
CursorCamouflage: Multiple Dummy Cursors as
A Defense against Shoulder Surfing

Keita Watanabe*1, Fumito Higuchi*1, Masahiko Inami*1, Takeo Igarashi*1

JST ERATO Igarashi Design Interface Project*1

watanabe@designinterface.jp, inami@kmd.keio.ac.jp, takeo@acm.org
	
1. Introduction
More and more services and information are being stored on the
cloud. Since anybody can access an Internet terminal, it is critical
to provide appropriate security mechanisms. One popular
approach is to strengthen the protocol and encryption algorithm,
which is now being actively investigated in the security field.
Another potentially effective approach is to enhance the user
interface for security systems. Since security is ultimately a
human-computer interaction problem, we believe that there are
many interesting opportunities related to the latter approach.
 In this paper, we present an example of applying an innovative
user interface method to enhance security. Our target problem
domain is shoulder surfing when an individual is typing a
password or personal identification number (PIN) using a
software keyboard and an indirect input device such as a mouse or
track pad. Such typed key sequences are readily visible to
potential attackers standing behind the user or observing the
screen via video camera. A method to defend against shoulder
surfing is clearly important. One of the conventional methods is to
change the key assignment each time the keyboard appears on the
screen and to reveal the assignment only at the beginning.
However, this method does not work if a video camera is
recording the screen. Several other methods have been proposed
[9, 13, 15], but they are all either too complicated or require the
user to memorize extra information in addition to the password
itself.
 Our method, called Cursor Camouflage, shows multiple
independently moving dummy cursors on the screen so as to make
it difficult for an attacker to identify which software key the user
is actually typing (Figure 1). The user can identify the real cursor
by observing the correlation between the hand motion and the
cursor motion, but it is difficult for an attacker to do so because
the correlation is not easy to observe. This method has a certain
resistance to video recording and does not require the user to
memorize any additional information.
2. CursorCamouflage
The key function of the proposed method is to make it difficult for
a potential attacker to identify which key is being typed when the
user enters a password using a software keyboard. We assume that
the user is using an indirect input device such as a mouse or track
pad; our method cannot be used with direct input devices such as
a touch screen or video tablet. We also assume that an attacker
can only access visible information on the screen and cannot
directly steal electronic data from inside the system. Our method
is most effective when the attacker cannot see the user’s hand
motion, but it still works well in cases when the hand motion is
visible, as we show in the evaluation. Similarly, our method
works best when the attacker is directly observing the screen in
real time; still, it does show a certain resilience when the screen is
video recorded.
 The Cursor Camouflage method shows multiple independently
moving dummy cursors on the screen in addition to the standard
real cursor. This makes it difficult for the attacker to identify
which is the real cursor, thus making it difficult to identify which
key is being typed. The user, in contrast, can identify the real
cursor by observing the correlation between the hand motion and

the cursor motion. For example, if a user moves the input device
to the left, he or she simply needs to identify which cursor is
moving to the left on the screen in order to identify the real
cursor.
2.1. Designing Dummy Cursor Motions
The motion design of the dummy cursors is a crucial step because
the motion of the dummy cursors should not be immediately
distinguishable from that of the real cursor. One possibility is to
implement an automatic algorithm that synthesizes random mouse
cursor motions, but we decided to record mouse cursor movement
operated by a human designer because it is easier to implement
and can generate more human-like motions. The system starts
playing all the recorded dummy cursor motions at the beginning
of the password entry session. When the recorded motion of a
dummy cursor comes to an end, the system plays it backwards.
The length of recorded motion is different for each dummy cursor.
We implemented a system that records the motion of the real
cursor on the same software keyboard to be used in the password
entry. There was no dummy cursor on the screen during
recording. The recorded motions were then used as the motion of
the dummy cursors for password entry by the user.
 Our experience designing the dummy cursor movements led us
to isolate several practical guidelines. They are briefly
summarized below.
1. The screen layout on which the dummy cursor movements are
designed should be equivalent to the screen layout on which the
user types a password using the cursor camouflage system. This
ensures that the motion of the dummy cursor is similar to that of
the real cursor.

	
	
Figure 1. Cursor Camouflage in action. The system shows multiple

dummy cursors to protect the real cursor from shoulder surfing.

2. All cursors halt temporarily when the user types a key (see the
next subsection), so if a cursor is on an invalid region, it is
immediately clear that the cursor is not a real cursor. Therefore, a
dummy cursor should not stay long on invalid regions (gaps
between software keys).
3. In the preliminary study, we identified several strategies to
identify the real cursor from among many dummy cursors. The
dummy cursor movement should mimic these strategies so as not
to make the motion of the real cursor distinguishable from the
dummy cursors. See the Preliminary Study section for details.
2.2 Other Design Considerations
When the user clicks the mouse to type a software key, the real
cursor inevitably stops on the software key while the dummy
cursors are continuously moving. This temporary halt of a specific
cursor is clearly visible to the attacker, who can then easily
identify which key is being typed as well as which cursor is the
real cursor. We therefore stop all the dummy cursors when the
real cursor stops. Another possible problem is that it is easy to
identify the real cursor if it is the only cursor on a valid key when
the key is typed. We address this problem by leaving less invalid
space (gaps between keys) on the screen and using a sufficient
number of cursors to make sure that multiple cursors are on valid
keys at all times.
 Another challenge is the screen boundary. A mouse cursor is
usually blocked at the screen boundary, and users often use it to
identify the real cursor. For example, the user can easily identify
the real cursor by moving the input device far to the left—the
cursor hitting the left screen boundary is thus identified as the real
cursor. However, this also helps the attacker to identify the real
cursor. We therefore implemented a torus desktop [4] connecting
the left and right sides of the screen so that a mouse cursor
moving into the left screen border appear from the right screen
border. The top and bottom boundaries are connected as well.
Implementation Details
We implemented a prototype system and tested it on a 13-inch
MacBook Air with a 1440 × 900 screen resolution (60 Hz)
running Windows 7. The application was implemented using
Microsoft Visual Studio C#. We used a Logicool Wireless mouse
C905 on a silicon mouse pad. The speed of the mouse cursor was
set to the middle of the given range.
 We used a numerical keypad as the software keyboard. Each
key was 120 × 120 pixels, and the gaps between keys were 30
pixels. The total size of the software keyboard was 450 × 720
pixels. An asterisk is displayed above the software keyboard to
give feedback to the user when a key is typed. Password entry is
completed when the user presses the space key on the physical
keyboard; pressing the enter key on the screen keyboard breaks
the anonymity of the real cursor, especially when the screen is
video recorded. We did not support delete or cancel functions in
our prototype implementation.
3.DISCUSSION
In this section, we discuss various issues related to the design of
the Cursor Camouflage method.
Margins in the software keyboard. Our experiments showed that
it is better not to have margins between adjacent keys in the
software keyboard to achieve better protection. This is because an
attacker can easily judge that a cursor on a margin at the moment
when a key is typed is a dummy cursor. This strategy becomes
impossible if we lay out the keys tightly, without margins.
However, small margins increases the possibility of typing wrong
keys, so the margin should be carefully determined considering
usability-security tradeoff.
Confirmation key. In our current implementation, we use the
space key on the physical keyboard as the confirmation key to
signal the end of password entry. We did not include a

confirmation key (OK or Enter) on the software keyboard because
an attacker can judge that the cursor on the confirmation key at
the moment when the password entry is finalized is the real
cursor. We did not provide cancel or backspace keys on the
software keyboard for the same reason. This is not a serious issue
if the attacker is directly observing the typing action in real time,
but it can become serious if the attacker is observing a video-
recorded typing sequence. A possible solution is to reset the real
cursor each time after a key is typed, but this requires the user to
search for the real cursor every time, which results in significant
overhead.
Display of asterisks. Our current implementation shows an
asterisk as visual feedback when the user types a key. Whether the
asterisk should be shown or not is essentially a usability and
security tradeoff issue: showing it is more usable but more
vulnerable, and hiding it is less usable but provides stronger
protection. Showing asterisks or not is still a matter of discussion
even among security experts, and there is no definitive answer.
Our recommendation is to show the asterisks when using Cursor
Camouflage because it is too difficult for the user to type keys
without appropriate feedback.
4. Conclusion
In this paper, we presented a technique to protect password entry
when using a software keyboard and indirect input device from
shoulder surfing. It displays and moves multiple dummy cursors
on the screen along with the real cursor so that it is difficult to
identify which key is being typed. We explained how we designed
the movement of the dummy cursors and presented the results of a
user evaluation.
 It is important to point out that no single security method can
provide foolproof protection. Individual methods only reduce the
success ratio of attacks, and multiple security methods must
therefore be used in combination. The proposed method is
advantageous because it can easily be installed on top of standard
password entry systems using a software keyboard to provide
additional protection. Our method can be combined with other
protection methods, including those using image-based
passwords, those showing the labels of the software keyboard
only at the beginning of password entry, and others.
 The proposed method leverages an individual’s perceptual
capability to identify an object being controlled by him or herself
by using movement information only. Human perception covers
many interesting capabilities, such as the ability to identify hidden
structures in a noise pattern by using movement information. Thus
far, these observations have primarily been investigated from the
scientific point of view, and real-world application has been
limited to artistic exploration and entertainment purposes. We
hope that our work inspires more efforts to apply human
perception to real-world applications such as security.

References
1. Roth, V., Richter, K. and Freidinger, R. A PIN-entry method

resilient against shoulder surfing. In Proceedings of the 11th
ACM conference on Computer and communications security
(CCS '04). pp.236-245. 2004.

2. Takada, T. FakePointer: An Authentication Scheme for
Improving Security against Peeping Attacks Using Video
Cameras. UBICOMM '08, pp.395-400. 2008.

3. Wiedenbeck, S., Waters, J., Sobrado, L., and Birget, J. Design
and evaluation of a shoulder-surfing resistant graphical
password scheme. In Proceedings of the working conference on
Advanced visual interfaces (AVI '06). pp.177-184. 2006.

4. Huot, S., Chapuis, O., and Dragicevic, P. TorusDesktop:
pointing via the backdoor is sometimes shorter. In Proceedings
of the 2011 annual conference on Human factors in computing
systems (CHI '11). pp. 829-838. 2011.

