さきがけ 研究者

研究課題名

高効率光電変換デバイスの実現に向けたIII族窒化物のマルチバンドエンジニアリング

プロフィール

SANG Liwen
SANG Liwen
SANG Liwen

(独)物質・材料研究機構 若手国際研究センター
ICYS-MANA若手研究員。
1984年 中国山東生まれ。
2010年 北京大学 博士課程修了、博士(理学)。
2010年 物質・材料研究機構 ポスドク研究員。
2012年 物質・材料研究機構 ICYS-MANA若手研究員。

2014年 物質・材料研究機構 MANA独立研究者。


研究分野:窒化物薄膜成長、光電デバイス。


研究内容紹介

In recent years, due to the dwindling fossil fuels and a series of environmental issues resulted from fossil fuels, the development of a new kind of clean and high-efficiency photo ・ electricity energy conversion technology is in great need. Solid-state lighting has the potential to reduce lighting energy usage by nearly one half and contribute significantly to the world climate change solutions. Solar photovoltaic power generation is regarded as the most reliable and continuable power generation technology. However, the current photo to electricity and electricity to photo conversion efficiencies of existing photonic and electronic devices are far from their ideality. For example, in the photovoltaic field, due to the lattice mismatch and current mismatch, it is difficult to achieve the full solar spectrum absorption even multi-junction structures are utilized. Therefore, solar cells using Si, CuInGaSe, or GaAs-based materials are all concentrated on the long-wavelength absorption (<2eV), which makes the conversion efficiency unable to improve. On the other hand, three-primary color (RGB) mixing is considered to be the most efficient method for generating high-brightness white light illumination in the solid-state light field. But, RGB can not be realized by using one material system, which greatly increases the cost and leads to unnecessary efficiency loss during integration.

III-Nitride semiconductor family (GaN, InN, AlN and their ternary and quarternary alloys) exhibit the widest direct bandgaps among all the semiconductors, from near infrared (InN at 0.65eV) to the deep ultraviolet (AlN at 6.2eV), which cover almost all the spectrum This unique property makes the possibility of full-color emitting and absorption photonic devices using one material system, which will greatly improve the efficiency and reduce cost. However, as a result of the high n-type background conductivity and strong surface electron accumulation, p-type doping in In-rich InxGa1-xN remains a worldwide puzzle, which hinders the development of long-wavelength absorption and emitting devices.

The objective of this research is to solve the chanllenging problem in III-Nitride field of p-type doping in In-rich InxGa1-xN by using multi-band nano-interface control. To demonstrate this novel concept, we will try to develop high-efficiency photo ・ electricity energy conversion devices, including ultra-high conversion efficiency solar cells and long-wavelength red light emitting diodes by using In-rich InxGa1-xN p-n junction structures.

投稿記事一覧

プレスリリース

2013/12/06
[プレス] InGaNの多重中間準位を活用した太陽電池の高効率化の原理を実証~太陽光の全波長を活用する高効率太陽電池への道~ SANG Liwen ICYS-MANA研究員(物質・材料研究機構)【さきがけ】

論文(原著論文)発表

2014/02/12
[論文発表] SANG Liwen 独立研究者(物質・材料研究機構)【さきがけ】

学会発表・招待講演

2013/10/19
[学会・講演] SANG Liwen 独立研究者(物質・材料研究機構)【さきがけ】

受賞・表彰

2012/10/25
[受賞・表彰] 物質・材料研究機構 ポスドク研究成果ポスター賞を受賞 SANG Liwen ICYS-MANA若手研究員(物質・材料研究機構)【さきがけ】
ページの先頭へ