DEOS-FY2009-CB-01

Open Systems Dependability Core
— DS-Bench: Dependability System Benchmarks —

Jubgdbootdbbotgdbotdbootbogtdn
—pugubgtdbootd oot bgubgd -

DEQOS Core Team

September 2009

Bl

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

deosc01
タイプライターテキスト
DEOS-FY2009-CB-01

Contents

1 Introduction

2 Basic Concept
2.1 System and Components
2.2 Components and Anomaly

2.3 Components and Design Requirements, .
24 DSBenchmark
24.1 Advantages e e e
242 LIimitationso e e e e e e e e e e e e e

3 DS-Bench Runtime Environment

3.1 Overview
3.2 Anomaly Load
3.3 Measurements

3.4 Performance Benchmarks

4 Summary and Future Work

11
12
13

19

List of Figures

2.1

3.1
3.2
33
34
3.5

An Example of Components 3
An Example of Components L 9
An example of the LMBench benchmark result 14
An Overview of DSXML Definition 16
Translation Instruction of LMBench Performance Benchmark 17
An XML-formatted Result of LMBench Performance Benchmark 18

List of Tables

2.1

3.1
3.2
33

Dependability Requirements against Anomaly Source 6
Anomaly Sources 11
Performance Benchmarks forOS o oL 13
Example of Performance Benchmarks for Applications 13

This document is an interim report about the de-
pendability benchmark runtime environment be-

Abstract

ing developed at the DEOS project.

DEOS Core Team:

Yutaka Ishikawa
Hajime Fujita
Shinpei Kato
Motohiko Matsuda
Midori Sugaya
Toshihiro Hanawa
Shinichi Miura
Yuki Kinebuchi
Jin Nakazawa
Yoichi Ishiwata
Yutaka Matsuno
Hiroki Takamura
Hiroshi Yamada

University of Tokyo
University of Tokyo
University of Tokyo
University of Tokyo
JST

University of Tsukuba
University of Tsukuba
Waseda University
Keio University

AIST

AIST

AIST

Keio University

gobobeoStubooboooboooboon
gbogbogbboobodgboaobobobo

goboobooodn

DEOSOUOODODO:

g
g
g
g

ggood

U
U
HEN
HEN

goo

g
g
g
EEN
g
g
g

HEN
HEN
U

HEN
U

HRN
HEN

gaon

goon

goon

goon
gogoooood
ggon

goon
goooo
gogooodg
ggoooboood
ggbobobododad
ggboboboggd
ggbooodg

Chapter 1

Introduction

Dependability has been recognized as an integrat-
ing concept that encompasses availability, relia-
bility, safety, integrity, and maintainability [1]. A
dependability benchmark is a technique used to
evaluate the dependability of a system. It char-
acterizes the dependability of a system compo-
nent or a whole system, either qualitatively or
quantitatively[2]. The dependability benchmark
framework, a conceptual framework, was devel-
oped under the DBench project[3] from late 1990
to early 2000. In this framework, the benchmark
environment consists of Benchmark Target, Work-
load, Faultload, and Measurement.

Dependability benchmarks are crucial for both
designers and users of dependable systems. Users
may use dependability benchmarks to define
their dependability requirements, both qualita-
tively and quantitatively, and thus those bench-
marks are used at procurement. System designers
use dependability benchmarks to define the spec-
ifications and to test the parts of the system, as
well as test the whole system. In the development
phase, a dependability benchmark may reveal a
weakness in the system.

ggugbobouboogboboobab
gbooogbogoboobuooboooboo
gbobogbooboobodonuooboobbon
gbodboogbbobogboobbogbo
gbobobouogboobobogboabg
gboobooboobobogbooobobod
goodbooboobooboobobobo
goboogd[zjgieeotooogon 20000
gboobdbdbdDBenchODOOOOoOOO
gboubogobouoobobuogoooboo
gobooboboobobobooboob 314
goboboooobbbooobobobooon
gobooboobobobboobooobbobo
gobboooobbodd

gbgobbooobooboooboob
gouobbbdoouobbbooooobbd
gbogboboogbuoooboooobobo
gbdbboobogbboobogoobo
gboogbuoboobobboboboobod
goodboooboogbuoobooobood
gbuodbuodgbogboobobogbad
gbgbogoguogboboboboobood
gbboobooobuooobobbuognobo
gobboogobbbuoooboobobooan
goobodoobooobuodgboooboo
gobbbuoooobboodn

CHAPTER 1. INTRODUCTION

There are three issues we must concerned with the
traditional dependability benchmark framework,
DBench: 1) The framework does assume various
hardware, software, and operator faults under a
well defined closed environment, but does not as-
sume an open system environment in which the
system is connected to the Internet and any user
may access the system. In such an environment,
network attacks and unexpected operations such
as user-caused overload (too many user requests),
must be considered.

2) The framework does not consider performance
under an anomaly situation with energy consump-
tion as the dependability measurement. In mo-
bile equipment powered by battery, the quality of
service and performance must be controlled to re-
duce the energy consumption of the battery. Thus,
a dependability benchmark should include evalu-
ation of performance and energy consumption un-
der both normal and abnormal situations.

3) There are no systematic dependability bench-
mark runtime environments currently avail-
able. DBench defines a conceptual dependabil-
ity benchmark framework, but does not pro-
vide a software stack to support the framework.
Thus, dependability benchmarks based on the
DBench framework have been implemented inde-
pendently. They develop fault loads and measure-
ment tools that do not share any common evalua-
tion environment.

This document defines a new dependability
benchmark runtime environment, called DS-
Bench for short, that overcomes the above is-
sues. Unlike DBench, it defines a common bench-
mark runtime environment to achieve a bench-
mark software suite.

In this document, the concept of DS-Bench is
firstly introduced in the following chapter. Then,
the DS-Bench runtime environment is designed in
Chapter 3.

DBenchO OO UOOOOUOOOOUOOogn
guobooboobboobboboobbdad
3gbooboboooboboboboon
gboboboooobbboooobbobooon
goboobuobboobooooboooon
gboogbbooooboobbobbobo
goboboobooboobobooboon
gbogbbobuodgboobboooboo
gboodboudgbouogboobobobobobo
goboboooggobobogo

gobbbooodgbbbuooobbod
gbogbbogbodgboobbogbbo
gboogboogbogboobgboogoad
gboodouogboobooboobobod
googbooobooboobbooboo
gbuodgbudgbogbobobobbobbo
gboogboobbobboobbobboo
gbobogbodgboogbuagoogobog
gobbboogoobbouooooboo

gobboooobbobuoooobobod
goobobooooobobobOdDBench OO
ggoobboooubobobooooobon
gbbobbobobobbobbobobad
gbobodboobdbuobDBenchd
gbobooboobbobuaobbodgbobo
gbogbooobooobobugbobodgod
gboogbooboboobooboooboo
gooobooooooooooobooon
gbobboooobbboodobbbuooan

gboobobbobbobooboob
gbodbdagboobobdgboobobod
gbooboobdb @b DS-Bench)O O 0O O
U0ODBenchOUO O OOOOOOODOODOODO
gbbogobugboogboobbodgobo
goboboooobbbooobobobooon

Uo00oooboboooonbodDbS-Benchd
J0ob0bo0oooboOob30b00d DS-Bench
gbobboooobbodd

Chapter 2

Basic Concept

Human Components
[Operator] [
Component) | Componen

][User]
t/ | Component

Server Computer Components

Server Computer Components

Server Computer Components

Network Switch Server Computer Components
[CPU [Memory][SSD] e w— [CPU [Memory][SSD]
C t) (C t

Component | | Componen omponen

Component | | Component) |(Component

Component

_ Network Cable -
Hard Disk Net. Card PPPs Component Hard Disk Net. Card PP
Component) | Component Component

Figure 2.1: An Example of Components

2.1 System and Components

First, the terms used in this document are de-
fined as follows: A part of the system is called
a component. A component is either hardware,
software, or a human who operates or uses the
system. A system consists of many components,
each of which may consist of other components.
The system itself may be a component of another
system. Thus, components are hierarchically de-
fined.

gogoogbbobbooooobobogd
gbobodboudgbouogbgoboobonbog
gbobobooboboboboobgobo
goboboooboboboooooooon
gooobobooouboboooobon
guodgbouogboobobbobobodgbood
gboodbogbogbgoboobobobg
gobobobdoboobooboboboon
gobobobobooooboboboon
gobbooogboo

CHAPTER 2. BASIC CONCEPT

For example, as shown in Figure 2.1, a reliable
file server may consist of the following compo-
nents: A server machine comprising a hardware
component which consists of a CPU, memory, a
RAID disk, and network equipment components.
A file server may consist of server machines. The
file server software and the operating system run-
ning on those server machines are software com-
ponents. The human components are the opera-
tors and users of the server.

2.2 Components and Anomaly

A fault may occur in a component, and this fault
may propagate another malfunction in another
component. In the paper[1], the chain of fault,
error, and failure is modeled. An example of such
a chain in the file server example of Figure 2.1 is
that a fault in a hard disk causes an error in the file
system, and causes an application to fail. A fault
does not always stop a service, but sometimes de-
grades the quality of the service. For example, a
fault in a disk causes degradation of access per-
formance due to retries of the disk access request.

There can be many sources of a fault in a software
component. Software and some databases may be
altered by attack from the Internet. Humans may
make a mistake in a system operation, maliciously
or non-maliciously. A user may also perform an
unexpected operation. In this document, instead
of using the term fault, anomaly is used to indi-
cate a fault of in a hardware component, software
bugs, and malicious/non-malicious operations.

gogodgz21bbobobbo0oooga
gbobboboboobodboobobbo
gboogboobbobobboobobod
gboodgbogboobobbobooboo
gogocpubOdbOogRrRAIDODOOODOO
gboodboogbooboobobobobod
oobobobobboboboboboon
gbudbdogoogbuodgbadgboagooad
gbogbbobobobobbooboboo
gboodgbodgogbugbouoguooooad
gboogobbogbbogbogoogobod
goboboboboobooboboboon
goboboood

O0000o0o00o0oo0oonooooooo
000oooooooooooooo (faultyd
000 (erron)d 00 (failure) DO OO0 O OO O
0ddddooooooo21000000a
00d00D0oO0o00o0oooooooooooa
O000o0Oo0O0000ooobooobooooaa
ddodoooooooobooooooooa
ddoddoooooooobooooooooa
0d0d0odboodooooooooooooa
0ddopooooo0oooooooooooo
O00d0oooooooooomoooOoaoao
oo0o0o0ooooooooooa

gobbbooogbbobuoooobbod
goobbobbbooubboooooon
gbbobodobobbodbobobdodabd
goobbogooobboooouobobb
gbodgbogboogbogbobobobobbo
gboodboogbooboobobboobod
gboodbouodgbogboobooboboba
U000DAmomaly(0 0 OO0O0D0OO0OOO0O0O0O0O
gooH)oooooooooo

CHAPTER 2. BASIC CONCEPT

An anomaly can happen in a component or sev-
eral components independently. An anomaly can
cause an error in another component, and that er-
ror can lead to a failure. For example, when a hu-
man component makes a mistake in an operation
involving a database and causes an inconsistency
in the database, the database reports the inconsis-
tency status to the application software, and the
result may cause the system to shut down.

goooboobooboooobooobon
gbobooboobobuoobobodbd
gbuodgbudgboogboobobbobbo
gboboboooobbboooobbbooon
gbogbooobooobobugbobodgod
gboogbooobooobooboobood
gooobobooboboooobobobd
gboogbbogubbogboobbod
gobboooon

2.3 Components and Design Requirements

A dependable system must maintain the behav-
ior required at the design phase, even though an
anomaly occurs in some component of the sys-
tem. The quantitative requirements of a depend-
able system are measured by five metrics: i) the
ratio of anomalies/failures, ii) the detection time
of an anomaly, ii1) the failure recovery time, iv)
performance metrics, and v) energy consump-
tion. The requirements of the anomaly/failure ra-
tio can be defined for hardware components, each
of which has such a ratio.

The detection time of an anomaly is the time be-
tween the occurrence of an anomaly and the re-
port of that anomaly. The detection time require-
ment may be defined per component. The failure
recovery time is defined by the sum of the detec-
tion time of a particular anomaly and the recovery
time of the failure caused by that anomaly. For ex-
ample, a fault (anomaly) in a disk is detected by
the operating system, and the fault is reported to
the file server software. The recovery time against
the disk fault is the sum of the report time from the
operating system and the time to it takes to carry
out the recovery operation.

Performance and energy consumption are impor-
tant requirements under both normal and abnor-
mal conditions. Performance and energy con-
sumption are sometimes conflicting requirements
because more performance requires more energy
consumption. A fault tolerant server is usually
obtained by introducing redundancy of hardware
that consumes more energy.

gboobobbobboobooboob
gbuodbogbobobobbobobobbo
gooobbooouboboboooobon
gbobuogboogboboobboooboo
gbgbobooboooboobobobod
goboooboobooboosboobooonboo
gbobogobuogbbuodobboodaoboo
gbobobbooobodgbogbdagoad
gbobuogbodgobogbuodgbooobod
goboboogobbbooobobobooan

gboobgbobobboobooboob
gbuodgbdogobooboobobooobad
gogobboboouobboiboooobobbd
gboodboudgoogboobooboboo
gbogboboogbougboooobod
go)boooboobobobooboobo
gbogbobuodgbooobuoobbodbo
gbuogbuogbogbboogbogoad
gboboboooobbboooobboboogon
gboogbooobogbodgoooboobo
goobod

gobboboooobbobuoooobobod
gogobboboooooobboooobbd
gboogbooboboobboobbooboa
gobobobdobooboboboobooon
gbuodgbdogbogbougboogoad
gbobogbbobobbbooboobbo
gooo

CHAPTER 2. BASIC CONCEPT

Table 2.1: Dependability Requirements against Anomaly Source

Anomaly Source

Requirements Hardware

CPU | Memory | --- | Disk driver | Server | --- | Operator | User

Software Human

Detection Time
Recovery Time
Performance
Energy

2.4 DS Benchmark

A dependable system must meet the depend-
ability requirements under anomaly conditions
that were anticipated at the system development
phase. A runtime environment can be developed
to test whether or not the dependability require-
ments are satisfied under the anomaly conditions.
We call this dependable system benchmark run-
time environment, DS-Bench for short.

The test coverage of DS-Bench is summarized by
two dimensional matrices, i.e., anomaly sources
and requirements as shown in Table 2.1. Anomaly
sources include hardware faults, anomalies in
software components, and human-caused faults.
The requirements include the detection time of an
anomaly, the recovery time of an anomaly, perfor-
mance under the anomaly, and energy consump-
tion under the anomaly. The requirements are not
only for the whole system, but also for each com-
ponent. For example, a requirement for the OS
component is the required detection time for de-
tection of a disk fault.

gooooopbobooooooooboooo
oooboooboooobboooobooboooo
ObOoO0o0obOoOobobooboboOooobooboon
OO0000000O00bOOo0oOooboooDboo
ooboboooobooobbooooooobooo
obooobOooobooboboooooon
ooobobooooooboooboooobooog
0 00O (Dependable System Benchmark Runtime
Environment) [0 0 ODS-BenchO O 0O 0O 0O O O
ooo

021000000DS-Bench0O00OO0OO
gooobobobobobooooob200
gogobbbdoouobbboooobbbon
gbbogogbouoooobbbooboboo
gobboooobbbooobbobooan
gobboogobbbooobooboogon
gobobobdoboobooboboboon
gbgboogoooobuobubuobabdanno
gboogbobobobbooboobdaboobo
gbbogobboouobbooboooboo
gbougobgbogbodgbooboobo
oo

CHAPTER 2. BASIC CONCEPT

2.4.1 Advantages

DS-Bench has the following advantages:
Developer:

The developer may use DS-Bench during the
product life cycle. In the specification and design
phases, the dependability requirements of compo-
nents are defined by the anticipated results un-
der certain conditions obtained by the execution
of DS-Bench for the system. In the implementa-
tion and test phases, DS-Bench checks whether or
not the requirements are satisfied. In other words,
DS-Bench provided evidence of the existence of
a dependability characteristic for the system. It
also reveals the weakness of components and the
whole system. The results of DS-Bench execu-
tion are stored in a database so that the database
can be used during the operation phase.

User:

The user may define the dependability require-
ments of the system using DS-Bench at system
procurement. The results obtained from DS-
Bench are used as a part of the specifications. DS-
Bench is also used to test candidate systems and
provide useful comparisons for making procure-
ment decisions.

Operation Phase:

When an anomaly condition occurs during the
operation phase, the database produced by DS-
Bench is queried, especially if the same anomaly
condition has already been encountered or tested
for. For example, consider a situation where the
performance of a stream server is degraded. The
same case is extracted from the result database of
DS-Bench, and the operator can confirm whether
or not the same anomaly has happened.

DS-BenchO O OO OOOOOODOOO
goo:
gboobobobobobobogobood DS-
BenchUOUOOOOOOOOOOODODOODO
gbbooogboobogbobobogboo
gbogogbodgboooobooboooad
gbobobgboboboboobobobao
gooooooboboboboobooon
gobboooobbboodobbbooan
gooobogoDS-BenchODODOOOOOOO
gubogbogobogbodgooooad
gboogboudgbouogbooboobobobg
gboobobooboobooboobo

gooo
gboogbboobdoboobboooboo
gbobooobuogbbogobobbogboo
gooboboogoobobbooooobd
goboboogoobbboooobobooon
DS-BenchOOOUOODOODOOODOODOOOO
gbogboobbooboobboboboo
gboodgbouogboobobobobobobobo
gbouodgbogogbouogooogooooad
gOoobO0obOobOoboon DS-Bench O OO0
oo

oo

gboobobobobboobODS-Bench O
gogoobbioooubbboooobon
googobbdooubbobooobbon
gbooogoodgbogoboobboobod
goboboooobbbooobobobooon
DS-BenchUOOUOUOOOO0OO0OOO0OOOOOOO
gouobbbdoouooobboooobbd
gooobbiooouboboooobon
oo

CHAPTER 2. BASIC CONCEPT

2.4.2 Limitations

DS-Bench is only effective for anticipated
anomaly conditions. It does not reveal weakness
of the system for unexpected anomaly conditions,
and it does not find out the source of such con-
ditions. For example, again consider the condi-
tion that the performance of a stream server is de-
graded. If the anomaly is unknown, it is difficult
to find out what really happened.

In such a case, after finding the source of the
anomaly, a program to generate the anomaly,
called anomaly load, must be developed if no
such program exists. The developed program is
registered to DS-Bench so that the capability of
dependability checks is increased in the system.
This incremental benchmark improvement leads
to the improvement of overall system dependabil-

1ty.

It should be noted that support for finding out un-
expected/unknown anomalies is being discussed
in the DEOS project.

DS-BenchO OO O OOOOOOOOOOO
gboogbboodgboobbuodboooboo
goobbbdooobbbboooobbd
gbodgbogoboobobobobobobbdo
UooooODS-BenchODOOOOOOOOOO
gboodgbogbooboobobobobod
gobobooodn

gbodbogooogbobogooooagn
goboboooobbbooobobobooon
DS-BenchO O OUOOOOO0OOO0DOOOOOO
gboubgboobboobbodobdodobad
gboogbobobobogoboobaobbo
gobobooogobobodgd

gobbbooobobobuooooboobod
goooobeoSO0oooooooooon
gobbooodgbbbodgo

Chapter 3

DS-Bench Runtime Environment

Measurement

DS-Bench Controller h
Machine

Run

Results Measurement
Tool

Target
Machine

| Dispatch

/\&Control

Performance
Benchmark

TOOI Benchmark Tool
Tool
Anomaly
Measurement Load
Tool

Figure 3.1: An Example of Components

DS-Bench
Result

Performance Load

3.1 Overview

gbobobobouobogooboobobn
gobobobooboboooboboon
OrA 0000000000 ooobooon
gbogbobobbooooboboobodd

The system dependability requirements depend
on the application domain. In the factory au-
tomation and robot domains, realtime operation
and safety of the system are extremely important,

while in the computer server domain, availability,
responsibility, and low power consumption are
the main concerns. Thus, dependability bench-
marks are provided based on the relevant appli-
cation domain. On the other hand, some bench-
marks, such as CPU performance and power con-
sumption, are common to all application domains.

gboboooobooobooboobbodad
goboboogobbbuooobooboboogon
googbobboobooboobonobo
gobgooboocpububoboooobobn
gobboooobbbouooobbboogon

CHAPTER 3. DS-BENCH RUNTIME ENVIRONMENT 10

The DS-Bench is a runtime environment designed
to handle all dependability benchmarks. As
shown in Figure 3.1, the DS-Bench environment
consists of three computers: the controller, the
measurement machine, and the target machine.

The controller contains the performance bench-
mark tools, measurement tools, anomaly load
tools, and the database used to archive the re-
sults of the benchmarks. Examples of perfor-
mance benchmark tools are SPEC CPU, SPEC
WEB, and other existing performance bench-
marks. The measurement tools comprise, for ex-
ample, a power consumption instrument, and log-
ging tools for memory usage and CPU usage, re-
spectively. The anomaly load tools include tools
for injecting hardware error and injecting over-
loaded situations.

The controller manages the measurement and
target machines so that it distributes the tools
listed above to the target machines, if needed,
and runs the benchmark. In some benchmarks,
no measurement machine is required, while one
measurement machine may be required in other
benchmarks, and several such machines are re-
quired in yet other benchmarks. Results of the
benchmarks are sent to the controller and they are
archived in the database.

On the benchmark target machine, certain aspects
of the targeted component are measured. An
anomaly load creates a certain anomaly situation
for the target component. For example, in order
to test the component behavior under a disk ac-
cess overload situation, the bonie++, open source
benchmark, is run. The bonie++ program is a
benchmark program, but it is also used to yield
a disk access load.

The specifications of these tools are defined in this
Chapter.

DS-Bench OO OOOOOOOOOOOO
gooobbboooubobboooobon
gbobO3.1000000DS-Benchd 00000
gboooboobodgboooobobbod
g30goboboboobooobooooboon

0000000 0 Performance Benchmark
0 0 0O O Measurement [J [J 0 O Anomaly Load
odoooooooooooooooonon
OO0O000O0000O 0Performance Bench-
mark [0 0 0O O OSPEC CPUOSPEC WEB 0O I [
000000000000 0Measurement [[
Ooooooooooooooocpudnonon
0000000000000 0Anomaly Load
Oooooooboooooouoooooooo
gdodododoodooooooon

gbgbobgbbogbobogoooobg
gobobobobooooboboboon
gbodgbogobobdobooboobod
gboogbobogbuobogoooobbo
gboodbouogboobooboobobog
gbooogobbobobbodbooobod
googboboooboobboobbooboo
gobboooobbboodobbbooan

gooobooboboooooooobooon
oooboooooooooobooooboooo
U00000OAnomaly Load D OO DO OOOOO
goboobioOdl Anomaly0D OO0 oo
OOo0oO0oOoboOOobobOOoobooobooooDo
oooboobooooobooobooboooboobooo
O0DbO00000b0oOobo0ooOogn bonie++
oboooboooobooobooooobon
gboobogbdbone++0000O00OOOO0O
o0oooOobOoboooooobogo

gobbboogbbobuoooobobod
HEN

CHAPTER 3. DS-BENCH RUNTIME ENVIRONMENT 11

Table 3.1: Anomaly Sources

Component Anomaly

Tool

CPU, Memory Disk, NIC, ... | fault

VM, virtual BMC

Network cable and switch

disconnect, packet loss

switch capability, NIST net

Power supply power off special tap
Computer down VM or a special equipment
File System create/delete/write/read error Pbus-al-fs

Process mgmt

no process creation

Pbus-al-procs

Memory mgmt

no memory allocation

Pbus-al-memalloc

Application overloaded file access bonie++
Application overloaded process execution hackbench
Application overloaded process creation hackbench
Application huge memory allocation DS-memalloc
Application overloaded connection requests

overloaded send/receive requests

DS-tcpip

3.2 Anomaly Load

Table 3.1 summarizes the anomaly load injection
methods for target components provided by DS-
Bench. The injection of an anomaly into hard-
ware components, such as CPUs, memory mod-
ules, disks, and network interface cards, is ac-
complished by the VM (Virtual Machine) moni-
tor. The injection of an anomaly into a network,
such as the disconnection of a network cable or
a network switch fault, is simulated by disabling
a network port of the switch. Since a power tap
with a remote controller can be switched on/off
remotely, an anomaly of involving the shutting
down of a computer is accomplished by utilizing
such an equipment, as well as by using the VM
monitor.

If the benchmark target is a PC server with BMC
(Baseboard Management Control) equipment and
its operating system provides dependability using
the BMC equipment, such anomaly loads in the
CPU board can be simulated by a virtual BMC
tool. Note that the BMC equipment monitors
memory fault, CPU FAN fault, and so on, and
alerts are sent to the operating system when a fault
occurs[4].

DS-BenchO O OOOOUOOOOOOOOO
gogobgobs3ioooooboobgoooog
goboobobdobooceudboboobod
guobdgbuoobobuodobboboooboo
00000 VM (Virtual Monitor) U 00 00O
gbogooobouogboobbobobabo
gbboobobbodgbooogboooobo
gboogbooobooboobbooboo
gobOdOoONOFFOO0DO0ObO0ooogon
gbbooobuogobobouoobbodovMiod
gobbooboooooboo

00000000 PCODODOOOBMC (Base-
board Management Control) O O 0O O O OS O
O0000O0O0o0ObbODbOOobODbOOo0oooooo
BMCOOOOODODODODOODODODODODOOOO
godbooBMCOOCPUDOOOO Memory[
O000000ooOooooooooooog
oosSoooono 4o

CHAPTER 3. DS-BENCH RUNTIME ENVIRONMENT 12

Anomaly loads in the operating system, such
as a file system, process or memory manage-
ment anomaly, are implemented using the P-Bus
infrastructure[5] that supports OS extensions de-
veloped by the DEOS project.

Application-level anomaly loads are produced as
follows: Some performance benchmark programs
are used to generate overload situations, such as
the bonie++ benchmark program for file systems
and the hackbench program for processes. The
DS-memalloc tool is provided to reveal the tar-
get’s behavior at the time requests for a huge
memory allocation. In order to discover the be-
havior of the target at an overload-level request
involving network connections and network traf-
fic, the DS-tcpip tool is provided.

3.3 Measurements

The following measurement tools are provided to
discover system behavior vis-a-vis the anomaly
loads. Note that the measurement tools for per-
formance will be given in the next section.

Energy Consumption:
The DS-Bench assumes that some equipment is
available to measure energy consumption.

System down ratio and time:

The DS-Bench assumes that the benchmark tar-
get machine is connected to a network so that the
system availability is monitored remotely by the
ping command. The ping command uses the
ECHO packet of the IP protocol. Thus, the accu-
racy of the system down detection time depends
on the round trip time of the ECHO packet in the
network. Such round trip times involve measure-
ment in the milli second order. If more accuracy
is required, some special purpose hardware must
be installed.

Delay time and ratio for error reporting:

This delay time is recorded in the logging data.
Each component must record the reporting time
in the logging data. If no information is available,
the ratio of error reporting is 0 %.

gobbbooobobobuoooobbod
gbogoboooStodbobobodbDbDEOSO
gboboodPp-BusOSOOOO [S]O0OOO0OO
goooo

0000000000000000000
000000000000000000000
000000000000000000000
000000000000000000000
000000000 bonie++d1 0000000
0000000000000 hackbenchD O O
000000000000000000000
0000000 O0DS-memalloc 0000000
OOTCPAIPOOOOOOOOOOOOOOO
000000000000000000000
0000 DS-tepip0 00000

Anomaly Load 0O OO OOOOOOOOO
O00ob0oO0oooboOOoobooooobbooo
ooboooobooboboobboobbooon
ooogoo

gogoogon:
gogoobbioooubbboooobon
g

gobboboogdobbbdaodgobon:
DS-BenchO O OOOOOOOODOODOOOO
gooStbioubdbdping (PO ECHOLD OO
hHhoooogobooboobobobddddECHO
gbgobgbboboobooboobon
ceubO0obOOoOoDobOoobOobooboOoon
gboodgbuogbuogboobobobobbo
gboogoboobooobogboobod
EEN

goooooooooooogdn:

gooobbiodooubbboooobon
gbouogbuogboobobbobbobbo
gbooboobooobobugbobodgod
gbooobooboowbonon

CHAPTER 3. DS-BENCH RUNTIME ENVIRONMENT 13

Table 3.2: Performance Benchmarks for OS

Component | Performance Benchmark | Component Performance Benchmark
CpPU SPEC CPU CPU scheduler DS-realtime-bench
oS LMBench TCP/TP iperf
File System | bonie++ Distributed File System | —
Table 3.3: Example of Performance Benchmarks for Applications
Application | Performance Benchmark || Application | Performance Benchmark
WEB server | SPEC Web Streaming | —
Data base OLTP HPC IMB

Delay time and ratio of error detection:

In order to obtain this delay time, the anomaly
load tools must record the time when an anomaly
load starts. The system also records the time
when the source of the anomaly is detected. The
delay time is given by the period between those
events. If the system does not record the detec-
tion event within a certain period, the DS-Bench
concludes that the system has not detected the er-
IOT.

3.4 Performance Benchmarks

As shown in Tables 3.2 and 3.3, the performance
benchmarks are categorized with two bench-
marks, i.e., one for OS function performance and
one for application performance. It is not in-
tended that all performance benchmarks will be
developed for DS-Bench, but the existing perfor-
mance benchmarks such as SPEC and OLTP are
integrated.

dobobooogdoobogggoon:
Anomaly Load OO0 O OO OOOOODOOOO
gobobobobooboboboboon
gbobobooboboboobo2000
gobboooobbboooobbbooan
goboboooobbbooobbbooon
gobbbooogoboboooobo

g3200003300000000000
gobobooooStbobbouoogoooobooad
gbobboobooo20b0000000Ds-
Benchmark 0 000000000 OO0OOO
gbooobgoobOSPECO oLTPL OO0
goboboooobbooogon

CHAPTER 3. DS-BENCH RUNTIME ENVIRONMENT

LMBENCH 3.0 SUMMARY

(Alpha software, do not distribute)
Basic system parameters

14

Host OS Description Mhz tlb cache mem scal
pages line par load
bytes
rokko Linux 2.6.29- x86_64-1linux—-gnu 2639 38 128 6.5800 1
Processor, Processes — times in microseconds - smaller is better
Host O0S Mhz null null open slct sig sig fork exec sh
call 1I/0 stat clos TCP inst hndl proc proc proc
rokko Linux 2.6.29- 2639 0.10 0.16 5.98 7.10 0.21 1.97 880. 2416 6331
Basic integer operations - times in nanoseconds - smaller is better
Host OS intgr intgr intgr intgr intgr
bit add mul div mod

Figure 3.2: An example of the LMBench benchmark result

Since existing benchmarks have been indepen-
dently developed, their execution methods and re-
sult formats differ. For example, the LMBench
benchmark, which measures the performance of
OS functions, generates the result shown in Fig-
ure 3.2. This result format is readable for humans,
but it is not easy readable for software. Thus, we
need to standardize a readable result format for
software, and then design a translator to translate
the results from each benchmark into the stan-
dardized format.

gobbboooobbbuoooobbod
goobbooooobbobooogoon
gbbogboouobuouoobboobood
gooStubudbubdubdl tMBench OO O
gboobo320000000000000000
gbogbogobobdgbuooboobod
gbbogogbouogobobubooboboo
gboodbuogboobgoboobobbd
goboboooobbboooobobooon

CHAPTER 3. DS-BENCH RUNTIME ENVIRONMENT 15

DS-Bench provides a runtime environment in
which several existing benchmarks are integrated.
The result of each benchmark is converted to the
standard format using the XML language. Since
existing benchmarks have their own result for-
mats, the translation instruction, transforming the
results of each benchmark into the XML format,
is also defined in the XML language. The DS-
Bench provides the translator that takes the result
of a benchmark and the translation instruction,
and registers the translated results in the XML
format in the database.

A part of the translation instruction is shown
in Figure 3.3. It is assumed that the results
of a benchmark contains several tables that in-
clude some headers, results, and/or separators be-
tween tables. Figure 3.3 shows an overview of
the instruction extracting one table where the <
table > node defines one table in the result.

The DS-Bench runtime environment assumes that
a table of the results starts the string matched by
a regular expression defined in the < begin >
node and ends the string matched by a regular ex-
pression defined by the < end > node. That is,
the DS-Bench takes the result of the benchmark
and searches the string matched by the regular
expression defined in the < begin > node, and
then it searches the string matched by the regu-
lar expression defined in < end > node. The
strings between the two strings matched with the
< begin > and < end > nodes are considered
as the result data. The < data > and < valid >
nodes define the rule to extract result values in the
result data. An example of the definition will be
given later.

If the < begin > and < end > nodes are omit-
ted in the definition, the DS-Bench runtime envi-
ronment searches for string matching one of the
regular expressions defined by the < caption >,
< header >, and < data > nodes. After that,
the strings appearing in the results of the bench-
mark are considered as the result data until the
DS-Bench finds string matching one of the reg-
ular expressions defined by the < caption >,
< header >, and < data > nodes.

DS-BenchO OOUOOOOOOOOOOOO
gbodbogboobobbobbobbd
gbgboboXMLooooobobobod
gboodbuogbogboooboboboad
goobbobooobboobooooobbd
XMLOOOOOoOoOoooooooooooo
goooboboD XMLOODODOD D DS-Bench
gbobodgbudgbogboobobobobbo
gboboogboboobogXMLudoogd
gobboooogboboboooobo

O33000000o0o00oo00ooooo
O000o00000booO0000onoooooa
000000000 (header) O O (data)d O [
ddoddoooooooobooooooooa
O330000000o0booooooooan
O00O0O<table>000000000000
O000ooooooooon

DS-BenchO OO OOO0ODODO < begin >
O0000DbO0o00ObOO0o0oDbObOO0o0oDOOOn
O0000O0<end >00000000000
0000000000000 0O00D00o0n
O000000DS-BenchOOOOOOOOO
00000 <begin >0000000000
O00o0boob0ooooboobOobnO <end >
O0000000DODO000OoOo0oOoooDOog
O000< begin >0000 <end >000
OO000000oo0oooOooooooooood
O00000DOO00oOoooooooooood
O0000O000bOoO0oOobooooooboOoo
00 <date >000000 <walid>000
O00000D0O0DOO00O0O0D0O0ODOoogon

< begin >0000 < end >0O0000
U00000000< caption > 0000
header >0 000< date >000000030
00000oobooobooobooooooaon
O000o0oooooooooobooooooad
00000O0ooD0ooooooooooooon

CHAPTER 3. DS-BENCH RUNTIME ENVIRONMENT 16

<dsxml>

<benchmark>Performance Benchmark Name</benchmark>

<table>

<caption>UOOOOOO0ODO0ODOO0DODOOODOOODOO0OC</caption>
<header>0 00000000000 O0O0O0O0O0O0O0OO0O0OO0OO</header>
<header2>DS-Bench OO UOO0O0OO0O00O0O0O0O0O0O0O0O0OO</header2>
<data>OOOOOOOODOOOOODOODOOC</data>
<begin>O00OO0O0000O0O000O0O0O0O0O0O0O0O0DOO00O0ODO00OO</begin>
<end>O00O0O0O0O0O00O0O00DOO0DOOODOODOOODOOODOO</end>
<valid>000000000000o00 1000000000 10</valid>

</table>
<table>

.<tablex>OUUOODOODOOOOO

</table>
</dsxml>

Figure 3.3: An Overview of DSXML Definition

Figure 3.4 is a sample translation instruction for
the results generated by the LMBench benchmark
program. Two tables are defined in this defini-
tion, i.e., one is for the table whose caption starts
the string “Processor, Process” and the
other is for the table whose caption starts “Basic
integer operations” as shown in Figure
3.2. The first < table > node in Figure 3.4 de-
fines the table whose caption matches the string
“Processor, Process.x*” where “.x”1is a
regular expression. Three lines are headed before
the result data appears in the result shown in Fig-
ure 3.2. The first line of the header is expressed
by the < header > node. This line defines the
columns of the table, and thus we do not need to
express the next two lines. The following regular
expression is the first line of the header.

0 34001LMBench OO0 O0O0O0O0OO0O
00000000 o0o000onbo0oOooOo2000
000000000 320000 LMBench O
OO0000O0OProcessor, ProcessUOO
U0OUOBasic integer operationsUU 2
0000000 b0o000Oo 34000001
000 < table >00000Processor,
ProcessesU U U U< caption >0 000N
OO Processor, Processes.xO00000O
000000200000000010000
000000000000 < header >000
O0o00o0o0ooooooaoo

Host\s+*0S\s*Mhz\s*null\s+null\s*open\sxslct\s*sig\s*sig\sxfork\s+exec\s*sh

< header2 > defines the header format used in
the translated result. DS-Bench uses this header
for the translated result. The < data > node
defines the format of the result values. The <
valid > node selects the result values. In Figure
3.4, the < valid > node is “0011111111111”
which means the first two columns are not se-
lected, i.e., the Host and OS columns are not se-
lected.

< header2 >0000000000000
goooodgDS-BenchOOOOOOOOOO
O000O< header2 >00000000000
<data >0000000000D0O0O0O0O
goboboooobbbooobobobooon
<wvelid>000000000000000O0O
10008HostO02000o0s000000O
O00<walid>000011111111111000
gooobog

CHAPTER 3. DS-BENCH RUNTIME ENVIRONMENT 17

<dsxml>
<benchmark>LMBench</benchmark>
<table>
<caption> Processor, Processes.x*</caption>
<header> Host \sx* 0OS \s* Mhz \sx* null \sx* null \s* \s\s\s\s \s* open \s* slct \s=*
<header2> Host,0S,Mhz,null call, null I/0, stat, open close, select TCP, signal in
<data>.{9} \s .{13} \s .{4} \s .{4} \s .{4} \s .{4} \s .{4} \s .{4} \s .{4} \s .{4} \s .{4
<begin> Processor, Processes.x*</begin>
<end>"$</end>
<valid>0011111111111</valid>
</table>
<table>
<caption> Basic integer operations.*x</caption>
<header>Host\s+0S \s* intgr \s* intgr \s* intgr \s* intgr \s* intgr </header>
<header2>Host, 0OS, integer bit, integer add, integer mul, integer div, integer mod
<data>.{9}\s.{13}\s.{6}\s.{6}\s.{6}\s.{6}\s.{6}</data>
<begin> Basic integer operations.*</begin>
<end>"$</end>
<valid>0011111</valid>

</table>
</dsxml>
Figure 3.4: Translation Instruction of LMBench Performance Benchmark
Figure 3.5 shows an example of a database gen- DS-Benchmark 0 00 0 LMBench OO O OO

erated by the results of the LMBench execution 03400000000000000000
under the DS-Benchmark environment. Oo0oOoo350000

CHAPTER 3. DS-BENCH RUNTIME ENVIRONMENT

<dsxml>
<benchmark>LMBench</benchmark>
<config>...</config>
<type name=" Processor, Processes” >
<data name=" Mhz"” >2639</data>
<data name=" null call” >0.10</data>
<data name="null I/0”"” >0.10</data>

</type>

<type name=" Basic integer operations” >
<data name=" integer bit” >0.4000</data>
<data name=" integer add” >0.3600</data>
<data name=" integer mul” >0.1400</data>

</type>
</dsxml>

Figure 3.5: An XML-formatted Result of LMBench Performance Benchmark

18

Chapter 4

Summary and Future Work

In this document, a dependability benchmark run-
time environment called DS-Bench, being de-
veloped by the DEOS project, has been intro-
duced. DS-Bench is a runtime environment used
to quantitatively measure system behavior under
an anomaly situation. It consists of three com-
puters: the controller, the measurement machine,
and the target machine. The controller is com-
prised of performance benchmark tools, measure-
ment tools, anomaly load tools, and a database to
archive the results of various benchmarks.

The uniqueness of DS-Bench is summarized as
follows:

1) DS-Bench provides a runtime environment that
measures five quantitative metrics: i) the ratio of
anomalies (or failures), ii) the detection and re-
porting time of anomaly, ii1) the failure recovery
time, iv) performance under an anomaly, and v)
energy consumption under an anomaly.

2) DS-Bench measures the behavior of the sys-
tem under an anomaly situation and then regis-
ters the result of the behavior formatted in XML
into a database. That is, DS-Bench gives quantita-
tive evidence of the dependability characteristics
of the system.

19

gooboOoDEOSOOU0O0OODODODOOOO
0o00oooooboooboobooon bS-
BenchOUOUOUOUOOOOODS-Bench OO OO
gboooboboobobuooboboobo
doodbooboobooboboobood
gooobooooooboooboooo3o00
0000o00oboobobo0ob0ooobooboboo
Performance Benchmark [J [J [J [J Anomaly Load
UO0O0OMeasurement L 0O OO OOOOOO
gdobobboooobobboooobobog

DS-BenchO O OUOODOOOOOOODOOO
g
nHoooboooboooooobabobod
gooboboooobogoboosooooon
goboooboboboobooboboon
gbbodbboobooobbooboodgbg
gobboogobobbodgo

ubboobobobobobbobobooobogob
gbbogboobodgbbodgXMLogoooogd
gboodbuogbouogbogobooboboo
gbogbooobooobobuogbobodgod
gboogbooboobooboobobbo
gbuodgbudbogboobobbobbo
oo

CHAPTER 4. SUMMARY AND FUTURE WORK

3) DS-Bench is expandable for unknown anoma-
lies and new requirements in the sense that it is
easy to integrate new performance benchmarks,
anomaly loads, and measurement tools in the fu-
ture. Thus, by using these tools, system depend-
ability testing can be performed systematically,
leading to improvement of the system.

A prototype implementation of the DS-Bench
runtime environment is being developed. Af-
ter the evaluation of this prototype system, DS-
Bench will be redesigned to incorporate what we
have learned from the evaluation.

20

3) 000000000000 0O00DOO0OPerfor-
mance Benchmark [J [J [0 [Anomaly Load [J [J
U0OMeasurement 1 U O OO0 OOOOOO0O
goooboobbobooboboobbooboo
goodbooobobooboobooooon
0o0oooooboobobbooboboobog
goobooon

gooODS-BenchOOOOOOOoOooon
gboodbogbogbooboobobobo
UO0doDS-BenchODOOOOOO0OOOOOO

Bibliography

[1] Algridas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Basic concepts and

taxonomy of dependable and secure computing. [EEE Transactions on Dependable and Secure
Computing, 1(1):11-33, 2004.

[2] Karama Kanoun and Lisa Spainhower, editors. Dependability Benchmarking for Computer Systems.
Wiley, 2008.

[3] Dependability benchmarking project. http://www.laas.fr/DBench/.

[4] Intel, Hwelett-Packard, NEC, and Dell, editors. - IPMI - Intelligent Platform Management Interface
Specification Second Generation v2.0. Intel, 2009.

[5] P-Bus interface manual. http://dependable.os.net/.

21

