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Why 3D ? 



3D-eDRAM for L3 Cache (IBM) 

Hybrid Memory Cube (HMC) 

(Micron+Samsung+IBM) 

2.5D and 3D FPGA (Xilinx) 

3D System Integration (IBM) 

3D DRAM 

(Samsung) 

3D DRAM (Elpida) 



Dependability Related Concerns in 3D VLSI 

Heat accumulation and heat removal 

Influences of mechanical stress 

Metal impurity contamination 

Reliabilities of TSV’s and metal microbumps 

Design methodology and design tools 

Testing and test design 

Dependability is Key Issue in 3D VLSI ! 

Architecture and Circuits for Dependable 3D-VLSI 
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After T. Kamada (Denso) 



Architecture of 3D DVLSI System 
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After Prof. H. Kobayashi (Tohoku Univ.) 



The Measure for A Reliability Target  
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(New) SVP 

The dynamic error case in a car  

-Since a power supply variation goes into the place  

where connection deteriorated ,then a circuit malfunctions.  

- A timing error occurs in a hot spot.  

The control cycle of a display system is usually 16mS.  

If an operation support system also applies to this,  

Then it recovers within 16mS is no problem.  

It corresponds by the multiplexing majority. 

- Throughput in 16mS  

- Reliability of a majority circuit   

Majority 

It is assisted  

by run time execution. 

・Fault converge 97% 

・80FIT 

The case  

where failure is 

 overlooked. 

The case  

which failure 

cannot relieve. 

insufficient throughput 

insufficient spare circuit 

The double failure  

which induces the same result occurs.  

A majority circuit  

breaks down to the danger side.  

Quantitive analysis is needed.  

↓ 

It comes back to the reliability 

of a majority circuit, 

and throughput/parallelism. 

After T. Kamada (Denso) 



Test Architecture for 3D VLSI with Redundant Tiers 
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Vertically Stacked and Electrically Connected 

by Through-Silicon Vias (TSVs) 
using 3D Integration Technology.  
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Block Diagram of 3D DVLSI (e.g. 4tiers) 
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Self-Test Control by System-Level SVP 
in 3D Dependable VLSI System 

• SVP (Supervisor 
Processor) controls TAP 
and Chain in the stacked 
3D dependable LSI 
– Drives TCK, TMS, TRST, TDI 
– Read TDO to get test data 

registers in the stacked 
dice 
 

 Assuming TAP signals are 
connected by quadruple 
TSV that has much higher 
reliability than single TSV 
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3D DfT Architecture 
 

Functional Design 

  •  Stacked Dies, Core-Based 
  • Inter-Connect: TSVs 
  • Extra-Connect: Pins 

Existing Design-for-Test 

  • Core: Internal Scan, TDC, LBIST, MBIST;    
             IEEE 1149.1 wrappers, TAPC 
  • Stack Product: IEEE Std 1149.1 

3D-DfT Architecture - Test Wrapper per Die 

  • Based on IEEE 1149.1  
  • Two Entry/Exit Points per Die: 
      - Pre-Bond : Extra Probe Pads 
      - Post-Bond: Extra TSVs 
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Tier BIST Dynamically Controlled by System-Level SVP 
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Redundancy for Through Si Vias (TSVs) 

No Repair Multiplexed TSV With TSV Repair 

m: multiplicity n signals : r redundant TSVs 

2 4 4:2 16:4 

Area +0% +100% +300% +50% +25% 

Capacity +0% +100% +300% +0% +0% 

Switches/Sig 0 0 0 3 5 

TSV Group Yield 
(n TSVs) 

RTSV
n 1 − 1 − RTSV

m n  
n+ r

i
RTSV

i 1 − RTSV
n+r−i

n+r

i=n

 

2,000 1.9 × 10−7% 81.87% 99.99% 99.03% 99.98% 

5,000 1.5 × 10−20% 60.65% 99.99% 97.59% 99.96% 

10,000 2.2 × 10−42% 36.79% 99.99% 95.23% 99.91% 

20,000 5.1 × 10−86% 13.53% 99.98% 90.69% 99.83% 
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*assumed RTSV = 0.99  

Samsung (ISSCC 2009) This Work 



   Approach for HW-SVP 

 Establishing a self-repair scheme for HW-SVP 

 Soft-error recovery using dynamic reconfiguration 

 Designing recovery controller and Scrubbing controller 

 Designing fault-tolerant system using TMR scheme 

 

 

 Hard-error avoidance using partial reconfiguration 

 Relocating partial reconfiguration bitstream (PRB) 

 Designing TMR scheme with Spare 

Self-repair scheme and Evaluation system 

Developing Evaluation system to evaluate soft-error tolerability 

TMR : Triple Modular Redundancy 

After Prof. T. Sueyoshi (Kumamoto Univ.) 



System Configuration of HW-SVP 

 Triplicating processor core and peripheral modules 

 Implementing RM, RC and Spare 

 RM and RC control recovery sequence 

 Spare is used for hard-error avoidance 

RC : Recovery Controller 

Plasma 
Plasma 

Plasma 

Spare 

Selector  
+ Voter  
+ Detector  

Memory 
(ECC protected) 

メモリコントローラ 

UART 

メモリコントローラ 

UART 

Memory controller 

UART RC 
ICAP 

FrameECC 

Memory 

ICAP : Internal Configuration Access Port 

RM 

RM : Recovery Module 

Implemented on：Xilinx Virtex-6 XC6VLX240T 

After Prof. T. Sueyoshi (Kumamoto Univ.) 



Soft-Error Recovery in HW-SVP 

 Readback and Overwrite reconfiguration (Scrubbing) 

 

ICAP : Internal Configuration Access Port 

* Frame : Minimum unit of reconfiguration  
               (1 frame = 2,592bit on Virtex-6) 

Readback and error detect 
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After Prof. T. Sueyoshi (Kumamoto Univ.) 



ICAP 

Hard-Error Recovery in HW-SVP 
 Relocate PRB and separate a broken module 
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・・・ 
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・・・ 
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Implementing a copy of Module on Spare 
 to reconstruct TMR configuration 

* This is realized by uniforming inner configuration of PR region (reported on Dec. 2011)  

Readback 

Reconfiguration 

PRB relocation *  

After Prof. T. Sueyoshi (Kumamoto Univ.) 


