JST > Basic Research Programs > ERATO
Exploratory Research for Advanced Technology 
TOP Contact Us Site Map 日本語
HOME Outline of ERATO Research Projects Mid-term/Ex-post Evaluation Application
HOME > Research Projects > Post Project > Gonokami Cooperative Excitation
Gonokami Cooperative Excitation
Research Director: Makoto Gonokami
(Professor Department of Applied Physics School of Engineering The University of Tokyo)
Research Term 1997-2002
Outline of Research Results
 The Gonokami Cooperative Excitation project was aimed at creating and understanding new material phases in which particles and quasi-particles are produced under very high density and low temperature, and exploring their properties for future applications.

Research Results

Laser cooling and manipulation of strontium atoms with a spin-forbidden transition: A new two-stage all-optical method for the rapid cooling of Bosonic and Fermionic isotopes of strontium atoms has been developed. This scheme, based on a very narrow linewidth laser developed in this project, has allowed the laser cooling of strontium atoms to be achieved down to 400 nK within a short time of 150 ms. By confining these ultracold atoms into an optical trap, both Bosonic and Fermionic isotopes were cooled down to a nearly quantum degenerate regime. Additionally, a method of high-resolution spectroscopy was invented, which is based upon a technique involving the light-shift manipulation of ultra-cold strontium atoms. Based on this method, an ultimate atomic clock has been proposed.

Cooperative quantum phenomena in solids: An ensemble of the photoexcited high-density free carriers at 10 Kelvin was created in copper chloride by using ultra-short light pulses tuned to the levels of bound electron-hole pairs, called excitons. This excitation method was used to reduce excess carrier heating. The created dense exciton gas was transformed through a Mott transition into a new metallic phase due to screening effects. Additionally, an experimental apparatus was developed based on mid-infrared transient reflectivity measurements, which allowed the collective motion of ionized carriers around the plasma frequency to be detected. The transient reflectivity spectra showed that the low-temperature electron-hole plasma existed in optically excited direct-gap semiconductors in the form of small droplets.

Ultrafast optoelectronics with strongly correlated electronic systems: Strong nonlinearity and picosecond recovery of optical transparency were found in a one-dimensional cuprate, Sr2CuO3, which belongs to the family of high-temperature superconducting materials. A theoretical calculation that took into account the correlation of electrons revealed a great potential of this one-dimensional Mott insulator for high bit-rate all-optical switching.

Many body correlation effects of semiconductor optical nonlinearity: A polarization-sensitive technique was developed and employed to study higher order correlations among photo-excited carriers in semiconductors and semiconductor microstructures. The coherent optical nonlinearity was classified in terms of the short-range interactions between excitons with various memory depths, and the parameters of these interactions were measured experimentally. Numerical calculations that fully take into account the four-particle correlation effects were developed and perfectly reproduced the experiment for a two-dimensional exciton system.

Crystal-growth technique: An attempt was made to develop a MOVPE system for the crystal-growth of high-quality gallium nitride. In the obtained high-quality crystal, a condensation phase of electron-hole pairs was observed by mid-IR femtosecond spectroscopy.



Research Director
Makoto Gonokami
(Professor Department of Applied Physics School of Engineering The University of Tokyo)
Research Advisor
Senior Research Advisor

Back to List

JST 過去のお知らせはこちら ERATO
Exploratory Research for Advanced Technology 
創造科学技術推進事業 ERATO