YOSHIDA Nano-Mechanism

yoshida_portrait

High-precision measurement capabilities are at the heart of scientific research and are synergistic with technological development, especially with regards to the present trend towards miniaturization and “nano-engineering.” This project focused on the physical actions and mechanical properties of material in the nanometer region, while investigating new measuring and processing methods.

Research Director: Mr. Shoichiro Yoshida
(Managing Director NIKON Corporation)
Research Term 1985-1990

Research Results

Scanning tunneling microscopes: Several types of scanning tunneling microscopes (STM) were designed: an STM contained within the chamber of a standard scanning electron microscope (SEM); an industrial-type STM for viewing samples from long distances in air: a computer-controlled industrial-type STM; a device comprising a twin-probe STM controlled by a complex mechanism of PZTs and a hinge.

X-ray microscopy: While placing emphasis on the use of both Fresnel zone plates and phase zone plates, X-rays of 1 – 4-nm wavelength were found to be selectively absorbed by biological specimens, making high-resolution x-ray microscope images possible.

Nanometer position-control system: A one-axis stage- positioning mechanism was developed using an actuator, newly designed AC synchronous linear motor and a rolling ball guide which acts like a spring. This system provides an outstanding resolution of 1 nm and a maximum speed of 200 mm/s.

Small-distance positioning systems: A new device employing an ultrasonic linear-motor was developed which uses a segmented PZT bimolf which is 90 degrees out phase.

Nanometer measurement system: A two-wavelength (488 and 244 nm) laser beam interferometer which can eliminate errors caused by air turbulence was developed.

X-ray multilayer mirror fabrication: Since multilayer coatings are necessary for reflecting x-rays in normal-incidence optical systems, the reflectiveness of multilayers made from a wide range of materials were calculated using the Fresnel equation for 1- to 5-nm wavelengths.

Beam processing to make ultra-smooth surfaces: Low-energy (50 eV) Ar-ion/atom beam sputter etching was used to produce atomically smooth surfaces which are applicable as substrates for x-ray multilayer mirrors. This type of processing causes less damage to processed surfaces, making it possible to polish the surface of each layer of x-ray multilayers.

graph1

·X-ray multilayer

graph2

·1nm step responce of mechanical stage

graph3

·STM image of etched graphite surface

Quick Access

Quick Access

Program

Program
  • CREST
  • PRESTO
  • ACT-I
  • ERATO
  • ACT-C
  • ACCEL
  • ALCA
  • RISTEX
Finish programs
  • Pamphlet
  • ProjectDatabase
  • GlobalActivities
  • Diversity
  • OpenSciencePolicy
  • InquiryForm