Development of Dependable Network-on-Chip Platform

Tomohiro Yoneda (National Institute of Informatics)
Masashi Imai (Hirosaki University)
Takahiro Hanyu (Tohoku University)
Hiroshi Saito (University of Aizu)
Kenji Kise (Tokyo Institute of Technology)
Recent cars are equipped with many ECUs

- Conventional ECU configuration

![Diagram of ECUs and sensors/actuators connected via CAN, FlexRay, etc.]
Recent cars are equipped with many ECUs

- Centralized ECU approach
Recent cars are equipped with many ECUs
- Centralized ECU approach

Any ECU can access any sensors/actuators

ECUs efficiently used by balancing loads
Tasks continuously executed even if some ECUs become faulty
(i.e., faulty ECU does not result in malfunction of its specific functions)
Backgrounds

- **Centralized ECU approach**
 - **NoC (Network-on-Chip) based**
 - Some European projects
 - **Multi-Chip NoC based** [Yoneda, et al. PRDC2012]
 - Multiple NoCs are connected via off-chip links
 - On-chip networks seamlessly extended to multi-chip networks
 - Advantages
 - Cost-effective: small NoC chips are cheap, and various sizes of configuration are possible (without developing different sizes of NoCs)
 - Chip-level redundancy: tolerate a chip fault
Backgrounds

- Centralized ECU approach
 - NoC (Network-on-Chip) based
 - Some European projects
 - Recomp: Reduced certification costs for trusted multi-core platforms. [Atc page]
 - Race: Robust and reliable automotive computing environment for future ecars. [Project page]
 - Multi-Chip NoC based [Yoneda et al. PRDC 2012]
 - Multiple NoCs are connected via off-chip links
 - On-chip networks seamlessly extended to multi-chip networks
 - Advantages
 - Cost-effective: small NoC chips are cheap, and various sizes of configuration are possible (without developing different sizes of NoCs)
 - Chip-level redundancy: tolerate a chip fault
Our Project

- **Hardware platform**
 - Multi-Chip NoC
 - Dependable, adaptive, deadlock-free routing
 - Efficient inter-chip communication technology
 - Evaluation board

- **Task execution**
 - Pair & Swap
 - SmartCore

- **Task allocation**
 - Redundant allocation, redundant scheduling
Our Project

♦ Automotive Application
 - Integrated attitude control system for a four-wheel drive car
 - Torque, brake, and steering control of 4 wheels performed by ECUs
 - Highly cooperative process needed by each ECU
 - Integrated Control ECU
 - 2 Electric Power Steering Control ECUs
 - Brake Control ECU
 - Battery Management ECU
Our Project

✦ Automotive Application
 - Integrated attitude control for a four-wheel drive car
 - Torque, brake, and steering control performed by ECUs
 - Highly cooperative process
 - Integrated Control ECU
 - 2 Electric Power Steering Control ECUs
 - Brake Control ECU
 - Battery Management ECU

International Symposium on DVLSI Systems 2012
Our Project

- Characteristics of this application
 - Stopping control is very dangerous
 - Higher availability is required
Experimental system

Base chip × 4

HILS (Hardware In the Loop Simulation) system

Base chip

- Routers
- H.W. accelerator
- V850E CPU core

- Routers
- V850E CPU cores

- External IO
- D/A • A/D • etc

- FPGA

- PC

- Engine

- Detection

- Vehicle Dynamics

- Environment
Ongoing work

- Evaluation kit
 - NoC implementation
 - 4 Multi-Chip ASICs
 - Vertex7(XC7VLX690T)
 - HILS interface
 - Pseudo HIL-plant models (executable on PC)
 - Redundant task allocation tool
 - Input: (Simplex) Simulink model for application
 - Output: Executable codes for redundant cores