EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2010)

M. Alexa and E. Do (Editors)

A Sketching Interface for Sitting-Pose Design

Juncong Lin* Takeo Igarashi'? Jun Mitani®® Greg Saul *

1 JST, ERATO, IGARASHI Design Interface Project, 7th floor, 1-28-1, Koishikawa, Bunkyo-ku, Tokyo 112-002, Japan
2 The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0003, Japan
3 University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba, Ibaraki 305-0005, Japan

Abstract

We present a sketch interface for interactively placing a 3D human character in a sitting position on a chair. The
user first sketches the target pose as a 2D stick figure. The user can specify whether a joint will be attached to the
environment (for example, the feet may be put on the ground) with a pin tool. Our system then reconstructs the
3D pose from the sketch figure considering the constraints specified by the user and the interaction between the
character and the environment. This paper presents a user interface and a reconstruction algorithm that combines
a genetic algorithm and a quasi-Newton solver to efficiently find a collision-free pose. An informal user study

showed the effectiveness of our approach.

Categories and Subject Descriptors (according to ACM CCS): 1.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques; 1.3.4 [Computer Graphics]: Graphics Utilities—Graphics editors

1. Introduction

Manual design of a character pose is one of the most basic
processes in computer graphics authoring. Although many
advanced methods are available today, manual character-
pose design is mostly done using direct control of joint an-
gles and inverse kinematics. Sketching interfaces have also
been applied to character-pose design to make the design
process easier and faster. However, most of these design
tools only consider the character body structure and do not
consider interaction with the environment (leaning on a wall,
sitting on a chair, stepping on a stair, and so on). When pos-
ing the character, great care must be taken to avoid collisions
with the environment. Our goal is to provide a user interface
to quickly and easily set a character’s pose while considering
interaction with the environment.

In this paper, we focus on the design of a sitting pose as an
example of interaction with the environment. Our primary
target application is furniture design, in which we usually
need to examine ergonomic and structural concerns. For ex-
ample, when designing a chair, it must be the appropriate
height to allow one’s feet to rest on the ground. The chair
must remain stable even if the person sits on it in a strange
way. We believe that our interface is also useful for general
computer graphics production in which character poses are
manually specified.

(© The Eurographics Association 2010.

In our system, the design process starts with the sketching
operation. A user draws a sketch figure on the screen plane
to specify the desired sitting pose. The sketch figure consists
of circular dots, representing joints, connected by lines. The
user can specify whether a joint is attached to the environ-
ment using the pin tool (for example, the feet of a sitting
character are usually pinned to the floor). The system then
reconstructs a reasonable pose from the input sketches and
environmental constraints. Figure 1 shows examples of sit-
ting poses generated by the system based on various sketches
and environments.

There are two challenges to providing such a system:
First, there are usually multiple 3D poses consistent with a
single 2D sketch figure; and second, there may be many in-
teractions between a character and a chair. These two prob-
lems are not unrelated. In this paper, we demonstrate how
exploiting interactions between the character and the chair
can eliminate some unexpected poses.

The contribution of this paper is a holistic system for
interactively placing a character in a sitting position on a
chair. The system has an intuitive interface to allow non-
professional users to easily solve this type of pose-design
problem. The core of the system is a technique that recon-
structs a collision-free pose from a 2D input sketch figure.
We formulate it as an optimization problem and design a

J. Lin & T. lgarashi & J. Mitani & G. Saul / A Sketching Interface for Sitting-Pose Design

Figure 1: Various sitting poses designed with our system. The user specifies the desired pose with sketches on 2D canvas (inset

of each subfigure), and our system generates the 3D pose.

hybrid solver for the problem. Our solver consists of two
components: a genetic algorithm-based solver (G-A solver)
is used to compute a collision-free pose, and then, a quasi-
Newton procedure (Q-N solver) is applied to the pose to re-
fine the result.

2. Related Work

Inverse kinematics (IK) is one of the most important tech-
niques for generating character poses satisfying given kine-
matic constraints [ZB94]. The well-known difficulty with
the IK technique is that the problem is almost always under-
determined. Attempts have been made to restrict the solution
space [YNO3, BR04, GMHP04].

The interface typically adopted by existing character-
posing systems allows the user to interactively position the
end effectors of a character, and the interior joints are up-
dated by solving the non-linear IK problem. Such an inter-
face require the user to manipulate 3D widgets, and this may
make it difficult to obtain the desired pose. Several attempts
have been made to reduce the difficulty with a sketch inter-
face [RK92, DAC*03]. These methods try to reconstruct a
3D pose from an artist-drawn 2D sketch figure. We adopt
a similar sketch interface as [DAC*03]. However, we em-
phasis more on the interaction between the character and
the environment which is discussed less in [DAC*03]. Be-
sides, we formulate the reconstruction of 3D pose from 2D
sketch as an optimization problem combining sketch con-
straints and physical constraints while [DAC™*03] adopts the
reconstruction method of [Tay00] which considers the fore-
shortening of each body segments in a orthographic camera
configuration.

Our work is also closely related to the reconstruction of
a 3D pose from a monocular image. Due to insufficient spa-
tial information, the problem is inherently ill-posed. Most
existing works focus on using various domain constraints
to solve the underconstrained depth ambiguity problem.
Model-based techniques are a common strategy [TayO00].
Another approach to the pose-reconstruction problem is to
use probabilistic techniques [AT04, AC04] to automatically
learn the mapping between 2D image features and 3D poses.
The most prominent feature differentiating our system from
previous methods is the consideration of interaction between

character and environment. Also, our input is a hand-drawn
user sketch, which is usually imprecise and needs special
treatment.

3. User Interface

In a typical design session, a user first sketches the elements
of the desired pose on the screen space (Figure 2(a)) in ar-
bitrary order. The system then analyzes the sketch and orga-
nizes it into a tree structure similar to the character’s skele-
ton. The user then checks the sketch structure and switches
the left and right limbs if necessary to resolve ambiguities
due to the symmetry of the skeleton (Figure 2(b)). Red links
represent the left side of the body (left upper limb and left
lower limb), and blue links represent the right side. The user
can also use the pin tool to specify where joints are attached
to the environment (Figure 2(c)). For example, the user can
tell the system to constrain the feet to the ground, to put the
hand on the armrest, and so on. The 3D pose is generated by
clicking the 3D button (Figure 2(d)).

Figure 2: Sitting pose design paradigm: (a) user sketch of
the expected pose on 2D canvas; (b) user can switch the left
and right limbs to resolve symmetric ambiguities; (c) user
can specify where joints are attached to the environment with
the pin tool; (d) the 3D pose is generated by clicking the
attach button.

3.1. Sketching Tool

We use a sketching interface similar to [DAC*03], in which
the user draws straight limb segments by dragging, rather
than drawing freeform. The user clicks to specify the posi-
tion of the first joint and then drags and releases the cursor

(© The Eurographics Association 2010.

J. Lin & T. lgarashi & J. Mitani & G. Saul / A Sketching Interface for Sitting-Pose Design

at the desired position of the second joint. The process is re-
peated until the whole skeleton has been specified. A newly
sketched limb will automatically snap to an existing one if
its joint is close enough to the joints of the previous limb.
The snap function makes it easy for the user to ensure that
segments connect to one another properly. The user sketches
elements of the pose in an arbitrary order. Camera rotation
and translation are disabled during sketching.

3.2. Pin Tool

The pin tool is used to specify a target position in the envi-
ronment to which a joint is to attach. The pin tool can also be
used to attach a joint to a limb of the character. To pin a joint,
the user simply clicks on the sketch node. When selected, the
pin tool attaches the joint to another limb when they appear
close together in the sketch (e.g., forearm on knee). Other-
wise, the joint is attached to the environment at the joint’s
location (feet on the floor). The pelvis joint is an exception.
It can only be pinned to the environment (sitting plane).

4. Technical details
4.1. Human model

We currently use a human model with 29 degrees of freedom
(DOF) as shown in Figure 3(a). The human model is repre-
sented by a tree of joints (H = {j}(1 < k < m,m = 20))
rooted at the pelvis.

The sketch figure (Figure 3(b)) is used to specify the pose
in the screen space. It is also organized as a similar tree struc-
ture with 13 nodes (S = {si}(1 <i <n,n =13)).

The sketch nodes map to the skeleton joints, @ : sj — jy.

""‘1{——-— ball joint
—

I

*— hinge joint

sy joint
{a} (k)
Figure 3: The human model used in our system: (a) template

skeleton of the 3D character; (b) template sketch structure
used to specify the pose.

4.2. Sketch Analysis

The user-drawn sketch is initially defined as an undirected
graph. To construct a tree structure from the graph, we first
determine the root of the tree, which has three linked graph
edges. We also identify the neck node, which has four linked
graph edges. We then extract the chains from the root to
the leaf nodes (those with only one linked graph edge). We

(© The Eurographics Association 2010.

determine the body part that each chain represents accord-
ing to the number of nodes in the chain. In the template
structure, chains representing upper limbs (from pelvis to
left/right hands) contain five graph nodes. For both the up-
per body (from pelvis to the head) and the lower limbs (from
pelvis to the left/right feet), the number of nodes is three.
We distinguish between the upper body chain and the lower
limb chains by checking whether the chain contains the neck
node.

chain 3+ ——thaln 1

%, L

{ +—chain 2
chains 8 3..“‘&
\'7/ \.,-chaimt

Figure 4: Symmetric ambiguities in the sketch figure are re-
solved.

To define the mapping ®, we need to further resolve the
ambiguities due to the symmetries in the tree structure. We
assume that the user draws a front view pose of the character,
and we then identify the left and right limbs by checking the
following equation (Figure 4):

sign = spSi - Sps1 (i # 0,1).

Chain i represents a left limb when sign > 0. Otherwise, it
represents a right limb. We provide a switch tool for users
to manually switch limb left/right orientation (Figure 2(b))
when the above method does not work.

4.3. Seat positioning

To reconstruct a pose from a sketch, we first need to locate
where the person is seated. As Figure 5(a) shows, it is not
obvious how a user will draw a sketch. Some may draw the
central line of each limb (red), whereas others may place
the sketch joint at the contact between the character and the
floor or chair (blue). The algorithm for locating the sitting
position highly depends on which strategy the user chooses.
Therefore, we conducted an observational study to better un-
derstand the way people draw. We showed users examples of
sitting poses (Figure 5(b)) and asked them to sketch the pose
with our system. Figure 5(c) shows the various sketches col-
lected from the study. We found that most users draw the
center line of a character. Therefore, our default system lo-
cates the sitting position based on the center-line assump-
tion.

To locate the sitting position, we first calculate the inter-
section between the extended bounding box and the eye ray
le(pe, Ve) passing the root joint of the sketch character (Fig-
ure 6(a)). We extend the bounding box in an upward direc-
tion vy = (0.0,1.0,0.0) to ensure the intersection with some
object, such as the foot stool in Figure 7. We then sample
the intersection line segment in the bounding box and emit a

J. Lin & T. lgarashi & J. Mitani & G. Saul / A Sketching Interface for Sitting-Pose Design

5% e
L

._1;‘; |'||

0 X

Lap

i

Figure 5: Observation Study. (a) different sketching styles
adopted by users; (b) seated figure shown to users; (c) sketch
characters drawn by users.

[s]

ray from each sample in the direction vs = —vy(Figure 6(b)).
We collect the intersected faces whose normal satisfies

ng-vu > V3/2 (1)
and where the distance to the sample point satisfies
s1-h<d<sp-h, 2

where h is the hip height, s; = 0.5 and s, = 1.5. Using these
intersected faces as seed, we can grow several regions by col-
lecting all the faces for which the normal satisfies Equation
1. For each region R;, we assign a normal nr by averaging
the face normals over the whole region. We can then gener-
ate a cut plane P; passing through the eye position pe and the
normal np = nr x Ve. We calculate the uniformly resampled
intersection curve I; = (pg, P1, - - - Pm) between P; and R;, and
find the best sitting point of Rj by minimizing the following
equation:

M(Ri) = argmin(|d (P, e, nr)) —h[-C(k,m)). (3)

The metric consists of a distance term and a centerness
term: The distance term measures the distance between
d(pk,le,nr) and the hip height h. Figure 6(d) shows how
to calculate d(pg,le,nr); The centerness term C(k,m) =
k—t

e (2012) (t=m/2) is used to reduce the ambiguity of the user
input, and we assume that the user places the character at
the center of the seat area. The sitting region Rs is the region
with the minimal metric across all regions (Figure 6(c)), and
the root position

Pr=Ppsk+h-nr. 4)

In some cases, the hip may collide with the chair under the
optimal sitting position. We then search those intersection
points (Pk—r ---Pk- - - Pk+r) around the optimal sitting posi-
tion for a certain range r (r =5 in our current implementa-
tion) until we find a collision-free arrangement.

We also provide a scheme for users who prefer to draw
the contact points instead of the center lines. The user can
choose between the two different sketching styles. For the
contact-point method, we simply set h = 0.0 in Equation 3
and rewrite Equation 2 as s; < d < s with s; = —0.05 and
s, = 0.05.

4.4. Pose reconstruction
4.4.1. Overview

The core of our character-posing system is the reconstruction
of a 3D pose from a 2D sketch figure. We formulate it as an
optimization problem and find the 3D pose with minimum
energy. The input of the reconstruction algorithm is the 2D
positions of the joints in the sketch (s;j), and the output is the
joint angles of the reconstructed 3D character pose (q;). We
represent each joint angle with angle vectors (Euler angles)
with the dimension of the DOF of the joint. The objective
function evaluates the match between the projected 3D pose
and the 2D input sketch, the plausibility of the pose, and the
distance between the pinned joints and their bases. Collision
handling is done separately. We first describe the details of
the objective function and then describe how we solve this
optimization problem. Finally, we describe how we handle
collisions in this framework.

4.4.2. Objective Function

The objective function we use to determine the optimal 3D
pose from a 2D sketch is described by the following equa-
tion:

E = wpEp(Q) +WpEp(Q) +WaEa(Q) ®)
Q is the total joint angle vector:
Q: [q07ql7?qn] (6)

which is subject to the range of motion of each joint. W =
[wp, Wy, Wa] are the weights given to the sub-energies. We
currently use wp = 1.0, wp = 0.5, and wa = 5.0.

The primary term of our objective function is the projec-
tion energy Ep, which measures the consistency between
the projection of the reconstructed pose and the 2D sketch
figure. We consider both the orientation and the position,
with an emphasis on the orientation. Denoting the projec-
tion of the corresponding joint as pj, the orientation energy
for sketch node sj is defined as:

< (Pj—pi) - (sj—si)
Ei .:— 1— J J (7)
on %< EEIBICEIk
where c; is the set of children nodes of the joint correspond-
ing to sketch node s;. The position energy is described by the
following equation:

Ei—pos =|| Pi — i HZ (8)

The projection energy is then defined as the sum of the en-
ergy of all sketch nodes:
n

Ep= Z(WoriEi—ori +WposEi— pos) 9)

Wori and Wpos are the weights for orientation and position
respectively; we currently use Wori = 1.0 and Wpos = 0.0003

We introduce the second term, balance energy Ep, to

(© The Eurographics Association 2010.

J. Lin & T. lgarashi & J. Mitani & G. Saul / A Sketching Interface for Sitting-Pose Design

tal - &1

ol
v, v Y, [- _
Pl) i Em | ~
S My S Ny S R

% . 1 -y .
N | L g | - |
; T -

. Il .

(L]

Figure 6: Locating the sitting position: (a) Intersect the eye ray with the bounding box of the chair; (b) Find all possible sitting

areas on the chair; (c) Determine the final sitting position.

keep the character balanced, leading to a visually plausible
pose (Figure 7). We achieve the balance constraint by forc-
ing the center of mass of the whole body to stay over the sup-
porting polygon [PB91]. The supporting polygon is defined
by the set of joints pinned to the environment . We minimize
the distance between the ground projection of the character
barycenter and the center of the supporting polygon:

Ep =||MC —c? (10)

¢ is the supporting center, matrix M = P - T calculates the
new barycenter of the character and projects it onto the
ground, T = (M1 T1,myTy,....,mnTn)(Tks and mys are the
rigid transform and the mass of each skeleton bone respec-
tively, mys are normalized by the overall mass) , P is the
projection matrix, and C = [c1,Ca, ... ,ch]T are the barycen-
ters of the skeleton bones in standard pose. Both mys and C
can be precomputed. We currently only consider explicitly
pinned joints in computing the supporting polygon. In real-
ity, limbs can rest on a chair (thigh on seat and back on back-
rest) and the supporting polygon must take these limbs into
account; resolving this aspect remains for our future work.
Little weight is assigned to this balance energy, so it is only
used when the input sketch is very ambiguous, when it is
helpful in eliminating some invalid poses (Figure 7).

\We name the third term attach energy Ea, which is used
to constrain a joint attached to certain place (Figure 8). There
are two different attach styles: (1) the user specifies a joint
attached to a limb (e.g., hand on knee); and (2) the user
specifies a joint attached to the environment (e.g., feet on
ground); If the selected sketch node sy is very close to a non-
neighbor sketch limb sygSk1, we treat it as the first case (Fig-
ure 8(b)). Otherwise, we generate a eye ray passing through
the selected sketch node sy in the screen space. Then, we

(© The Eurographics Association 2010.

(4] 11 gl

Figure 8: Attach constraint: (a) sketch figure; (b) attach
style-1; (c) attach style-2; (d,e) with attach constraints; (f,g)
without attach constraints.

find the intersection point v between the ray and the chair
or the ground (Figure 8(c)). For the first case, we minimize
the distance between the joint j, and the closest point on the
bone segment jyojk1:

Ea =| jk — (ko (1 —t) +jke 1) |12
_ |skov] (11)

~ IskoSktl

We define the energy for the second case with the following
equation:

Ea = ((jk—V)-n)° (12)

Here, we minimize the distance between the corresponding
skeleton joint ji and the plane defined by the attach point v
and its normal n rather than the distance between the two

J. Lin & T. lgarashi & J. Mitani & G. Saul / A Sketching Interface for Sitting-Pose Design

points directly, as it is difficult to exactly specify the 3D po-
sition to which we want the joint to attach. Figure 8 shows
the difference between 3D figures generated with and with-
out attach constraints.

4.4.3. Solver pipeline

To minimize the objective function in Equation 5 with some
gradient methods such as the quasi-Newton solver, we need
to provide a good initial pose. The initial pose should be
collision-free, as the gradient solver cannot guarantee that
the optimized pose is collision-free, and it should be close
enough to the optimal pose to avoid a complex collision
problem. Therefore, a hybrid framework is adopted in our
system. Figure 9 shows the optimization process pipeline.
First, a genetic algorithm-based solver (G-A solver) is used
to generate an initial collision-free pose, and then refinement
is conducted with a quasi-Newton solver (Q-N solver) to

generate the final optimal pose.
Environment
Constraints

Sketch Standard /
Figure Pcise
G-A Solver
Collision Free
Pose

P> Q-N Solver <

A 4

A

A 4

Optimal

Pose

Figure 9: Hybrid solver for pose reconstruction: the G-A

solver is used to generate an appropriate initial pose, and
then the pose is optimized by the quasi-Newton solver.

There has been previous work using genetic algorithms
to solve IK problems [TMCO09] or pose reconstruction prob-
lems [ZLKO05]. However, there are few discussions of inter-
action with the environment. We use the steady-state genetic
algorithm provided in GALIB [GAL] with some modifica-
tions for collision handling. Figure 10 shows the flow chart
of the modified genetic algorithm:

e Initialization: A population of size S; = 90 (Py) is ran-
domly created. Each individual consists of n joint angles
(Equation 6).

e Fitness value calculation: The fitness values of each in-
dividual is calculated using Equation 5.

e Evolution: We use tournament selection to create the par-
ent pool. The better one of two individuals picked from
population P; using the RouletteWheel selection will be
returned. The likeliehood of selection in RouletteWheel is
proportionate to the fitness value. A temporary population

with size Sp = 90 (P,) is then created by crossover and
mutation of the parent pool. Simulated binary crossover
(SBX) [DA95] is adopted for the crossover operation. P,
is then merged to Py, and invalid individuals are removed
from Py according to certain criteria until the size of Py is
reduced to Sy.

e Termination criterion: After each evolution, we check
the current generation against the termination criterion.
The evolution stops when either the maximum generation
number (15 in our current implementation) is exceeded
or the deviation of the population is under a certain limit
(0.05).

The second component of our framework, a quasi-Newton
solver, is then applied to the solution generated by the G-
A solver to improve the reconstruction result. We combine
Rosen’s projection method [Ros60] with our Q-N solver to
deal with the inequality constraints from joint range of mo-
tion as in [ZB94]. The graident of Equation 5 is computed
by numerical difference method.

Initialization

—>
M-Population

/ (size=S1) /L.l Merge
Tournament | / T-Population /
Selection (size=S2)

/ Parent pool HCrossover/Mutate|

M-Population Remove
(size=S1+S2) collision

Best
individual

Figure 10: Genetic algorithm for collision-free pose recon-
struction.

4.4.4. Collision Handling

Collision handling is an important issue in our application.
The collision handling scheme in our system consists of
two components: (1) the genetic solver provides a collision-
free initial configuration for the downstream non-linear op-
timization solver; and (2) collisions are avoided during the
refinement step.

To generate a collision-free pose with the G-A solver,
we first run a collision test on each individual during the
population initialization. Joint parameters are randomly re-
generated for individuals failing the test until they become
collision-free or the maximum iteration number (4 x ngq,
neg = 5) is reached. A similar strategy is applied on the
cross operation and mutation operation for those children
that failed the test. During each evolution step, we first re-
move the individuals who collide with the environment from
the merged popularization and then remove the transferred,
collision-free ones. Finally the individuals with the worst

(© The Eurographics Association 2010.

J. Lin & T. lgarashi & J. Mitani & G. Saul / A Sketching Interface for Sitting-Pose Design

score are removed. The red elements in Figure 10 are the
modifications we have made.

[a] L]

Figure 11: Definition of collision energy: (a) limb-limb col-
lision energy; (b) limb-environment collision energy.

When a collision is detected in the refinement step, we in-
troduce a collision energy that tries to keep the two colliding
objects at the previous collision-free iteration. For collisions
between limbs, we find the two closest points v1 and v, (Fig-
ure 11(a)) and try to keep them as in collision-free iteration
k — 1. For limbUenvironment collisions, v, is replaced by
the collision point in the environment (Figure 11(b)).

Ecotlision =|| (Vllk] —V[zk]) - (V[lk_l] —V[zk_l]) ()

The COLDET package [COL] is used for collision detec-
tion. The collision handling is very helpful in eliminating
unnatural poses. Figure 12 gives an example.

4.4.5. Handling the pose of feet and hands

We omit feet and hands in the sketch structure to reduce the
user’s burden. We keep the character feet and hands at stan-
dard 3D poses by default. We also run collision detection for
feet and hands during the optimization process. Once a col-
lision is detected, we search for collision-free orientations
in the range of motion and assign them to the foot or hand
in question. If no collision-free poses are available, we deal
with the collided character as described in Section 4.4.4.

5. Results

We developed a prototype system with C++ on a laptop with
an Intel Pentium 2.26-GHz processor. The current algorithm
successfully reconstructs plausible 3D poses from various
2D poses. Examples are shown in Figures 1, 2, 7, 8, and 12.
It usually takes 1 — 2 seconds to produce a 3D reconstruc-
tion. Table 1 shows time statistics for these figures. In our
own experience, the system sometimes returns undesirable
results, but we can quickly obtain a good result by running
the 3D reconstruction a few times (the system returns differ-
ent results each time).

Table 1: Time Statistics

Figure la | 1b | 1c | 1d | 7b | 8f | 12b

Time(sec) || 1.9 | 1.8 | 21 | 21|22 | 17| 20

(© The Eurographics Association 2010.

An informal user study was conducted to compare our
proposed method with the traditional inverse kinematics
method. An inverse kinematic method [ZB94] is imple-
mented in our system in which the user designs the pose
by manipulating the end effectors. Eight users participated
in the study, and 10 minutes were given for each interface to
let the users learn and practice pose design. We then asked
the users to design a 3D pose in both interfaces according
to given pose figures. Then, they were asked to compare
the two interfaces using a questionnaire. Figure 14 shows
the analysis of data from the post-study questionnaire. Some
users pointed out that it was difficult to estimate the length of
sketches in current system. They also expected to further edit
the stick figure so as to better design the pose. It took about
50 and 90 seconds to design a pose with the sketch interface
and inverse kinematics, respectively, for those with some 3D
software experiences. For novice users, it took about 70 and
150 seconds, respectively.

We intentionally separated sketching and 1K to clarify the
strengths and limitations of each. However, in practice, they
are complementary. It would be useful to start a design with
sketching and then use IK to refine the reconstructed pose.

6. Limitations

Our current implementation has several limitations. \We cur-
rently consider only collisions and balance as the interaction
between environment and the character. In fact, such inter-
action is usually very complex in reality. For example, we do
not consider a limb’s capacity to rest on a chair, which may
affect the balance constraint. The hip is deformable in real-
ity, and the interaction between hip and chair is very com-
plex. Besides, the determination of supporting polygon to-
tally rely on the user specification with pin tool. It would be
expected to automatically detected some extra contact point
thus to further reduce user’s burdern. To maintain an inter-
active speed, we currently use a quite small population size
for the G-A solver, which is sufficient for a regular sitting
pose. However, for some complex cases such as the one in
Figure 13, these parameters may not be able to generate a
valid pose.

Figure 13: Pose cannot be generated with our system.

J. Lin & T. lgarashi & J. Mitani & G. Saul / A Sketching Interface for Sitting-Pose Design

Figure 12: Collision handling results: (a) sketch figure; (b,c) with collision handling; (d,e) without collision handling.

7. Conclusion

We present a sketch-based system for the design of sitting
poses. With the sketch interface, the user only needs to draw
in a 2D canvas to design a pose. Our method is easier than
a traditional IK interface because the user does not need to
specify the depth of each joint, freeing the user from fre-
quent camera rotation. Our system is novel in its considera-
tion of the interaction between the character and the environ-
ment. Our prototype system successfully reconstructs plau-
sible 3D models in under a second, allowing for interactive
exploration.

In future work, we will continue to improve our system
based on the feedback from the user study and the limitations
mentioned above. A first step is to use biomechanics and er-
gonomics knowledge to constrain the search space and thus
improve the pose generated by the solver. We also plan to
introduce dynamic simulation to help detect extract contact
points for equilibrium computation. We may also explore
the possibilities of introducing more modeling operators to
edit the stick figures. It would be interesting to combine with
multi-touch during the edit of stick figure. We may also pro-
vide a suggestive interface to resolve the ambiguity in the
pose reconstruction.

| il wse i inserface dor Eu rh-'uin
Pose urslﬁ with the imerface & savisfaciony

P daSIRn weth tha inbertace i fast

Foie e win 1 it s cuate W hwich
"

Thas iriferl. F

|

Figure 14: Results of analysis of post-study questionnaire.
The rating scales at the bottom indicate how strongly partic-
ipants agreed with the statement (1 = strongly disagree, 5 =
strongly agree).

References

[AC04] A.ELGAMMAL, C.LEE: Inferring 3d body pose from
silhouettes using activity manifold learning. In Proceedings of

IEEE Conference on Computer Vision and Pattern Recognition
(2004), vol. 2, pp. 681-688.

[AT04] AGARWAL A., TRIGGS B.: 3d human pose from silhou-
ettes by relevance vector regression. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (2004),
vol. 2, pp. 882-888.

[BR0O4] BAERLOCHER P., RONAN B.: An inverse kinematic ar-
chitecture enforcing an arbitrary number of strict priority levels.
The Visual Computer 20, 6 (2004), 402-417.

[COL] COLDET: Free 3d collision detection library. http://
sourceforge.net/projects/coldet.

[DA95] DeB K., AGRAWAL R.: Simulated binary crossover for
continuous search space. Complex System 9, 2 (1995), 115-148.

[DAC*03] DAvis J., AGRAWALA M., CHUANG E., Popovic
Z., SALESIN D.: A sketching interface for articulated figure an-
imation. In Proceedings of ACM SIGGRAPH/EUROGRAPHICS
Symposium on Computer Animation 2003 (2003).

[GAL] GALIB: A c++ library of genetic algorithm components.
http://lancet.mit.edu/ga/.

[GMHP04] GRrRocHow K., MARTIN S. L., HERTZMANN A.,
Popovic Z.: Style-based inverse kinematics. ACM Transaci-
tons on Graphics 23, 3 (2004), 522-531.

[PB91] PHiLLIPS C. B., BADLER N. I.: Interactive behaviors
for bipedal articulated figures. Computer Graphics 25, 4 (1991),
359-362.

[RK92] RoNIE H., KEN P.: Controlling 3d objects by sketching
2d views. In Proc. SPIE (1992).

[Ros60] RoSEN J.: The gradient projection method for nonlinear
programming. part i. liner constraints. Journal of the Society for
Industrial and Applied Mathematics 8, 1 (1960), 181-217.

[Tay00] TAYLOR C.: Reconstruction of articulated objects from
point correspondences in a single uncalibrated image. Computer
Vision and Image Understanding 80, 3 (2000), 349-363.

[TMC09] TABANDEH S., MELEK W. W., CLARK C. M.: An
adaptive niching genetic algorithm approach for generating mul-
tiple solutions of serial manipulator inverse kinematics with ap-
plications to modular robots. Journal Robotica (2009).

[YNO3] YAMANE K., NAKAMURA Y.: Natural motion animation
through constraining and deconstraining at will. IEEE Transac-
tions On Visualization and Computer Graphics 9, 3 (2003), 352—
360.

[zB94] ZHAO J., BADLER N.: Inverse kinematics positioning
using nonlinear programming for highly articulated figures. ACM
Transactions on Graphics 13, 4 (1994), 313-336.

[ZLKO5] ZHAao0J., L1 L., KEONG K. C.: 3d posture reconstruc-
tion and human animation from 2d feature points. Computer
Graphics Forum 24, 4 (2005), 759-771.

(© The Eurographics Association 2010.

