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ABSTRACT 
As robots continue to enter people’s everyday spaces, we 
argue that it will be increasingly important to consider the 
robots’ movement style as an integral component of their 
interaction design. That is, aspects of the robot’s movement 
which are not directly related to a task at hand (e.g., pick up 
a ball) can have a strong impact on how people perceive 
that action (e.g., aggressively or hesitantly). We call these 
elements the movement style. We believe that perceptions 
of this kind of style will be highly dependent on the culture, 
group, or individual, and so people will need to have the 
ability to customize their robot. Therefore, in this work we 
use Style by Demonstration, a style focus on the more-
traditional programming by demonstration technique, and 
present the Puppet Dancer system, an interface for 
constructing paired and interactive robotic dances. In this 
paper we detail the Puppet Dancer interface and interaction 
design, explain our new algorithms for teaching dance by 
demonstration, and present the results from a formal 
qualitative study. 
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INTRODUCTION 
As the field of robotics continues to advance, more robots 
are being developed for public and domestic spaces: robots 
already help with housework (e.g., the iRobot Roomba 
robotic vacuum), provide patient companionship [1] and 
perform menial tasks [2] in hospitals. In these personal 
contexts, given that people tend to anthropomorphize 
robots they encounter in everyday life [4, 23, 27], we 
believe that people will be particularly sensitive to the 
robot’s movement style when completing given tasks: we 
use style to mean a robot’s “expressive movement…the 
way in which behavior is performed” [10]. For example, a 
robot that quickly lunges at a person to perform a 
handshake would likely be perceived as being hostile, 

while one which moves slowly may be seen as polite.  

Although this example may be extreme, it illustrates an 
important point of robot behaviors that interact with people: 
non-critical style movement variables outside the primary 
task or movement goal, such as movement speed, texture, 
or overall path, will impact how people perceive the 
interaction. We argue that this task-superfluous style layer 
of the robot’s movement behavior will be important to help 
robots appropriately “fit into” the social roles that people 
give them [15, 24].  

We believe that people’s preferences for a robot’s 
interaction style are likely to vary widely, and be very 
sensitive to the individual’s culture and tastes. As such, a 
challenge will be to tailor style to the individual; this is 
reminiscent of the popular customizations available for 
other personal electronics, such as skins, covers, or themes. 
We approach this problem by using programming by 
demonstration, a popular robot behavior authoring method 
where people are able to create robot behaviors simply by 
performing an exemplar, similar to how they may teach a 
person [6, 12]. Unfortunately, most programming by 
demonstration work either focuses on the goal only, 
ignoring the style, or does not produce an interactive result, 
severely limiting which robotic behaviors it can be used for. 
New algorithms and techniques need to be developed for 
the creation of the style component of interactive robot 
behaviors. We call this approach Style by Demonstration 
(SBD) simply as a means to differentiate it from the 

Figure 1. Dance partners: the leading puppet (cat, left) and 
following robot (dog, right). The user puppeteers the leader, 

and the follower interactively dances with the leader. 
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broader programing by demonstration, to explicitly target 
style. 

In this paper we present exploratory work with the primary 
purpose of building an SBD system and investigating how 
people interact with and engage this class of interface. We 
take an informal approach to defining style in this work, 
where we note that the notion of robotic movement style as 
we use it is intuitively understandable but perhaps more 
difficult to rigorously define. While we note that this 
challenge will need to be addressed to properly explore the 
SBD domain in depth, our less formal approach to defining 
style is sufficient to serve our current exploratory and 
initial-prototype purposes outlined below. 

Ultimately, SBD will only be one layer of the behavior-
creation problem, and will have to integrate seamlessly 
with robot sensor data and hard environmental and 
situational constraints that restrict movement. For this 
project, we target interactive robotic dance as an initial step 
toward the larger integrated vision as: a) dance is heavily 
style oriented and has fewer higher-level task aspects to be 
considered,    b) with our setup there are very few task-
oriented constraints (e.g., movement limitations, obstacles) 
to integrate, and c) paired dance is highly interactive with 
real-time input, just as we envision many robotic tasks will 
be.  

We present Puppet Dancer (Figure 1), an interactive 
robotic platform for authoring interactive, paired robotic 
dances by providing a demonstration. A user can teach one 
robot (the follower dog) how to interactively dance in real 
time with a puppet (the leader cat) by providing a 
demonstration of the desired dance (Figure 2, left side). 
Next, when the puppet leader is manipulated, the follower 
will automatically dance in the fashion demonstrated 
(Figure 2, right side). We further present a formal 
qualitative study which explores the overall question of 
how users will engage and hopefully use our SBD 
interfaces, and tests various components of the interface 
designs and the effectiveness of the underlying algorithm. 

This paper’s contributions are: 1) an SBD interface design 
and implementation for authoring interactive robotic dances, 
2) extensions of prior SBD work to achieve quality SBD 
results, and 3) a formal qualitative study on how users 
engage SBD. 

RELATED WORK 
There have been several related projects which explore the 
importance of a robot’s interactive movement style. It has 
been shown how the movement style of a search and rescue 
robot can impact the emotional state of victims [5], how the 
movement style of a vacuum robot can portray personalities 
[21, 26], and how even the movement of an abstract 
physical object such as a stick is enough for people to 
construct elaborate personalities [13]. Puppet Dancer builds 
on these results to create robots which portray interactive 
dance styles through their reactive movement patterns.  

Programming by demonstration is common for generating 
robot behaviors, e.g., for teaching navigation routes [14] or 
performing specific physical tasks [11, 12, 16, 19], and 
generally does not handle the style aspect of behavior. 
Notable exceptions include robots which learn human-like 
motions and poses [17] or explicitly learn stylistic 
movements [9, 20], although these copy and reproduce 
demonstrated movements verbatim and do not learn the 
interactive aspects of the behavior as with our dance. Two 
prior interactive SBD projects exist [25, 26] which learn 
interactive locomotion paths: we extend this work to the 
entirely different feature set of robot dancing. 

Robot customization has also been explored for the static 
physical appearance. The AIBO robot is packaged with 
stickers for customization and decoration, and people have 
been found to decorate (and even buy clothes) for their 
iRobot Roomba robotic vacuum cleaner [22, 23]. Thus we 
believe that the kinds of customization enabled by SBD and 
our Puppet Dancer system will be of interest to end users. 

Entertainment robots, such as the Puppet Dancer platform, 
is an emerging market and research area that has received a 
great deal of attention, for example, with products such as 
the Sony AIBO, the WowWee line (e.g., the Robosapien), 
and Keepon the dancing robot [18]. While some of these, 
such as the AIBO, do support rudimentary learning, we are 
not aware of any platform which can learn the style of an 
interactive behavior from a demonstration. 

PUPPET DANCER 
Puppet Dancer is a proof of concept for SBD, to 
demonstrate how people can teach interactive movement 
style to robots. The base idea is interactive, paired dance: 
there is a leader cat puppet and a follower dog robot 
(Figure 1, 2), where the follower moves in direct real-time 
response to the leader’s dance. For example, if the leader 
does a dip the follower may dance from side to side.   

A user can teach their desired interactive dance to the 
follower robot by simply playing with the stuffed toys to 
perform a paired dance, manipulating both the leader 
puppet and follower robot simultaneously (Figure 2, left). 
The follower monitors the exemplar dance and learns the 
interactive movements. Then, the user can puppeteer the 
leader, and the follower automatically dances interactively 
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Figure 2. Modes of interaction: authoring mode (left) where 
demonstrations are performed, and playing mode (right) 
where the follower dance is automatically generated. 



(Figure 2, right). Thus Puppet Dancer has two explicit 
modes: the authoring mode, where the person provides a 
demonstration of their desired interactive dance for the 
robot to learn, and the playing mode, where the person 
freely performs a dance using the leader puppet and the 
follower robot interacts using the learnt behavior. We 
expect that the user’s movements during playing will not be 
identical to those given during authoring, so Puppet Dancer 
must be robust enough to adapt in real-time to the user’s 
given dance input. 

The user can switch seamlessly between the authoring and 
the playing modes to provide additional training to the 
follower, for example, to add new interactive dance moves 
or to add additional examples of existing moves. The mode 
change is enabled via a toggle button (Figure 3) with the 
label “training” on it. When pressed, the training button 
starts blinking and stays depressed, and the system enters 
authoring mode. Pressing the button again makes the light 
extinguish and the button pops out, and the system is in 
playing mode. In addition, there is a “reset” button which, 
when pressed, makes the follower forget all training learned. 

Users can give real-time feedback during the playing mode 
to modify how the follower uses training data to improve 
the final result. This reinforcement-learning interface 
mechanism is enabled through two arcade-style press 
buttons mounted on the top of the Puppet Dancer platform 
(Figure 1, Figure 3). The user can press the green approve 
button to signal to the follower when they like the dancing, 
and can press the red disapprove button to signal dislike. 

Inspired by Human-Human Interaction 
The Puppet Master interface design was heavily motivated 
by how people interact when teaching each other. While a 
learner is trying a new task such as playing a guitar chord, 
after initial instruction the teacher will give regular verbal 
feedback as guidance, e.g., saying “yes” or “no” as the 
learner tries to shape the chord. We modeled this as our 
reinforcement-learning like/dislike buttons. In addition, we 
noticed how the teacher will sometimes stop the learner and 
provide additional demonstration, e.g., to teach the learner 
how to strum with one hand while holding the chord on the 
other, or to refine existing skills, e.g., saying “like this” 
while giving a physical demonstration. We modeled this 
aspect as the ability to add additional training at any time 
by entering the authoring mode. 

IMPLEMENTATION AND ALGORITHM 
Both the dog follower and the cat leader in our dance 
interface (Figure 1) are constructed from Robotis Bioloid 
kits. As shown in Figure 4, there is a 4 DOF spine made of 
servos inside the stuffed animals. For both, this spine can 
sense the shape of the dancer to record motions during 
authoring. For the dog follower, this spine provides the 
actuation required to perform the generated dance; the 
actuators have been disabled for the cat leader to make the 
spine easier to manually manipulate. 

Figure 4 illustrates the spine’s dimensions of movement: 
both the leader and follower can tilt their body forward and 
backward, pan from left to right (a side-to-side movement), 
turn or roll left and right, and tilt the neck up and down. 

Both dancers are mounted rigidly facing each other on a 
plastic box containing the controller boards (Figure 1), 
serving as a platform for the training (mode-change), reset, 
and reinforcement buttons (Figure 3). The box connects via 
USB to a PC and the Puppet Dancer algorithm. Robot 
communication was accomplished using the C# Dynamixel 
library (www.forestmoon.com), and the Puppet Dancer 
algorithm was written in C# .Net 4.0. We implemented the 
buttons and button lights using an Arduino Uno. 

Puppet Master Algorithm 
The learning algorithm used by Puppet Dancer is an 
extension of the Puppet Master SBD algorithm [25, 26] to 
the dancing feature set and the needs of this project. First 
we will summarize the existing Puppet Master algorithm 
before detailing our adaptation. 

The Puppet Master system, like Puppet Dancer, is an SBD 
platform for creating paired, style-oriented behaviors. 
Instead of dance, however, Puppet Master targets stylistic 
and interactive robot locomotion paths: the way a robot 
moves around a space to interact with a counterpart entity 
[25, 26]. Puppet Master also has both authoring and 
playing modes; however, with Puppet Master users cannot 
go back and forth between the modes: once initial 
demonstration is complete, training cannot be added. 

 
Figure 3. various buttons on the Puppet Dancer interface: the 

“reset” button erases demonstration data, the “training” 
button toggles between authoring and playing modes, and the 
large green and red buttons are the approve and disapprove 

reinforcement buttons, respectively. 
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Figure 4: One of the stuffed toys and the exposed servo spine 

embedded within. 



Puppet Master is a pattern matching algorithm that runs at 
relatively high speed (40hz [25] and 15hz [26] depending 
on the previous implementation) to achieve interactivity, 
and uses heavy smoothing and frequency-analysis filtering 
to maintain coherent results. For authoring, users provided 
demonstration of a robot interacting with a person 
(locomotion path only, e.g., the robot stalking the person). 
Then, during the playing mode, Puppet Master searches the 
training set for locomotion paths similar to the real-time 
state, to inform ongoing robot movements. Thus, the robot 
output is a kind of patch-work of training data pieces 
(Figure 5). Training-data is searched every time step to 
incorporate ongoing real-time user input, and uses a 
window of data (1s) compared against a window moving 
over the training data set: this history is used to maintain  
movement coherency, e.g., the robot circling the person.  

Here we explain the comparison metric. First, locomotion 
paths are distilled into defining scalar features: velocity, 
turning amount (left or right), relative look direction (one 
looking at the other), and relative position (e.g., behind and 
to the left of the other). These features form a vector at 
each time point that can be compared. The best-match 
training data is selected by minimizing the Euclidean 
distance between the real-time window of data and the 
moving window over the training data. 

The best-match training cannot be copied verbatim to robot 
output as the features generally conflict, e.g., the required 
movements to match target velocity (from the best match) 
may contradict the relative position, or a robot may need to 
turn one way to move toward the target location, violating 
the target orientation. Puppet Master uses a complex 
compromising robot-movement generation method which 
balances the demands from the various features. 

A major problem with the Puppet Master algorithm is 
movement jitter, where the robot will appear to vibrate 
rapidly in a way not consistent with the training data. This 
happens when the best-match source training data changes 
rapidly between conflicting source locations, when their 
match scores are similar; thus, rather than using coherent 
patches from the training data, in these instances only very 
small slices are used: this phenomenon is denoted in Figure 
5. Puppet Master’s solution was to a) heavily smooth the 
robot motions to filter the jitter and b) use frequency 
analysis to re-introduce the appropriate training movement 

detail that was lost in the filtering. This provided an 
improvement but results were not satisfactory to users [25]. 

The summary provided here was for the purpose of 
explaining the background to the Puppet Dancer platform; 
important details were omitted for brevity and we 
recommend those wishing to implement this work to refer 
to the original Puppet Master papers. 

Puppet Dancer Algorithm 
The Puppet Master algorithm has important limitations 
which we needed to address for Puppet Dancer: 
1. The locomotion-path feature set was fundamentally 

different from the dancing-robot body morphology. 

2. There was no support for adding additional training, the 
user had to start over 

3. The jitter was unacceptable for quality results. 

4. There was no reinforcement learning ability to modify 
and improve generation quality with user feedback. 

Feature Set and Output Generation 
We selected the Puppet Dancer features as head tilt, body 
roll, body pan, and body tilt, where the combined features 
of both dancers form the data vector used for training-data 
search. These features map one-to-one to the physical 
motors. This means that, unlike with Puppet Master where 
the abstracted features were inherently intertwined (e.g., 
velocity, relative position, and relative orientation), Puppet 
Dancer features are all independent, for example, head tilt 
output can be solved without affecting body roll output. 
This greatly simplified the generation problem. 

Output dance generation was done on each feature (i.e., 
each motor) independently. We could not set output motor 
locations directly from the training data as, for example, if 
a movement is intended to be slow (per the training) but the 
target is far from the current position, this would result in 
fast movements. Our solution is to apply delta movements 
(relative changes) from the training to the output motor’s 
current position so that desired movements would be 
reproduced at the current motor location. For example, if 
the robot did a circle in data at one location, we could 
reproduce that circle at the current location. To maintain 
desired absolute position we applied weights: deltas 
moving away from the global target were dampened to 
80%, while movements toward were amplified by 50%. 
This enabled the robot to tend toward the desired position 
while accurately performing the movements from the 
training data. 

We ran Puppet Dancer at 40 Hz. This was selected through 
experimentation: with higher speeds we noticed no 
improvement, but with lower speeds we had a loss of 
interactivity. 
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Figure 5. Real-time dance movement is a set of patches from 

the best-matching training data. Illustration only. 



Incrementally Adding Training Data 
We enabled the incremental additions of training data (as 
the user moved between the authoring and playing modes) 
by storing new training sessions as entirely new data sets. 
For searching, all data sets were searched for the best 
match. 

Managing Jitter 
Puppet Master’s jitter problem resulted when it rapidly 
jumped between dissimilar training data with similar best-
match scores (Figure 5). Puppet Dancer’s solution was to:  
a) encourage training data to be used in patches rather than 
single slices, and b) discourage repetitive jumping back and 
forth between similarly-scored training data. 

For part a) we first tried an enforced minimum patch length, 
e.g., 0.5s. Unfortunately, this hindered the sense of Puppet 
Dancer’s responsiveness when the leader made sudden 
movement changes, and so we implemented a hysteresis 
solution that we call sticky patches. Once a training region 
is selected as the best match, that region gets a bonus 
(100% of its given score) to subsequent best-match scoring 
such that Puppet Dancer tends to stick to that patch for 
generation, even if a slightly better match is found. A 
dramatically better patch with a better score can still 
overcome the sticky patch, maintaining high interactivity. 
This is illustrated in Figure 6: at points (a) and (b) the patch 
does not change even though a higher score was found 
elsewhere. The bonus is diminished linearly over 1.5s, so 
that quick patch changes are still possible without 
dramatically better best-matches. 

Even with sticky patches, the repetitive oscillation between 
similarly-scored training patches problem still happened 
(albeit slower than before). We discourage this (part b of 
our solution) with a short-term black list. Once a training 
region is selected as best match to generate output, if 
Puppet Dancer decides to move away from that region to a 
better match, the original region is blacklisted for 2s (80 
frames) so that it cannot be used again soon. 

The combination of the above two methods was successful 
enough in fixing the jitter problem that we removed the 
heavy output smoothing and frequency-analysis filtering 
techniques required in the original Puppet Master. 

Reinforcement Learning 
To implement the reinforcement-learning interface 

mechanism, i.e., the approve and disapprove interface 
buttons, we weighted the training data.  When one of the 
buttons are pressed, the last 1s (40 frames) training data 
used is applied a permanent weight: for approve, a 30% 
bonus is given, and for disapprove, a 30% penalty. The 
result is that approved regions are more likely to be used in 
the future, and disapproved regions are less likely. 

EVALUATION 
The primary purpose of our evaluation was to investigate: 
a) is our implementation and algorithm successful in 
enabling easy to use end-user authoring of interactive robot 
dance? b) does our SBD interaction approach make sense 
to users? and c) how do users engage SBD interfaces? 

We analyze implementation success in part by simply 
testing if participants can use Puppet Dancer to casually 
create custom interactive dances, without requiring training 
or assistance. We further compare our learning algorithm 
results to a behind-the-scenes experimenter remotely 
controlling the dance (Wizard of Oz technique): the 
“wizard” represents perhaps an ideal learning algorithm. 
The wizard observed the demonstration from the adjacent 
room using a hidden webcam, and remote controlled using 
a replica of the servo spine – manipulations were mirrored 
to the follower dog in real time.  

We also specifically test the SBD reinforcement-learning 
mechanism, and in addition, explore if the follower robot 
needs to be interactive: we compare a non-interactive 
follower (simply dances without monitoring the leader) to 
our interactive version. We achieved this by having the dog 
replay random patches (2s long) from the training data with 
smoothed transitions; an approach taken from computer 
graphics texture synthesis [7]. 

Finally, we investigate overall appropriateness of our 
method: if our interaction design supports how participants 
actually want to create robot dances. We take a qualitative 
evaluation approach to study system use in comparison to 
expectations: for example, one early criticism of our work 
was that people will simply want a mirror behavior and do 
not want to customize their own. Ultimately, we aim to 
build understanding of how people use SBD, how they 
engage the demonstration task, and which methods they 
employ to work toward their final dance result.  

Pilot Studies 
We conducted several rounds of informal pilot studies to 
develop our evaluation method. One result was that we 
decided to have both an experimenter and the participant 
perform initial authoring together: an experimenter moved 
the leader while the participant used the follower to show 
their desired dance. Pilot studies showed that participants 
found it difficult early in the experiment to control both 
robots simultaneously, as the overall interactive SBD idea 
was new; later in the study participants perform 
simultaneous control. Further, the approach of having two 
participants (one for each the leader and follower) created 

 

 

 

 

 

Figure 6. With sticky patches source data region may not 
change, even with a better match score (points a and b). 

Illustration only. 
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complications such as the leader evaluating results without 
knowing the follower’s intent. With an experimenter-
controlled leader, participants focused well on the follower 
training, and this also improves leader-motion consistency 
across participants.  

We also found that the beat that participants danced to 
would drift, particularly between the authoring and playing 
modes. The Puppet Dancer algorithm is sensitive to the 
timing of dance moves, and so this hindered the pattern 
matching and lowered the quality of the results. To solve 
this we added music to give the participants a consistent 
baseline for rhythmic movements. 

Tasks and Procedure 
The study consisted of a comparison phase that compared 
Puppet Dancer against other dance generation methods, a 
feedback phase that targeted the reinforcement learning 
mechanism, and an open-ended phase that explored how 
participants engage the overall training process when not 
given constraints (Table 1). 

We first administered a demographics questionnaire, 
followed by a short (~2 min.) introduction to Puppet 
Dancer that focused on the SBD concept and included a 
demonstration of how to physically manipulate the robots. 

For the comparison phase participants first authored a 
custom interactive robot dance by manipulating the 
follower dog while an experimenter moved the leader cat 
through a scripted and looped full-range-of-motion dance. 
Participants could demonstrate as much or as little as they 
felt was required to show their entire dance.  During this 
phase the feedback, training and reset buttons were all 
hidden; participants verbally indicated to the experimenter 
when they were finished training. We used the song “Da 
Funk” by Daft Punk as background music. After 
demonstration participants were asked to control the leader 
to interact with the follower to evaluate the results for three 
cases: the a) Puppet Dancer algorithm, the b) remote-
control wizard, and the c) non-interactive dance, order 
counter-balanced. Participants were not informed of the 
cases and were simply told that there were three different 
learning methods. We administered a short questionnaire 

after each case where participants gave open-ended 
feedback, rated the result using Likert-like scales, and rated 
their impression of the robot using the Godspeed 
anthropomorphism, animacy, likeability, and perceived 
Intelligence scales [3]. At the end of this phase participants 
ranked the three behaviors. 

For the feedback phase participants were first introduced to 
the approve and disapprove buttons (we un-hid them at this 
point). They were asked to manipulate the leader to dance 
with the follower, and to use the buttons to improve the 
given behavior result. We used the same training data from 
the comparison phase and only the Puppet Dancer 
algorithm. The independent variable in this phase was the 
reinforcement method used, manipulated within subjects 
and order counter-balanced: either our reinforcement-
learning method, or a variant where button presses were 
actually ignored, unbeknownst to the participant. This 
phase also used the song “Da Funk” by Daft Punk. 

In the open-ended phase participants were introduced to the 
buttons and functionality that enabled them to add training 
incrementally or to “reset” learning to start over, and were 
given a chance to test the functionality to ensure they 
understood the controls. This phase was unstructured and 
participants were encouraged to just play with the system 
and use it as they wish to create a new interactive dance. 
They were asked to control both the leader and follower 
simultaneously, to aid the freeform nature of the phase, and 
the user feedback buttons were also enabled. During this 
phase we used a different song “Harder Better Faster 
Stronger” by Daft Punk, a change for variety. Participants 
were encouraged to use the system for as long as they like. 
Once finished, they completed a post-test questionnaire. 

We recruited 11 participants from the general population in 
Tokyo, Japan, and each participant was paid 3000 JPY ($37 
2011 USD) for their one hour participation; 4 female / 7 
male, aged 20-52 (M=29.0). Some numbers presented in 
the analysis are lower than the total of 11 participants: in 
two cases, robot failure resulted in an early study finish, 
and in one case the video camera failed. Due to the reduced 
power of non-parametric statistics required to analyze 
Likert-like participant responses and behavior ranking [8], 
and given our small sample size, we have an increased risk 
of Type II errors (false-negatives). As such we present our 
data directly and discuss the overall trend in relation to our 
qualitative methods, and rely less on statistical analysis. 

Comparison Phase Results 
One concern of our work was that participants would 
simply want a follower which only mimicked the leader’s 
movements or mirrored them; to investigate this we 
analyzed our video data to explore how people engaged the 
training. Of the 10 cases for which we had video, 2 
participants were found creating a mimic behavior. The 
remaining 8 participants performed more complex, 
personalized dances which were interactive but did not 
directly mimic the leader’s movements. Thus this supports 

phase variable purpose 

comparison dance algorithm: 
Puppet Dancer, 
wizard, non-
interactive 

compare Puppet Dancer 
results to a person and 
to a non-interactive 
dance 

feedback feedback buttons 
enabled / disabled 

explore how feedback 
buttons are used, if 
algorithm works 

open-ended none explore freeform 
engagement of SBD and 
various mechanisms 

Table 1. breakdown of the study organization 



the idea that participants will have individualized and 
personal dances to teach the robot, rather than wanting 
mimicry only. 

During the demonstration component, only one participant 
(who had a strong dancing background) commented that 
they wanted to also control the leader during authoring 
instead of the experimenter. This same participant also 
requested that the follower should learn how to dance 
appropriately to the mood of the music, e.g., differently for 
slow or energetic sections. No other participant commented 
on or was observed in the video data to alter their dance 
based on the music changes. 

When participants manipulated the leader to test the 
follower’s dance, some would make the leader cat dance in 
what appeared to be a free-form fashion, and themselves 
primarily appeared to be looking at the overall result. Five 
participants took this approach for Puppet Dancer, and two 
for the wizard and non-interactive cases. Two participants 
did this for all three. Other participants, however, would 
take a more deliberate leading approach where they would, 
for example, do a movement with the leader, and then stop 
to observe the follower’s reaction, testing for the moves 
that they taught; these participants would commonly repeat 
a move and slow down their motions to be more deliberate, 
if they did not get their desired result. Three participants 
were observed doing this leading for Puppet Dancer 
generation, six for wizard and six for non-interactive. Five 
of these six participants overlapped for doing this for 
wizard and non-interactive, and the three Puppet Party 
leading participants used leading for all three. This leading 
behavior is particularly relevant to our Puppet Dancer 
algorithm, as a slowed-down deliberate leading motion 
does not match well with a more-natural motion as part of a 
dance: Puppet Dancer is highly time and speed sensitive. 

Table 2 shows participant ratings for each algorithm in 
terms of how well they thought the follower learned the 
dance. Friedman’s ANOVA found a significant difference 
between the rankings, X2(2)=4.923, p<0.05, although post-
hoc Wilcoxon Signed Ranks tests failed to reveal additional 
relationships; Friedman average rankings: Puppet Dancer 
2.0, wizard 2.36, non-interactive 1.64. 

Table 3 shows how participants ranked the three behaviors 
in terms of their favorite result. Although the differences 
were not statistically significant, and no difference was 
found for how participants rated the three algorithms using 
the Godspeed questionnaires, this table suggests that the 
non-interactive was least liked. From our open coding of 
the video data, we noted that participants would, at times, 
exhibit frustration in their facial expressions and body 
language (e.g., by sighing and shaking their head). In the 10 
cases for which we had video data, this happened with one 
participant for the Puppet Dancer case, 4 times for the non-
interactive case, and was not observed for the wizard case. 
Overall, we believe that the above results lend support for 
the importance of having the robot’s behavior to be real-

time interactive, where generated movements are directly 
dependent on not only the robot’s prior movements, but the 
ongoing movement set of the counterpart dancer. 

Feedback Phase Results 
Overall, we found no effect of the enabled / disabled 
condition on how participants used the buttons (e.g., 
frequency); it appeared as if they used the buttons the same 
way in both cases. Button use frequency depended on the 
participant, with number of hits ranging from 3 hits to 49 
hits before the participant decided that they were done. One 
final observation was that all participants – save one – 
would hit a button once and watch the result before hitting 
again. The exception case would rapid fire the button until 
they got the desired result.  

Participants rated the reinforcement-learning enabled 
condition as being more effective for improving the dance 
than the feedback-disabled condition, T=2.5, p<0.05, r= -
0.47. There was no significant difference in how 
participants rated the robot on the Godspeed scales between 
conditions. When asked whether the like / dislike functions 
were useful, 3 disagreed, 1 was neutral, and 5 were positive. 
75% (6) preferred the buttons on, and 25% (2) preferred the 
buttons off (1 did not answer). 

Open-Ended Phase Results 
Due to technical difficulties two participants did not 
complete this phase, and one participant was not video 
recorded. As such, only 8 participants are included in the 
video analysis.  

We observed that participants engaged the interface in 
different ways to achieve the SBD goal of creating their 
own custom dance and enjoying the result. Three of the 
eight participants simply did a single demonstration attempt, 
and did not append training: two of these relied heavily on 
the reinforcement buttons to shape the result, while one 
user simply played with the result for an extended amount 
of time without trying to improve it. 

most negative      most positive 
 1 2 3 4 5  

Puppet Dancer 1 3 1 4 2  
Wizard 0 3 1 4 3  
Non-Interactive 1 6 1 2 1  

Table 2. Frequency table of participant responses to "The 
robot learned the dance as expected," per behavior. 5 is 

most positive. 

 

 1st 2nd 3rd 
Puppet Dancer 5 3 3 
wizard 5 3 3 
non-interactive 1 5 5 

Table 3. Frequency table of participant rankings of the 
three behavior types 



In contrast, another two of the eight participants used the 
reset mechanism to start the dance over from scratch. One 
used the reset mechanism several (3) times to try different 
types of behaviors, playing with each result for a lengthy 
time; this participant did not use the reinforcement buttons 
to improve the dances. The other participant relied heavily 
on the reinforcement buttons to polish a dance, but at one 
point gave up and used the reset mechanism to re-try the 
same dance style from scratch. 

Finally, the last three participants created their dances in 
parts using the training-addition mechanism. Two of these 
used the addition to build the dance up in small pieces (3 
additions) that they each polished using reinforcement, i.e., 
to first train one particular dance move, perfect it using 
reinforcement, and then train an additional move.  

No participant was found to use both the reset and addition 
mechanisms in their training and all participants but one 
used the reinforcement buttons. In addition, all participants 
but one were observed teaching the follower to interact 
directly with the leader’s movements, in contrast to the 
exception who simply moved the puppets in a seemingly 
non-interactive way. Finally, three participants would 
heavily lead the dance to test the result. 

Post-Test Written Feedback Results 
Most participants commented on the “fun” and 
“enjoyment” elements of being able to program the robot 
through demonstration, e.g., “it was fun because I could 
program the robot to act as I like,” and that the task of 
dancing was enjoyable:  “Because I was teaching how to 
dance, it was great and easy to use.” In particular, several 
pointed out the importance of the attractive stuffed toys to 
the experience: “because you used the animal plushies, the 
movements were cute and I had fun,” and “I was happy 
from the overall cute feeling.” One participant related this 
enjoyment to the act of teaching: “Being able to program 
my own robot is very useful. In addition, because you can 
customize it, it is easy to build personal attachment, and 
you see it as a friend you can communicate with.” One 
person, however, noted that “because of the mechanical 
[servo] sound, I could not help but perceive them as 
‘machines’,” and another said “with the slow movement it 
was cute, with the quick movement it was a little scary and 
creepy.”  

Participants heavily commented on the usefulness of the 
various training capabilities, e.g., “it was extremely good 
that I could use the training button to add more for the 
robot to learn,” or that “it was useful to be able to modify 
parts of the training using the like / dislike buttons.” The 
reinforcement buttons in particular were praised for helping 
to build the learning scenario: “in the case with having the 
like and dislike buttons I really felt that the robot is 
learning,” and “By using the like / dislike buttons I really 
felt like I could participate.” Several participants noted the 
importance of exploration, e.g., “from exploring the 
meaning of all the buttons, and from seeing the robot 

repeatedly respond to my directions, the feeling that the 
robot was learning emerged.” 

There was some confusion and negative feedback regarding 
the use of the buttons, however, and how it fit into the 
overall training system. For example, “I could not properly 
confirm if, when I added training similar to previously 
existing training, if it overwrote that” and one said “I did 
not fully understand how to use the reset button so I 
finished without using it.” One person highlighted the 
inability to undo an action, e.g., “when [they] accidentally 
pushed the wrong like / dislike button.” 

There were only a few negative comments on the learning 
ability, e.g., “there were also times when it moved 
differently than I expected,” and one participant noted that, 
at “times it moved better than I expected,” and further, that 
“it was great to teach these times using the like / dislike 
buttons.”  

There was very little feedback on the physical interface 
itself. One comment was that “it would have been good to 
have the buttons attached to the stuffed animals” rather 
than on the box. 

Finally, one participant expressed confusion regarding the 
paired dance: “more than thinking of how the cat [leader] 
should dance with the dog, I was thinking of how the dog 
[follower] should dance to the sound, or dance in a 
particular sequence.” 

DISCUSSION 
All participants engaged our interface, clearly understood 
the tasks with minimal instruction, and were able to author 
a wide range of interactive dances. Thus, our study 
supports our primary research questions, that a) our 
implementation and algorithm were successful in enabling 
easy to use end-user authoring of interactive robot dance, 
and b) the overall SBD interaction approach itself makes 
sense to users. Below we detail additional findings: 

Individuals Engage SBD Differently – We were surprised 
at the wide range of SBD engagement styles that emerged 
from our study, and that participants used the tools 
provided to them in greatly different ways, for example, 
that some built behaviors piece-wise while others created 
them at once monolithically. No “average” user emerged 
from our study and there was no overarching theme or 
method to dance creation. This points to the importance of 
having a flexible SBD interface that supports various rapid 
prototyping and refinement methods to match individual 
preferences. 

The Interactive Component is Important – Given that 
participants tended toward interactive dances in the free-
form stage, and, following from the positive suggestions 
from our quantitative results, this shows the importance of 
having an interactive stylistic dance instead of a static pre-
scripted dance. 



People Want Fine-Resolution Behavior Shaping – 
Participants cited heavily the importance of the approve / 
disapprove reinforcement mechanism and used it often to 
refine behaviors. We believe that this points to the 
importance of providing SBD users with a fine-detailed and 
incremental way of modifying their behavior without 
resorting to the core demonstration mechanism. 

People Test Results Using Leading Behavior – 
Participants used leading behavior, that is, repeatedly led 
the leader cat into moves to elicit the desired follower dog 
reaction, to test the learning algorithm. We think that 
perhaps this emerged as some participants may have 
believed they were intended to test the learning system. As 
we envision that end-users would rather play with the 
dance as an entertainment device, we recommend that 
future studies should directly attempt to minimize this 
effect. 

FUTURE WORK AND LIMITATIONS 
This paper is a preliminary step in the broader direction of 
SBD, and below we outline some directions for future 
investigation. Primarily, our implementation uses two 
simple 4-DOF robots and we need to consider more 
advanced robots such as humanoids, where the movement 
capabilities are at the same time more complex and more 
powerful. In addition to the need to adopt the Puppet 
Dancer algorithm to these more complex cases, there 
remains a difficult problem of performing the 
demonstration: which interfaces can we develop that 
simultaneously enable people to demonstrate their desired 
style while enforcing the movement capabilities and 
constraints of the robot? 

We believe that the benefits of the SBD approach goes far 
beyond choreographing entertainment robots to dance and 
can be applied to authoring movements for more general-
purpose robots. For example, a robot developed for a 
particular task such as waiting a home table can be shipped 
with a generic style programmed, with the understanding 
that end users could show the robot their particular tastes: 
this could greatly simplify the pre-programming required 
while at the same time improving versatility of the robot. 
With this in mind, future work needs to explore how to 
mesh hard-programmed task-oriented behaviors with SBD. 

Through the process of designing and conducting this 
evaluation, and analyzing the results, we have spent 
considerable time contemplating how best to evaluate the 
quality of the Puppet Dancer algorithm generation results. 
In this project we decided to rely on participant reflection 
in a comparative study, but this remains an open question 
for future SBD work. Another example is that we used 
open-ended behavior dance, although it is not clear if this 
may have been confusing for participants, and we should 
explore if it would be more effective to provide clearer 
target dances. 

In this paper we rely on the intuitive understanding of 
robotic behavior style, but do not formally explore what 
exactly style is. Future work will have to unpack the 
various variables which contribute to the impression of 
style, such as acceleration, hesitation, fluidity, etc. Further, 
we will  have to look at the entire style envelope from 
motor responsiveness, to secondary motions such as the 
toy’s floppy arms and ears, to the particular culture and 
context (or role of gender) within which the interaction 
takes place. Unpacking these variables will aid in 
developing clearer technical and evaluation targets, 
research methodologies, and ultimately more targeted and 
applicable results. 

CONCLUSION 
In this paper we presented Puppet Dancer, a Style by 
Demonstration platform for the creation of interactive, 
paired robot dance. We detailed our original algorithm, 
with several important extensions and improvements over 
prior work, and a formal qualitative study that 
demonstrated the success of Puppet Dancer and provided 
detailed insight into how people use Style by 
Demonstration in practice. Overall, we anticipate that Style 
by Demonstration will continue to emerge as an important 
domain in HRI, and that the interface design, algorithm, 
and detailed evaluation presented here will contribute to 
this field. 
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