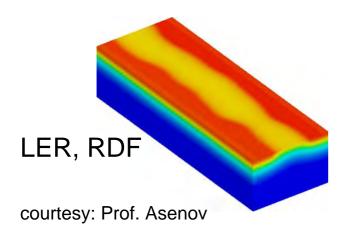
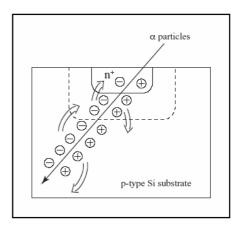

ロバストファブリックを用いたディペンダブルVLSIプラットフォーム

研究代表者 京都大学 小野寺秀俊

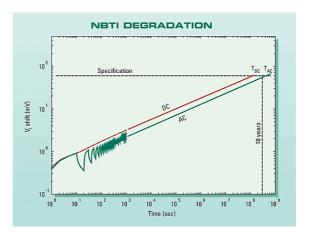

研究の背景

■ 製造性劣化



source: Synopsys

■ 物理的揺らぎ



■ 一過性雑音

source: Sanyo

■ 特性劣化


NBTI

ΔTd ~ 10%@10Ys

Source: Semiconductor International, 2004-03

研究背景

■ NREコスト急増

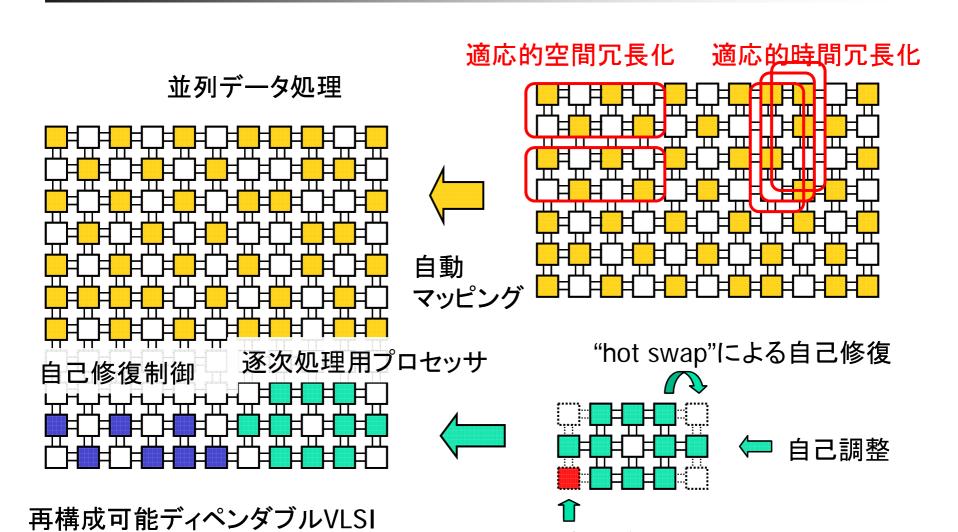
Source: Semiconductor International, 2005-09

- ディペンダビリティを毀損する物理的、自然現象的フォールトを排除する素子/回路/アーキテクチャ/設計技術への強い要請
- 同一のチップで、要求されるディペンダビリティの異なる多様なアプリケーションを実現する技術への強い要請

研究目的

- 32nm世代以降の不良デバイスが多数出現する VLSIチップ上においても、65nm世代の組み込み 機器が有していたディペンダビリティを確保(具体的目標値は後述)
- より高い信頼性が要求されるアプリに対して高い ソフトエラー耐性を確保

要求されるディペンダビリティに応じた 回路を実現できる再構成可能VLSIプ ラットフォーム


解決手段

- 再構成可能ディペンダブルVLSIプラット フォーム
 - 要求されるディペンダビリティに応じた回路を 実現
 - アーキテクチャ: 適応的な時間的/空間的冗長化
 - 回路: ばらつきに強靭な構造、特性の適応的調整

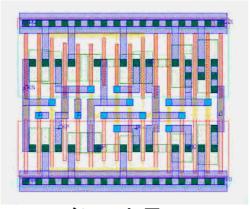
■ 製造性劣化、物理的揺らぎ、ソフトエラー、 特性劣化、NREコストの課題を解決

提案VLSIプラットフォームのコンセプト

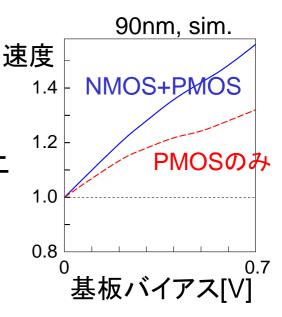
ロバスト(耐ばらつき、高製造性)ファブリックアレイ

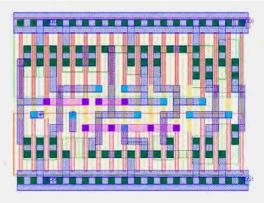
自己診断

具体的目標


- 製造性劣化、物理的揺らぎ
 - ロバストファブリックによりばら つき量を半減
- 一過性雑音
 - 適応的な冗長性組み込みにより、宇宙空間でも100FIT達成

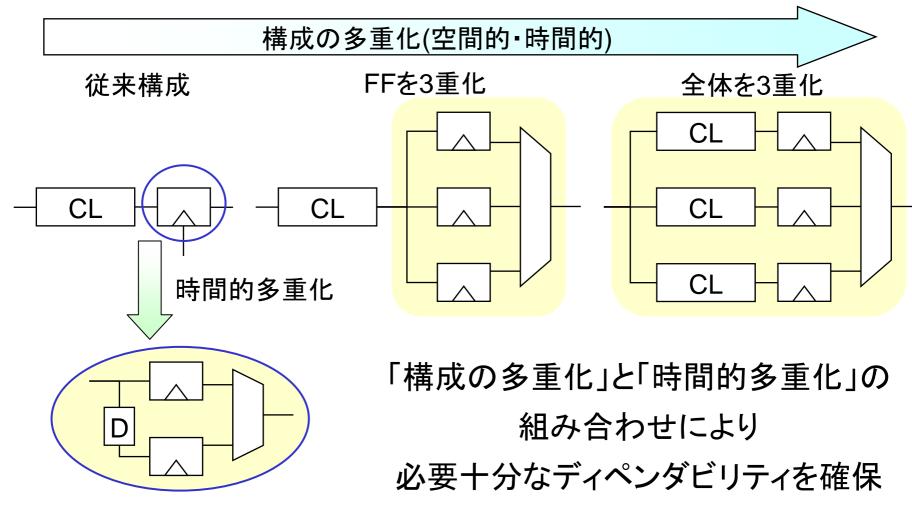
- 特性劣化
 - 自己調整と自己修復(ホットス ワップ)により動作寿命の2倍化


ディペンダビリティ阻害要因		製造性劣化	物理的揺らぎ	一過性雑音	特性劣化
階層	技術要素				
ソフトウェア	_				
アーキテクチャ	再構成可能アーキテクチャ			0	0
プロセッサ	再構成可能プロセッサ			0	0
設計自動化	マッピング技術			0	0
回路技術	ロバストファブリック	0	0		0
デバイス技術	_				
阻害要因排除手法		製造容易構造	自己調整	適応的冗長化	自己修復


ロバストファブリック

- 種類
 - 論理ファブリック(LUT, ALUなど)
 - メモリファブリック
 - 配線ファブリック
- 規則性導入による製造性・ばらつき耐性向上
 - 改善量とコストの最適なバランス
- 特性の自己調整機能
 - 細粒度の基板バイアスディザリング

- 65nm D-FF
- ばらつき量 6.8 %
- ▶ ばらつき量 2.7 %
- 14% 面積増加



- ばらつき量 1.3 %
- 29% 面積増加

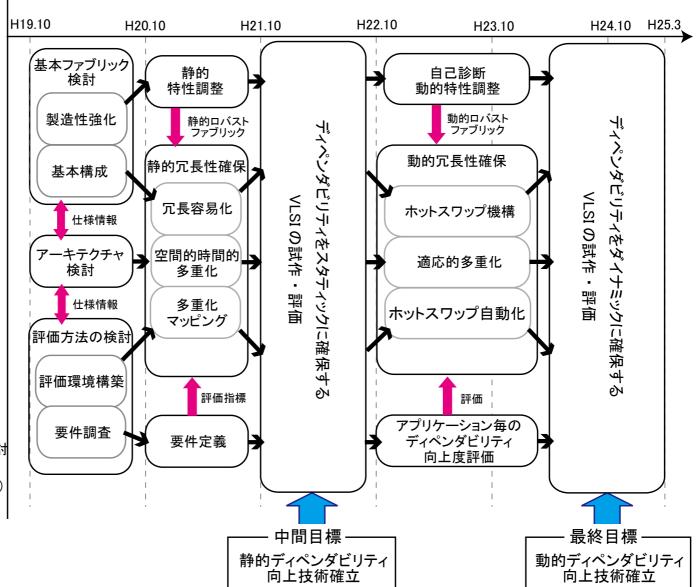
適応的多重化によるディペンダビリティ向上

必要とされるディペンダビリティに応じた冗長化構成

CL=Combinational Logic (組み合わせ論理回路)

研究計画と分担

研究統括 小野寺(京大)


ロバストファブリック 小野寺・土谷 (京大)

再構成アーキテクチャ 尾上・橋本・密山 (阪大)

再構成プロセッサ 小林・嶋田 (京大)

マッピング技術 越智 (京大)

アプリケーション展開に 向けた評価・実用化検討 神原 (京都高度技術研究所)

マイルストーン

- 中間目標(H22.10)
 - 静的ディペンダビリティ向上技術確立
- 最終目標(H25.3)
 - 動的ディペンダビリティ向上技術確立
- 検証方法
 - 宇宙空間で利用できる暗号化LSIの試作・評価
 - 衛星内で必要となる回路の例: 圧縮回路、暗号回路、GPS用相 関器回路、通信プロトコル関係回路など
 - JAXA 総合技術研究本部 部品・材料・機構技術グループ(技術領域リーダ: 久保山智司殿)と協議中
 - 様々なディペンダビリティが実現できることを確認
 - 他の実証例題も検討予定(通信、運輸分野など)

研究体制

- 研究統括 小野寺秀俊(京都大学)
 - ロバストファブリック
 - 小野寺秀俊、土谷亮 (研究代表者グループ 1)
 - 再構成アーキテクチャ
 - ■尾上孝雄、橋本昌宜、密山幸男 (大阪大学)
 - 再構成プロセッサ
 - 小林和淑、嶋田創 (研究代表者グループ2)
 - ■マッピング技術
 - 越智裕之 (研究代表者グループ 3)
 - アプリケーション展開と評価・実用化検討
 - ■神原弘之 (京都高度技術研究所)

研究代表者グループ

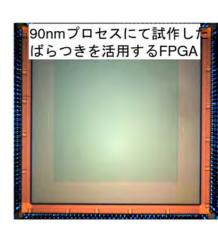
ロバストファブリック


小野寺秀俊

- 製造容易化設計技術の先駆的研究
- 実績:
 - 2007 VLSI Technology Symp.(招待講演)
 - IEICE Trans. Electron. 2006/3.(招待論文)
 - 2005 IWFIPT (招待講演/パネリスト)

土谷亮

- オンチップ配線のエキスパート
- 実績:
 - ASP-DAC2004 Best Paper Award
 - MWE 2007 招待講演

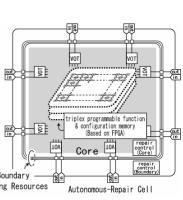


再構成プロセッサ

小林和淑

- LSI設計分野を牽引する若手教員
- 実績:
 - Resource-Shared VLIW Processor
 - ばらつきを活用するFPGA(世界初)

嶋田創


- プロセッサアーキテクチャのエキスパート
- 実績:
 - 可変段数パイプラインによる消費電力削減

■ マッピング技術

越智裕之

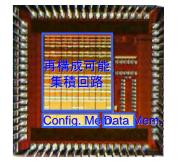
- 再構成アーキテクチャの第一人者
- 実績
 - 再構成デバイスの設計自動化環境構築^{®oundary} —
 - 再構成デバイスの耐故障化(宇宙利用可能)

共同研究者グループ(大阪大学)

再構成アーキテクチャ

尾上孝雄

- メディア処理用ハードウェアアーキテクチャ研究で世界的なリーダーシップ
- 実績:
 - ISO/IEC SC29/WG1(JPEG)委員としてシステム実装可能性の面から標準化に尽力


橋本昌宜

- ばらつき考慮設計技術の第一人者
- 実績:
 - 製造・環境ばらつきを考慮したタイミング解析を実現
 - システムLSI WS 招待講演(2004, 2007)

密山幸男

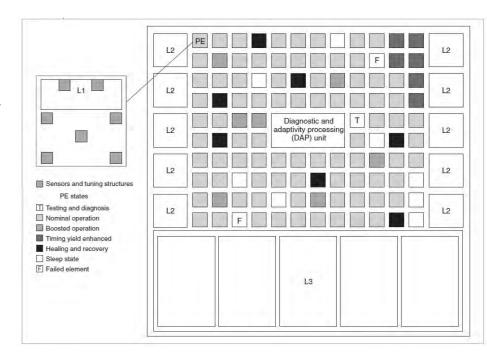
- 再構成アーキテクチャのエキスパート
- 実績
 - メディア処理向け再構成可能LSIの開発
 - 再構成デバイスを用いた暗号処理方式の開発

共同研究者グループ(京都高度技術研究所)

■ アプリケーション展開に向けた評価 • 実用化検討

神原弘之

- プロセッサ、高位合成に加えて各種アプリケーション(AES 暗号化)に精通
- ハードとソフトの双方を熟知
- 実績(大学等との共同研究とその実用化)
 - 教育用プロセッサの研究開発と頒布
 - UDL/I 言語の仕様策定その処理系開発
 - ソフトコアプロセッサの研究開発(九州大学と共同)と 着メロIP としての実用化


10月9日プロジェクト会議(阪大にて)

独創性•新規性

■回路技術、再構成可能アーキテクチャ技術、 設計自動化技術の総合的取り組みにより多 様な(必要十分な)ディペンダビリティを確保

- ■類似研究
 - ミシガン大: ElastIC
 - プロセッサアレー
 - ■適用範囲限定的

IEEE Design & Test 2005-11/12

初年度の研究計画と成果目標

- ロバストファブリック
 - 規則性導入による製造性向上とコストのトレードオフ解析を行い、ばらつき量半減のエビデンス獲得
 - 基板電圧の選択的印加による特性ばらつき/劣化補償法のフィージビリティを明確化
- 再構成アーキテクチャ
 - 冗長化容易な再構成デバイス基本セルアーキテクチャの明確化
- 再構成プロセッサ
 - 冗長化容易なプロセッサ基本構成の明確化
- マッピング技術
 - 評価環境の構築(マッピング、シミュレーション、静的多重化支援)
- アプリケーション展開
 - VLSIユーザへのヒアリングに基づく信頼性の要件調査

将来展望

- ディペンダビリティ要件に応じて再構成可能な VLSIプラットフォーム
 - 物理的・自然的フォールトを克服
- ■学術領域への波及効果
 - デバイスの完全動作を前提としない新たな設計 パラダイムの創出
- ■半導体産業への波及効果
 - 信頼性を新たな付加価値としたVLSIシステムの 提供による新規領域(マーケット)の開拓
- ネットワーク化社会への波及効果
 - 基幹部品である半導体システムの信頼性・安全性を確保