UV lasers, such as an ArF excimer laser (193 nm). These fibers have excellent tip characteristics as well as a low optical loss over a wide range of ultraviolet wavelengths and high resistance to UV laser pulses

VUV interaction with SiO2: The interaction of F2 excimer laser irradiation with synthetic SiO2 was elucidated concerning a glass photo-structural change of Si-OH, physical disorder and transparency in VUV.

graph1

graph2

graph3

 
Members
Research Director
Dr. Hideo Hosono
(Professor, Materials and Structures Laboratory, Tokyo Institute of Technology)

Back to List

 
JST 過去のお知らせはこちら ERATO
Exploratory Research for Advanced Technology 
戦略的創造研究推進事業(総括実施型研究)
創造科学技術推進事業 ERATO