The Design and Evaluation Methodology of Dependable VLSI for Tamper Resistance

Focusing on the security of hardware modules
- Tamper resistant cryptographic circuit
- Evaluation tools for tamper resistance
- Physical Unclonable Function (PUF)

Takeshi Fujino @ Ritsumeikan Univ.
Yohei Hori @ AIST
Masaya Yoshikawa @ Meijo University
Daisuke Suzuki @ Mitsubishi Electric
Cryptography for Realizing Security Functions (exam.)

1. **Authentication**: Read/write permissions to HDD are granted to authorized users.
2. **Encryption**: HDD are encrypted in case of loss or theft.

Side Channel Information
- Processing Time
- Current/Voltage
- EM Radiation
Side Channel Attack (Differential Power Analysis)

- Secret key is revealed by exploiting power traces from crypto module
- The evaluation tools are also developed in this project

Evaluation Board
SASEBO-RII

Control & Analysis software
for revealing secret key

Oscilloscope

Other Evaluation Boards (FPGA)

Compact Scanner
for EM Analysis

Power Monitoring

Cryptographic Module

Plain Text

Cipher Text

Power Traces

SASEBO-GIII

ZUIHO
DPA resistant AES circuit using dual-rail RSL memory

- Dual rail RSL memory is used for S-box and other circuits are designed in Standard ASIC flow
- Power overhead is 50% of no countermeasure
- Sufficient DPA resistance is demonstrated compared with other countermeasures (WDDL, MDPL, MAO, TI)
Physical Unclonable Function for anti-counterfeiting

- PUF exploit the random process variations which make each chip unique and unclonable
- The authentication using PUF is useful for anti-counterfeiting
- RG-DTM Arbiter PUF, Glitch PUF, and PL PUF are developed

Glitch PUF

Non-linear Random Logic
Glitch Generation

Input Resister

Generate response according to generated number of glitches

PL PUF

RG-DTM PUF