
Style by Demonstration for Interactive Robot Motion
Jeffrey Allen,1 James E. Young,2 Daisuke Sakamoto,1,3 Takeo Igarashi1,3

jeffrey.c.allen@gmail.com, young@cs.umanitoba.ca, sakamoto@designinterface.jp, takeo@acm.org
1JST ERATO
Tokyo, Japan

2University of Manitoba
Winnipeg, MB, Canada

3The University of Tokyo
Tokyo, Japan

ABSTRACT
As robots continue to enter people’s everyday spaces, we
argue that it will be increasingly important to consider the
robots’ movement style as an integral component of their
interaction design. That is, aspects of the robot’s movement
which are not directly related to a task at hand (e.g., pick up
a ball) can have a strong impact on how people perceive
that action (e.g., aggressively or hesitantly). We call these
elements the movement style. We believe that perceptions
of this kind of style will be highly dependent on the culture,
group, or individual, and so people will need to have the
ability to customize their robot. Therefore, in this work we
use Style by Demonstration, a style focus on the more-
traditional programming by demonstration technique, and
present the Puppet Dancer system, an interface for
constructing paired and interactive robotic dances. In this
paper we detail the Puppet Dancer interface and interaction
design, explain our new algorithms for teaching dance by
demonstration, and present the results from a formal
qualitative study.

Author Keywords
Human-Robot Interaction, Human-Computer Interaction,
Style by Demonstration, Qualitative Evaluation.

ACM Classification Keywords
H.5.2 [Information systems]: Information Interfaces and
Presentation – User Interfaces.

INTRODUCTION
As the field of robotics continues to advance, more robots
are being developed for public and domestic spaces: robots
already help with housework (e.g., the iRobot Roomba
robotic vacuum), provide patient companionship [1] and
perform menial tasks [2] in hospitals. In these personal
contexts, given that people tend to anthropomorphize
robots they encounter in everyday life [4, 23, 27], we
believe that people will be particularly sensitive to the
robot’s movement style when completing given tasks: we
use style to mean a robot’s “expressive movement…the
way in which behavior is performed” [10]. For example, a
robot that quickly lunges at a person to perform a
handshake would likely be perceived as being hostile,

while one which moves slowly may be seen as polite.

Although this example may be extreme, it illustrates an
important point of robot behaviors that interact with people:
non-critical style movement variables outside the primary
task or movement goal, such as movement speed, texture,
or overall path, will impact how people perceive the
interaction. We argue that this task-superfluous style layer
of the robot’s movement behavior will be important to help
robots appropriately “fit into” the social roles that people
give them [15, 24].

We believe that people’s preferences for a robot’s
interaction style are likely to vary widely, and be very
sensitive to the individual’s culture and tastes. As such, a
challenge will be to tailor style to the individual; this is
reminiscent of the popular customizations available for
other personal electronics, such as skins, covers, or themes.
We approach this problem by using programming by
demonstration, a popular robot behavior authoring method
where people are able to create robot behaviors simply by
performing an exemplar, similar to how they may teach a
person [6, 12]. Unfortunately, most programming by
demonstration work either focuses on the goal only,
ignoring the style, or does not produce an interactive result,
severely limiting which robotic behaviors it can be used for.
New algorithms and techniques need to be developed for
the creation of the style component of interactive robot
behaviors. We call this approach Style by Demonstration
(SBD) simply as a means to differentiate it from the

Figure 1. Dance partners: the leading puppet (cat, left) and
following robot (dog, right). The user puppeteers the leader,

and the follower interactively dances with the leader.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DIS 2012, June 11-15, 2012, Newcastle, UK.
Copyright 2012 ACM 978-1-4503-1210-3/12/06...$10.00.

broader programing by demonstration, to explicitly target
style.

In this paper we present exploratory work with the primary
purpose of building an SBD system and investigating how
people interact with and engage this class of interface. We
take an informal approach to defining style in this work,
where we note that the notion of robotic movement style as
we use it is intuitively understandable but perhaps more
difficult to rigorously define. While we note that this
challenge will need to be addressed to properly explore the
SBD domain in depth, our less formal approach to defining
style is sufficient to serve our current exploratory and
initial-prototype purposes outlined below.

Ultimately, SBD will only be one layer of the behavior-
creation problem, and will have to integrate seamlessly
with robot sensor data and hard environmental and
situational constraints that restrict movement. For this
project, we target interactive robotic dance as an initial step
toward the larger integrated vision as: a) dance is heavily
style oriented and has fewer higher-level task aspects to be
considered, b) with our setup there are very few task-
oriented constraints (e.g., movement limitations, obstacles)
to integrate, and c) paired dance is highly interactive with
real-time input, just as we envision many robotic tasks will
be.

We present Puppet Dancer (Figure 1), an interactive
robotic platform for authoring interactive, paired robotic
dances by providing a demonstration. A user can teach one
robot (the follower dog) how to interactively dance in real
time with a puppet (the leader cat) by providing a
demonstration of the desired dance (Figure 2, left side).
Next, when the puppet leader is manipulated, the follower
will automatically dance in the fashion demonstrated
(Figure 2, right side). We further present a formal
qualitative study which explores the overall question of
how users will engage and hopefully use our SBD
interfaces, and tests various components of the interface
designs and the effectiveness of the underlying algorithm.

This paper’s contributions are: 1) an SBD interface design
and implementation for authoring interactive robotic dances,
2) extensions of prior SBD work to achieve quality SBD
results, and 3) a formal qualitative study on how users
engage SBD.

RELATED WORK
There have been several related projects which explore the
importance of a robot’s interactive movement style. It has
been shown how the movement style of a search and rescue
robot can impact the emotional state of victims [5], how the
movement style of a vacuum robot can portray personalities
[21, 26], and how even the movement of an abstract
physical object such as a stick is enough for people to
construct elaborate personalities [13]. Puppet Dancer builds
on these results to create robots which portray interactive
dance styles through their reactive movement patterns.

Programming by demonstration is common for generating
robot behaviors, e.g., for teaching navigation routes [14] or
performing specific physical tasks [11, 12, 16, 19], and
generally does not handle the style aspect of behavior.
Notable exceptions include robots which learn human-like
motions and poses [17] or explicitly learn stylistic
movements [9, 20], although these copy and reproduce
demonstrated movements verbatim and do not learn the
interactive aspects of the behavior as with our dance. Two
prior interactive SBD projects exist [25, 26] which learn
interactive locomotion paths: we extend this work to the
entirely different feature set of robot dancing.

Robot customization has also been explored for the static
physical appearance. The AIBO robot is packaged with
stickers for customization and decoration, and people have
been found to decorate (and even buy clothes) for their
iRobot Roomba robotic vacuum cleaner [22, 23]. Thus we
believe that the kinds of customization enabled by SBD and
our Puppet Dancer system will be of interest to end users.

Entertainment robots, such as the Puppet Dancer platform,
is an emerging market and research area that has received a
great deal of attention, for example, with products such as
the Sony AIBO, the WowWee line (e.g., the Robosapien),
and Keepon the dancing robot [18]. While some of these,
such as the AIBO, do support rudimentary learning, we are
not aware of any platform which can learn the style of an
interactive behavior from a demonstration.

PUPPET DANCER
Puppet Dancer is a proof of concept for SBD, to
demonstrate how people can teach interactive movement
style to robots. The base idea is interactive, paired dance:
there is a leader cat puppet and a follower dog robot
(Figure 1, 2), where the follower moves in direct real-time
response to the leader’s dance. For example, if the leader
does a dip the follower may dance from side to side.

A user can teach their desired interactive dance to the
follower robot by simply playing with the stuffed toys to
perform a paired dance, manipulating both the leader
puppet and follower robot simultaneously (Figure 2, left).
The follower monitors the exemplar dance and learns the
interactive movements. Then, the user can puppeteer the
leader, and the follower automatically dances interactively

Authoring Mode Playing Mode

Leader
Follower

Leader
Follower

Figure 2. Modes of interaction: authoring mode (left) where
demonstrations are performed, and playing mode (right)
where the follower dance is automatically generated.

(Figure 2, right). Thus Puppet Dancer has two explicit
modes: the authoring mode, where the person provides a
demonstration of their desired interactive dance for the
robot to learn, and the playing mode, where the person
freely performs a dance using the leader puppet and the
follower robot interacts using the learnt behavior. We
expect that the user’s movements during playing will not be
identical to those given during authoring, so Puppet Dancer
must be robust enough to adapt in real-time to the user’s
given dance input.

The user can switch seamlessly between the authoring and
the playing modes to provide additional training to the
follower, for example, to add new interactive dance moves
or to add additional examples of existing moves. The mode
change is enabled via a toggle button (Figure 3) with the
label “training” on it. When pressed, the training button
starts blinking and stays depressed, and the system enters
authoring mode. Pressing the button again makes the light
extinguish and the button pops out, and the system is in
playing mode. In addition, there is a “reset” button which,
when pressed, makes the follower forget all training learned.

Users can give real-time feedback during the playing mode
to modify how the follower uses training data to improve
the final result. This reinforcement-learning interface
mechanism is enabled through two arcade-style press
buttons mounted on the top of the Puppet Dancer platform
(Figure 1, Figure 3). The user can press the green approve
button to signal to the follower when they like the dancing,
and can press the red disapprove button to signal dislike.

Inspired by Human-Human Interaction
The Puppet Master interface design was heavily motivated
by how people interact when teaching each other. While a
learner is trying a new task such as playing a guitar chord,
after initial instruction the teacher will give regular verbal
feedback as guidance, e.g., saying “yes” or “no” as the
learner tries to shape the chord. We modeled this as our
reinforcement-learning like/dislike buttons. In addition, we
noticed how the teacher will sometimes stop the learner and
provide additional demonstration, e.g., to teach the learner
how to strum with one hand while holding the chord on the
other, or to refine existing skills, e.g., saying “like this”
while giving a physical demonstration. We modeled this
aspect as the ability to add additional training at any time
by entering the authoring mode.

IMPLEMENTATION AND ALGORITHM
Both the dog follower and the cat leader in our dance
interface (Figure 1) are constructed from Robotis Bioloid
kits. As shown in Figure 4, there is a 4 DOF spine made of
servos inside the stuffed animals. For both, this spine can
sense the shape of the dancer to record motions during
authoring. For the dog follower, this spine provides the
actuation required to perform the generated dance; the
actuators have been disabled for the cat leader to make the
spine easier to manually manipulate.

Figure 4 illustrates the spine’s dimensions of movement:
both the leader and follower can tilt their body forward and
backward, pan from left to right (a side-to-side movement),
turn or roll left and right, and tilt the neck up and down.

Both dancers are mounted rigidly facing each other on a
plastic box containing the controller boards (Figure 1),
serving as a platform for the training (mode-change), reset,
and reinforcement buttons (Figure 3). The box connects via
USB to a PC and the Puppet Dancer algorithm. Robot
communication was accomplished using the C# Dynamixel
library (www.forestmoon.com), and the Puppet Dancer
algorithm was written in C# .Net 4.0. We implemented the
buttons and button lights using an Arduino Uno.

Puppet Master Algorithm
The learning algorithm used by Puppet Dancer is an
extension of the Puppet Master SBD algorithm [25, 26] to
the dancing feature set and the needs of this project. First
we will summarize the existing Puppet Master algorithm
before detailing our adaptation.

The Puppet Master system, like Puppet Dancer, is an SBD
platform for creating paired, style-oriented behaviors.
Instead of dance, however, Puppet Master targets stylistic
and interactive robot locomotion paths: the way a robot
moves around a space to interact with a counterpart entity
[25, 26]. Puppet Master also has both authoring and
playing modes; however, with Puppet Master users cannot
go back and forth between the modes: once initial
demonstration is complete, training cannot be added.

Figure 3. various buttons on the Puppet Dancer interface: the

“reset” button erases demonstration data, the “training”
button toggles between authoring and playing modes, and the
large green and red buttons are the approve and disapprove

reinforcement buttons, respectively.

4th.Tilt Head

3rd.Roll Body

2nd.Pan Body

1st.Tilt Body

Figure 4: One of the stuffed toys and the exposed servo spine

embedded within.

Puppet Master is a pattern matching algorithm that runs at
relatively high speed (40hz [25] and 15hz [26] depending
on the previous implementation) to achieve interactivity,
and uses heavy smoothing and frequency-analysis filtering
to maintain coherent results. For authoring, users provided
demonstration of a robot interacting with a person
(locomotion path only, e.g., the robot stalking the person).
Then, during the playing mode, Puppet Master searches the
training set for locomotion paths similar to the real-time
state, to inform ongoing robot movements. Thus, the robot
output is a kind of patch-work of training data pieces
(Figure 5). Training-data is searched every time step to
incorporate ongoing real-time user input, and uses a
window of data (1s) compared against a window moving
over the training data set: this history is used to maintain
movement coherency, e.g., the robot circling the person.

Here we explain the comparison metric. First, locomotion
paths are distilled into defining scalar features: velocity,
turning amount (left or right), relative look direction (one
looking at the other), and relative position (e.g., behind and
to the left of the other). These features form a vector at
each time point that can be compared. The best-match
training data is selected by minimizing the Euclidean
distance between the real-time window of data and the
moving window over the training data.

The best-match training cannot be copied verbatim to robot
output as the features generally conflict, e.g., the required
movements to match target velocity (from the best match)
may contradict the relative position, or a robot may need to
turn one way to move toward the target location, violating
the target orientation. Puppet Master uses a complex
compromising robot-movement generation method which
balances the demands from the various features.

A major problem with the Puppet Master algorithm is
movement jitter, where the robot will appear to vibrate
rapidly in a way not consistent with the training data. This
happens when the best-match source training data changes
rapidly between conflicting source locations, when their
match scores are similar; thus, rather than using coherent
patches from the training data, in these instances only very
small slices are used: this phenomenon is denoted in Figure
5. Puppet Master’s solution was to a) heavily smooth the
robot motions to filter the jitter and b) use frequency
analysis to re-introduce the appropriate training movement

detail that was lost in the filtering. This provided an
improvement but results were not satisfactory to users [25].

The summary provided here was for the purpose of
explaining the background to the Puppet Dancer platform;
important details were omitted for brevity and we
recommend those wishing to implement this work to refer
to the original Puppet Master papers.

Puppet Dancer Algorithm
The Puppet Master algorithm has important limitations
which we needed to address for Puppet Dancer:
1. The locomotion-path feature set was fundamentally

different from the dancing-robot body morphology.

2. There was no support for adding additional training, the
user had to start over

3. The jitter was unacceptable for quality results.

4. There was no reinforcement learning ability to modify
and improve generation quality with user feedback.

Feature Set and Output Generation
We selected the Puppet Dancer features as head tilt, body
roll, body pan, and body tilt, where the combined features
of both dancers form the data vector used for training-data
search. These features map one-to-one to the physical
motors. This means that, unlike with Puppet Master where
the abstracted features were inherently intertwined (e.g.,
velocity, relative position, and relative orientation), Puppet
Dancer features are all independent, for example, head tilt
output can be solved without affecting body roll output.
This greatly simplified the generation problem.

Output dance generation was done on each feature (i.e.,
each motor) independently. We could not set output motor
locations directly from the training data as, for example, if
a movement is intended to be slow (per the training) but the
target is far from the current position, this would result in
fast movements. Our solution is to apply delta movements
(relative changes) from the training to the output motor’s
current position so that desired movements would be
reproduced at the current motor location. For example, if
the robot did a circle in data at one location, we could
reproduce that circle at the current location. To maintain
desired absolute position we applied weights: deltas
moving away from the global target were dampened to
80%, while movements toward were amplified by 50%.
This enabled the robot to tend toward the desired position
while accurately performing the movements from the
training data.

We ran Puppet Dancer at 40 Hz. This was selected through
experimentation: with higher speeds we noticed no
improvement, but with lower speeds we had a loss of
interactivity.

Real-Time
State

Training
Data

t

t

M
ot

or
s

M
ot

or
s

(jitter)

Figure 5. Real-time dance movement is a set of patches from

the best-matching training data. Illustration only.

Incrementally Adding Training Data
We enabled the incremental additions of training data (as
the user moved between the authoring and playing modes)
by storing new training sessions as entirely new data sets.
For searching, all data sets were searched for the best
match.

Managing Jitter
Puppet Master’s jitter problem resulted when it rapidly
jumped between dissimilar training data with similar best-
match scores (Figure 5). Puppet Dancer’s solution was to:
a) encourage training data to be used in patches rather than
single slices, and b) discourage repetitive jumping back and
forth between similarly-scored training data.

For part a) we first tried an enforced minimum patch length,
e.g., 0.5s. Unfortunately, this hindered the sense of Puppet
Dancer’s responsiveness when the leader made sudden
movement changes, and so we implemented a hysteresis
solution that we call sticky patches. Once a training region
is selected as the best match, that region gets a bonus
(100% of its given score) to subsequent best-match scoring
such that Puppet Dancer tends to stick to that patch for
generation, even if a slightly better match is found. A
dramatically better patch with a better score can still
overcome the sticky patch, maintaining high interactivity.
This is illustrated in Figure 6: at points (a) and (b) the patch
does not change even though a higher score was found
elsewhere. The bonus is diminished linearly over 1.5s, so
that quick patch changes are still possible without
dramatically better best-matches.

Even with sticky patches, the repetitive oscillation between
similarly-scored training patches problem still happened
(albeit slower than before). We discourage this (part b of
our solution) with a short-term black list. Once a training
region is selected as best match to generate output, if
Puppet Dancer decides to move away from that region to a
better match, the original region is blacklisted for 2s (80
frames) so that it cannot be used again soon.

The combination of the above two methods was successful
enough in fixing the jitter problem that we removed the
heavy output smoothing and frequency-analysis filtering
techniques required in the original Puppet Master.

Reinforcement Learning
To implement the reinforcement-learning interface

mechanism, i.e., the approve and disapprove interface
buttons, we weighted the training data. When one of the
buttons are pressed, the last 1s (40 frames) training data
used is applied a permanent weight: for approve, a 30%
bonus is given, and for disapprove, a 30% penalty. The
result is that approved regions are more likely to be used in
the future, and disapproved regions are less likely.

EVALUATION
The primary purpose of our evaluation was to investigate:
a) is our implementation and algorithm successful in
enabling easy to use end-user authoring of interactive robot
dance? b) does our SBD interaction approach make sense
to users? and c) how do users engage SBD interfaces?

We analyze implementation success in part by simply
testing if participants can use Puppet Dancer to casually
create custom interactive dances, without requiring training
or assistance. We further compare our learning algorithm
results to a behind-the-scenes experimenter remotely
controlling the dance (Wizard of Oz technique): the
“wizard” represents perhaps an ideal learning algorithm.
The wizard observed the demonstration from the adjacent
room using a hidden webcam, and remote controlled using
a replica of the servo spine – manipulations were mirrored
to the follower dog in real time.

We also specifically test the SBD reinforcement-learning
mechanism, and in addition, explore if the follower robot
needs to be interactive: we compare a non-interactive
follower (simply dances without monitoring the leader) to
our interactive version. We achieved this by having the dog
replay random patches (2s long) from the training data with
smoothed transitions; an approach taken from computer
graphics texture synthesis [7].

Finally, we investigate overall appropriateness of our
method: if our interaction design supports how participants
actually want to create robot dances. We take a qualitative
evaluation approach to study system use in comparison to
expectations: for example, one early criticism of our work
was that people will simply want a mirror behavior and do
not want to customize their own. Ultimately, we aim to
build understanding of how people use SBD, how they
engage the demonstration task, and which methods they
employ to work toward their final dance result.

Pilot Studies
We conducted several rounds of informal pilot studies to
develop our evaluation method. One result was that we
decided to have both an experimenter and the participant
perform initial authoring together: an experimenter moved
the leader while the participant used the follower to show
their desired dance. Pilot studies showed that participants
found it difficult early in the experiment to control both
robots simultaneously, as the overall interactive SBD idea
was new; later in the study participants perform
simultaneous control. Further, the approach of having two
participants (one for each the leader and follower) created

Figure 6. With sticky patches source data region may not
change, even with a better match score (points a and b).

Illustration only.

Training
Data

S
co

re

Real-time
State

t

t

(a) (b)

complications such as the leader evaluating results without
knowing the follower’s intent. With an experimenter-
controlled leader, participants focused well on the follower
training, and this also improves leader-motion consistency
across participants.

We also found that the beat that participants danced to
would drift, particularly between the authoring and playing
modes. The Puppet Dancer algorithm is sensitive to the
timing of dance moves, and so this hindered the pattern
matching and lowered the quality of the results. To solve
this we added music to give the participants a consistent
baseline for rhythmic movements.

Tasks and Procedure
The study consisted of a comparison phase that compared
Puppet Dancer against other dance generation methods, a
feedback phase that targeted the reinforcement learning
mechanism, and an open-ended phase that explored how
participants engage the overall training process when not
given constraints (Table 1).

We first administered a demographics questionnaire,
followed by a short (~2 min.) introduction to Puppet
Dancer that focused on the SBD concept and included a
demonstration of how to physically manipulate the robots.

For the comparison phase participants first authored a
custom interactive robot dance by manipulating the
follower dog while an experimenter moved the leader cat
through a scripted and looped full-range-of-motion dance.
Participants could demonstrate as much or as little as they
felt was required to show their entire dance. During this
phase the feedback, training and reset buttons were all
hidden; participants verbally indicated to the experimenter
when they were finished training. We used the song “Da
Funk” by Daft Punk as background music. After
demonstration participants were asked to control the leader
to interact with the follower to evaluate the results for three
cases: the a) Puppet Dancer algorithm, the b) remote-
control wizard, and the c) non-interactive dance, order
counter-balanced. Participants were not informed of the
cases and were simply told that there were three different
learning methods. We administered a short questionnaire

after each case where participants gave open-ended
feedback, rated the result using Likert-like scales, and rated
their impression of the robot using the Godspeed
anthropomorphism, animacy, likeability, and perceived
Intelligence scales [3]. At the end of this phase participants
ranked the three behaviors.

For the feedback phase participants were first introduced to
the approve and disapprove buttons (we un-hid them at this
point). They were asked to manipulate the leader to dance
with the follower, and to use the buttons to improve the
given behavior result. We used the same training data from
the comparison phase and only the Puppet Dancer
algorithm. The independent variable in this phase was the
reinforcement method used, manipulated within subjects
and order counter-balanced: either our reinforcement-
learning method, or a variant where button presses were
actually ignored, unbeknownst to the participant. This
phase also used the song “Da Funk” by Daft Punk.

In the open-ended phase participants were introduced to the
buttons and functionality that enabled them to add training
incrementally or to “reset” learning to start over, and were
given a chance to test the functionality to ensure they
understood the controls. This phase was unstructured and
participants were encouraged to just play with the system
and use it as they wish to create a new interactive dance.
They were asked to control both the leader and follower
simultaneously, to aid the freeform nature of the phase, and
the user feedback buttons were also enabled. During this
phase we used a different song “Harder Better Faster
Stronger” by Daft Punk, a change for variety. Participants
were encouraged to use the system for as long as they like.
Once finished, they completed a post-test questionnaire.

We recruited 11 participants from the general population in
Tokyo, Japan, and each participant was paid 3000 JPY ($37
2011 USD) for their one hour participation; 4 female / 7
male, aged 20-52 (M=29.0). Some numbers presented in
the analysis are lower than the total of 11 participants: in
two cases, robot failure resulted in an early study finish,
and in one case the video camera failed. Due to the reduced
power of non-parametric statistics required to analyze
Likert-like participant responses and behavior ranking [8],
and given our small sample size, we have an increased risk
of Type II errors (false-negatives). As such we present our
data directly and discuss the overall trend in relation to our
qualitative methods, and rely less on statistical analysis.

Comparison Phase Results
One concern of our work was that participants would
simply want a follower which only mimicked the leader’s
movements or mirrored them; to investigate this we
analyzed our video data to explore how people engaged the
training. Of the 10 cases for which we had video, 2
participants were found creating a mimic behavior. The
remaining 8 participants performed more complex,
personalized dances which were interactive but did not
directly mimic the leader’s movements. Thus this supports

phase variable purpose

comparison dance algorithm:
Puppet Dancer,
wizard, non-
interactive

compare Puppet Dancer
results to a person and
to a non-interactive
dance

feedback feedback buttons
enabled / disabled

explore how feedback
buttons are used, if
algorithm works

open-ended none explore freeform
engagement of SBD and
various mechanisms

Table 1. breakdown of the study organization

the idea that participants will have individualized and
personal dances to teach the robot, rather than wanting
mimicry only.

During the demonstration component, only one participant
(who had a strong dancing background) commented that
they wanted to also control the leader during authoring
instead of the experimenter. This same participant also
requested that the follower should learn how to dance
appropriately to the mood of the music, e.g., differently for
slow or energetic sections. No other participant commented
on or was observed in the video data to alter their dance
based on the music changes.

When participants manipulated the leader to test the
follower’s dance, some would make the leader cat dance in
what appeared to be a free-form fashion, and themselves
primarily appeared to be looking at the overall result. Five
participants took this approach for Puppet Dancer, and two
for the wizard and non-interactive cases. Two participants
did this for all three. Other participants, however, would
take a more deliberate leading approach where they would,
for example, do a movement with the leader, and then stop
to observe the follower’s reaction, testing for the moves
that they taught; these participants would commonly repeat
a move and slow down their motions to be more deliberate,
if they did not get their desired result. Three participants
were observed doing this leading for Puppet Dancer
generation, six for wizard and six for non-interactive. Five
of these six participants overlapped for doing this for
wizard and non-interactive, and the three Puppet Party
leading participants used leading for all three. This leading
behavior is particularly relevant to our Puppet Dancer
algorithm, as a slowed-down deliberate leading motion
does not match well with a more-natural motion as part of a
dance: Puppet Dancer is highly time and speed sensitive.

Table 2 shows participant ratings for each algorithm in
terms of how well they thought the follower learned the
dance. Friedman’s ANOVA found a significant difference
between the rankings, X2(2)=4.923, p<0.05, although post-
hoc Wilcoxon Signed Ranks tests failed to reveal additional
relationships; Friedman average rankings: Puppet Dancer
2.0, wizard 2.36, non-interactive 1.64.

Table 3 shows how participants ranked the three behaviors
in terms of their favorite result. Although the differences
were not statistically significant, and no difference was
found for how participants rated the three algorithms using
the Godspeed questionnaires, this table suggests that the
non-interactive was least liked. From our open coding of
the video data, we noted that participants would, at times,
exhibit frustration in their facial expressions and body
language (e.g., by sighing and shaking their head). In the 10
cases for which we had video data, this happened with one
participant for the Puppet Dancer case, 4 times for the non-
interactive case, and was not observed for the wizard case.
Overall, we believe that the above results lend support for
the importance of having the robot’s behavior to be real-

time interactive, where generated movements are directly
dependent on not only the robot’s prior movements, but the
ongoing movement set of the counterpart dancer.

Feedback Phase Results
Overall, we found no effect of the enabled / disabled
condition on how participants used the buttons (e.g.,
frequency); it appeared as if they used the buttons the same
way in both cases. Button use frequency depended on the
participant, with number of hits ranging from 3 hits to 49
hits before the participant decided that they were done. One
final observation was that all participants – save one –
would hit a button once and watch the result before hitting
again. The exception case would rapid fire the button until
they got the desired result.

Participants rated the reinforcement-learning enabled
condition as being more effective for improving the dance
than the feedback-disabled condition, T=2.5, p<0.05, r= -
0.47. There was no significant difference in how
participants rated the robot on the Godspeed scales between
conditions. When asked whether the like / dislike functions
were useful, 3 disagreed, 1 was neutral, and 5 were positive.
75% (6) preferred the buttons on, and 25% (2) preferred the
buttons off (1 did not answer).

Open-Ended Phase Results
Due to technical difficulties two participants did not
complete this phase, and one participant was not video
recorded. As such, only 8 participants are included in the
video analysis.

We observed that participants engaged the interface in
different ways to achieve the SBD goal of creating their
own custom dance and enjoying the result. Three of the
eight participants simply did a single demonstration attempt,
and did not append training: two of these relied heavily on
the reinforcement buttons to shape the result, while one
user simply played with the result for an extended amount
of time without trying to improve it.

most negative most positive
 1 2 3 4 5

Puppet Dancer 1 3 1 4 2
Wizard 0 3 1 4 3
Non-Interactive 1 6 1 2 1

Table 2. Frequency table of participant responses to "The
robot learned the dance as expected," per behavior. 5 is

most positive.

 1st 2nd 3rd
Puppet Dancer 5 3 3
wizard 5 3 3
non-interactive 1 5 5

Table 3. Frequency table of participant rankings of the
three behavior types

In contrast, another two of the eight participants used the
reset mechanism to start the dance over from scratch. One
used the reset mechanism several (3) times to try different
types of behaviors, playing with each result for a lengthy
time; this participant did not use the reinforcement buttons
to improve the dances. The other participant relied heavily
on the reinforcement buttons to polish a dance, but at one
point gave up and used the reset mechanism to re-try the
same dance style from scratch.

Finally, the last three participants created their dances in
parts using the training-addition mechanism. Two of these
used the addition to build the dance up in small pieces (3
additions) that they each polished using reinforcement, i.e.,
to first train one particular dance move, perfect it using
reinforcement, and then train an additional move.

No participant was found to use both the reset and addition
mechanisms in their training and all participants but one
used the reinforcement buttons. In addition, all participants
but one were observed teaching the follower to interact
directly with the leader’s movements, in contrast to the
exception who simply moved the puppets in a seemingly
non-interactive way. Finally, three participants would
heavily lead the dance to test the result.

Post-Test Written Feedback Results
Most participants commented on the “fun” and
“enjoyment” elements of being able to program the robot
through demonstration, e.g., “it was fun because I could
program the robot to act as I like,” and that the task of
dancing was enjoyable: “Because I was teaching how to
dance, it was great and easy to use.” In particular, several
pointed out the importance of the attractive stuffed toys to
the experience: “because you used the animal plushies, the
movements were cute and I had fun,” and “I was happy
from the overall cute feeling.” One participant related this
enjoyment to the act of teaching: “Being able to program
my own robot is very useful. In addition, because you can
customize it, it is easy to build personal attachment, and
you see it as a friend you can communicate with.” One
person, however, noted that “because of the mechanical
[servo] sound, I could not help but perceive them as
‘machines’,” and another said “with the slow movement it
was cute, with the quick movement it was a little scary and
creepy.”

Participants heavily commented on the usefulness of the
various training capabilities, e.g., “it was extremely good
that I could use the training button to add more for the
robot to learn,” or that “it was useful to be able to modify
parts of the training using the like / dislike buttons.” The
reinforcement buttons in particular were praised for helping
to build the learning scenario: “in the case with having the
like and dislike buttons I really felt that the robot is
learning,” and “By using the like / dislike buttons I really
felt like I could participate.” Several participants noted the
importance of exploration, e.g., “from exploring the
meaning of all the buttons, and from seeing the robot

repeatedly respond to my directions, the feeling that the
robot was learning emerged.”

There was some confusion and negative feedback regarding
the use of the buttons, however, and how it fit into the
overall training system. For example, “I could not properly
confirm if, when I added training similar to previously
existing training, if it overwrote that” and one said “I did
not fully understand how to use the reset button so I
finished without using it.” One person highlighted the
inability to undo an action, e.g., “when [they] accidentally
pushed the wrong like / dislike button.”

There were only a few negative comments on the learning
ability, e.g., “there were also times when it moved
differently than I expected,” and one participant noted that,
at “times it moved better than I expected,” and further, that
“it was great to teach these times using the like / dislike
buttons.”

There was very little feedback on the physical interface
itself. One comment was that “it would have been good to
have the buttons attached to the stuffed animals” rather
than on the box.

Finally, one participant expressed confusion regarding the
paired dance: “more than thinking of how the cat [leader]
should dance with the dog, I was thinking of how the dog
[follower] should dance to the sound, or dance in a
particular sequence.”

DISCUSSION
All participants engaged our interface, clearly understood
the tasks with minimal instruction, and were able to author
a wide range of interactive dances. Thus, our study
supports our primary research questions, that a) our
implementation and algorithm were successful in enabling
easy to use end-user authoring of interactive robot dance,
and b) the overall SBD interaction approach itself makes
sense to users. Below we detail additional findings:

Individuals Engage SBD Differently – We were surprised
at the wide range of SBD engagement styles that emerged
from our study, and that participants used the tools
provided to them in greatly different ways, for example,
that some built behaviors piece-wise while others created
them at once monolithically. No “average” user emerged
from our study and there was no overarching theme or
method to dance creation. This points to the importance of
having a flexible SBD interface that supports various rapid
prototyping and refinement methods to match individual
preferences.

The Interactive Component is Important – Given that
participants tended toward interactive dances in the free-
form stage, and, following from the positive suggestions
from our quantitative results, this shows the importance of
having an interactive stylistic dance instead of a static pre-
scripted dance.

People Want Fine-Resolution Behavior Shaping –
Participants cited heavily the importance of the approve /
disapprove reinforcement mechanism and used it often to
refine behaviors. We believe that this points to the
importance of providing SBD users with a fine-detailed and
incremental way of modifying their behavior without
resorting to the core demonstration mechanism.

People Test Results Using Leading Behavior –
Participants used leading behavior, that is, repeatedly led
the leader cat into moves to elicit the desired follower dog
reaction, to test the learning algorithm. We think that
perhaps this emerged as some participants may have
believed they were intended to test the learning system. As
we envision that end-users would rather play with the
dance as an entertainment device, we recommend that
future studies should directly attempt to minimize this
effect.

FUTURE WORK AND LIMITATIONS
This paper is a preliminary step in the broader direction of
SBD, and below we outline some directions for future
investigation. Primarily, our implementation uses two
simple 4-DOF robots and we need to consider more
advanced robots such as humanoids, where the movement
capabilities are at the same time more complex and more
powerful. In addition to the need to adopt the Puppet
Dancer algorithm to these more complex cases, there
remains a difficult problem of performing the
demonstration: which interfaces can we develop that
simultaneously enable people to demonstrate their desired
style while enforcing the movement capabilities and
constraints of the robot?

We believe that the benefits of the SBD approach goes far
beyond choreographing entertainment robots to dance and
can be applied to authoring movements for more general-
purpose robots. For example, a robot developed for a
particular task such as waiting a home table can be shipped
with a generic style programmed, with the understanding
that end users could show the robot their particular tastes:
this could greatly simplify the pre-programming required
while at the same time improving versatility of the robot.
With this in mind, future work needs to explore how to
mesh hard-programmed task-oriented behaviors with SBD.

Through the process of designing and conducting this
evaluation, and analyzing the results, we have spent
considerable time contemplating how best to evaluate the
quality of the Puppet Dancer algorithm generation results.
In this project we decided to rely on participant reflection
in a comparative study, but this remains an open question
for future SBD work. Another example is that we used
open-ended behavior dance, although it is not clear if this
may have been confusing for participants, and we should
explore if it would be more effective to provide clearer
target dances.

In this paper we rely on the intuitive understanding of
robotic behavior style, but do not formally explore what
exactly style is. Future work will have to unpack the
various variables which contribute to the impression of
style, such as acceleration, hesitation, fluidity, etc. Further,
we will have to look at the entire style envelope from
motor responsiveness, to secondary motions such as the
toy’s floppy arms and ears, to the particular culture and
context (or role of gender) within which the interaction
takes place. Unpacking these variables will aid in
developing clearer technical and evaluation targets,
research methodologies, and ultimately more targeted and
applicable results.

CONCLUSION
In this paper we presented Puppet Dancer, a Style by
Demonstration platform for the creation of interactive,
paired robot dance. We detailed our original algorithm,
with several important extensions and improvements over
prior work, and a formal qualitative study that
demonstrated the success of Puppet Dancer and provided
detailed insight into how people use Style by
Demonstration in practice. Overall, we anticipate that Style
by Demonstration will continue to emerge as an important
domain in HRI, and that the interface design, algorithm,
and detailed evaluation presented here will contribute to
this field.

ACKNOWLEDGMENTS
We would like to thank our colleagues at the JST ERATO
Igarashi Design Interface project for all their support and
inspiration, and the anonymous reviewers for their helpful
input. This research was supported by JST and NSERC
research grants.

REFERENCES
1. Anon. Robot baby seals to replace pets in hospitals.

CTV News Online, http://www.ctv.ca/CTVNews/-
SciTech/20090112/robot_seals_090112/, The
Canadian Press, Jan 12, 2009. (Accessed Oct. 20,
2010).

2. Anon. Forth valley royal hospital to use
robot ’workers’. BBC News Online, http://-
www.bbc.co.uk/news/10344849, June 17, 2010.
(Accessed Oct. 20, 2010).

3. Bartneck, C., Kulic, D., Croft, E. and Zoghbi, S.
Measurement instruments for the anthropomorphism,
animacy, likability, perceived intelligence, and
perceived safety of robots. Int J Social Robotics,
1(1):71–81, 2009.

4. Bartneck, C., Verbunt, M., Mubin, O., and Mahmud, A.
A.. To kill a mockingbird robot. In Proc HRI ’07,
pages 81–87. ACM, 2007.

5. Bethel, C. L. and Murphy, R.. Non-facial and non-
verbal affective expression for appearance-constrained

robots used in victim management. Int J Behavioral
Robotics, 1(4):219–230, 2010.

6. Dillmann, R. Teaching and learning of robot tasks via
observation of human performance. Robotics and
Autonomous Systems, 47(2–3):109–116, June 2004.

7. Efros, A. A. and Freeman, B. Image quilting for
texture synthesis and transfer. In Proc SIGGRAPH ’01,
2001.

8. Field, A.. Discovering Statistics through SPSS: (and
sex and drugs and rock ’n’ roll). Sage Publications,
Thousand Oaks, CA, USA, third edition, 2009.

9. Frei, P., Su, V., Mikhak, B., and Ishii, H.. Curlybot:
designing a new class of computational toys. In CHI,
2000. CHI ’00, The Hague, The Netherlands, April 1–6,
2000, pages 129–136. ACM, 2000.

10. Gallaher, P. E.. Individual differences in nonverbal
behavior: Dimensions of style. 63(1):133–145, 1992.

11. Gribovskaya, E. and Billard, A.. Combining dynamical
systems control and programming by demonstration
for teaching discrete bimanual coordination tasks to a
humanoid robot. In Proc HRI ’08, pages 33–40. ACM,
2008.

12. Halbert, D.. Programming by Example. PhD thesis,
University of California Berkeley, 1984.

13. Harris, J. and Sharlin, E.. Exploring the affect of
abstract motion in social human-robot interaction. In
ROMAN ’11. IEEE Computer Society, 2011.

14. Kanda, T., Kamashima, M., Imai, M., Ono, T.,
Sakamoto, D., Ishiguro, H., and Anzai, Y.. A
humanoid robot that pretends to listen to route
guidance from a human. Autonomous Robots,
22(1):87–100, Jan. 2007.

15. Kiesler, S. and Hinds, P.. Introduction to This Special
Issue on Human-Robot Interaction. Human Computer
Interaction, 19(1/2):1–8, 2004.

16. Lockerd, A. and Breazeal, C. L.. Tutelage and Socially
Guided Robot Learning. In IROS ’04, volume 4, pages
3475–3480. IEEE Computer Society, 2004.

17. Matsui, D., Minato, T., MacDorman, K. F., and
Ishiguro, H.. Generating Natural Motion in an Android

by Mapping Human Motion. In IROS ’05, pages 1089–
1096. IEEE Computer Society, 2005.

18. Michalowski, M. P., Sabanovic, S. and Kozima, H.. A
dancing robot for rhythmic social interaction. In Proc
HRI ’07, pages 89–96. ACM, 2007.

19. Otero, N., Alissandrakis, A., Dautenhahn, K., Nehaniv,
C., Syrdal, D. S., and Koay, K. L.. Human to robot
demonstrations of routine home tasks: exploring the
role of the robot’s feedback. In Proc HRI ’08, pages
177–184. ACM, 2008.

20. Raffle, H. S., Parkes, A. J., and Ishii, H.. Topobo: a
constructive assembly system with kinetic memory. In
CHI ’04, pages 647–654. ACM, 2004.

21. Saerbeck, M. and Bartneck, C.. Perception of affect
elicited by robot motion. In Proc HRI ’10, pages 53–60.
ACM, 2010.

22. Sung, J.-Y., Grinter, R.E., Christensen, H. I.. “pimp
my Roomba”: designing for personalization. In
CHI ’09, pages 193–196. ACM, 2009.

23. Sung, J.-Y., Guo, L., Grinter, R. E., and Christensen,
H. I.. “my Roomba is Rambo”: Intimate home
appliances. In UBICOMP ’07, volume 4717/2007 of
Lecture Notes in Computer Science, pages 145–162.
Springer-Verlag, Berlin, New York, Heidelberg, 2007.

24. Young, J. E.. Exploring Social Interaction Between
Robots and People. PhD thesis, University of Calgary,
Calgary, Canada, August 2010.

25. Young, J. E., Igarashi, T., and Sharlin, E.. Puppet
master: Designing reactive character behavior by
demonstration. In SCA ‘08, pages 183–191.
Eurographics Association Press, 2008.

26. Young, J. E., Ishii, K., Igarashi, T., and Sharlin, E..
Style-by-demonstration: Teaching Interactive
Movement Style to Robots. In ACM IUI ’12. ACM,
2012.

27. Young, J. E., Sung, J.-Y., Voida, A., Shrlin, E.,
Igarashi, T., Christensen, H., and Grinter, R..
Evaluating human-robot interaction: Focusing on the
holistic interaction experience. Int J Social Robotics,
3(1):53–67, 2010.

