Dependable VLSI Platform using Robust Fabrics

> Director H. Onodera (Kyoto Univ.) Principal Researchers T. Onoye, Y. Mitsuyama, K. Kobayashi, H. Shimada, H. Kanbara, K. Wakabayashi

Whole Research Group

- Robust Fabric
 - Library-level Reliability
 - Onodera, Sato, Tsuchiya (Kyoto U.)
- Reconfigurable Architecture
 - FRRARY: Hardware-accelerator-level Reliability
 - Onoye, Hashimoto (Osaka U.), Mitsuyama (Kochi U. Tech)
- Reliable Processor
 - DARA: Processor-architecture-level Redundancy
 - BCDMR: Circuit-level Redundancy.
 - Kobayashi (Kyoto IT), Shimada, Yao (NAIST)
- Mapping Tools
 - Reliable Mapping
 - Ochi, Tsutsui (Kyoto U.)
- C-based Mapping Tools
 - Mapper for FRRARY
 - Wakabayashi, Takenaka, Noda (NEC)
- Applications
 - Dependability Evaluations and Applications for Reliability
 - Kanbara (ASTEM)

Our Approach to ISO26262

- For random failures ('soft-errors') and self-recovering.
 - FRRARY(cluster array for hardware accelerator)
 - DARA (processor core)
- To reduce random failures
 - BCDMR-FF (Robust Flip-Flop)

SoC for Dependable Platform

Functional Safety

- FRRARY (Flexible Reliability Reconfigurable Array)
 - Reconfigurable Hardware-acceleratorlevel Redundancy
- DARA (Dynamic Adaptive Redundancy Architecture)
 - Processor-architecture-level Redundancy
 - Pipeline-level Reliability Check

Reduce random failures

- BCDMR FF (Bistable Cross-coupled Dual Modular Redundancy FF)
 - Circuit-level Redundancy
 - Robust to alpha-particle and neutrons

65nm 4mmx4mm Chip

Mar. 2012 TO, will be fabricated Aug. 2012

Flexible Reliability Reconfigurable Array (FRRARY)

Advantages of FRRARY

- Reconfigurable architecture-level Redundancy
 - Adaptively changes redundancy according to required reliability

- Configuration data size is considerably smaller than that of FPGAs
 - Almost 1% of FPGAs → 100x soft error resiliency

FRRARY can achieve over 78000x reliability

Reliable Pipeline Processor : DARA

Robust FF: BCDMR FF

Results from Neutron Irradiation

(FIT/Mbit)

Bistable Cross-coupled Dual Modular FF

- Redundant FF for soft errrors based on BISER (Intel, Stanford)
- No error is observed in BCDMR on twin (2) well
 - 260x stronger than D-FF

Flexible but Dependable Platform

Dependability=min(FRRARY, DARA, BCDMR)

A weak component dominates Dependability

- DARA: Processor-level Dependability
- FRRARY: Reconfigurable Dependability
- BCDMR: Circuit-level Dependability
 - Whole circuit cannot be protected by architecture & processor-level

Summary

- Our Approach
 - FRRARY+DARA
 - Functional Safety
 - BCDMR FF
 - Reduce rate of random failures

Dependability=min (FRRARY, DARA, BCDMR) =min(78k, 360, 240)

=at least 240x dependability

Architecture to Circuit-level (Overall) dependability

Brand-new Report from DAC2012

DAC community takes care of Dependability

- Panel Discussion
 - "Will Reliability be the Death of Moore's Law?"
 - Physical threats to dependability: Aging, Thermal Effects, Variability etc.
- Two Oral Sessions
 - "Facing Dependability: System-Level Solutions and Cybercar Challenges
 - Run-Time Adaptivity rather than at lower abstraction
 - "Yielding in an Uncertain World"
 - Solution below 22nm at manufacturing level