

SysML Modeling Guide for Target System

 1/41

Table of Contents

1 Scope ...4

2 Overview of D-Case and SysML Modeling Guide...4

2.1 Background and Purpose..4

2.2 Target System of Modeling Guide ..5

2.3 Constitution of Modeling Guide ...6

3 Development Process ...9

4 Requirements Definition.. 11

4.1 Use Case Diagram .. 11

4.2 Requirement Diagram ..16

5 System Design..21

5.1 Block Definition Diagram...21

5.2 Parametric Diagram ...25

5.3 Internal Block Diagram..29

5.4 State Machine Diagram..33

6 System Verification ..37

6.1 Verification Scenario...37

Reference ...41

 2/41

Change History

Modification

Date

Modifications

2014/01/10 Created

 3/41

1 Scope

This document guides the notation and definition of SysML in order to enable the

collaboration of D-Case and SysML.

2 Overview of D-Case and SysML Modeling Guide

2.1 Background and Purpose

Recently, embedded systems are used by users in many fields. They have become

complicated to satisfy various demands. The demands consist not only of functional

demands from users but also of non-functional demands related to dependability.

Dependability includes attributes of safety, reliability, availability, integrity,

maintainability.

This guide shows an approach by D-Case which consistently realizes the dependability

of the target system from upper process to lower process. Table 2-1 shows what is asked

for developing a dependable system.

Table 2-1 What is asked for developing a dependable system

Development Phase What is asked

Requirements Definition System demands should satisfy dependability

System Design Design specifications should reflect the demands correctly

System Verification Verification results should account for satisfying dependability

In requirements definition phase, system demands should be derived by removing all

the factors which inhibit dependability so that system demands satisfy dependability.

D-Case is utilized for just enough derivation of system demands. D-Case decomposes

dependability based on defining threat to dependability, scene of threat, cause, and

provision. This decomposition extracts all the factors which inhibit dependability and

marshals their provisions as system demands.

In system design phase, system design should be performed by utilizing the design

information which is included in the demands based on dependability so that design

specifications reflect the demands correctly. Derived design specifications should also be

verified just enough by checking with the demands based on dependability. To realize

this, design information like functional or non-functional demand, system element,

restriction to element, and verification condition is extracted from the demands derived

from dependability, and design specifications are correctly derived. Next, design

specifications are analyzed by correspondence check with the demands based on

dependability.

 4/41

In system verification phase, verification results should be associated to the demands or

design specifications, and their positions should be clarified so that verification results

satisfy dependability.

The flow of the method is shown in Figure 2-1.

D-Case SysML

Requirements Identification / Product Planning

Requirements
Definition

S/W, H/W Development

System Verification

Requirements
Validation

System Design

Use Case DiagramUse Case Diagram

Parametric DiagramParametric Diagram

Block Definition DiagramBlock Definition Diagram

Requirement DiagramRequirement Diagram

Internal Block DiagramInternal Block Diagram

State Machine DiagramState Machine Diagram

Functions & PreconditionFunctions & Precondition

Environment

System Operation Use Case

Func. / Non-Func. Demand

Requirement

System Element

Restriction to Element Verification Result

Verification Condition

Model
Simulation

Model
Simulation

System Function Element

Element

Restriction

2. Correct derivation of design specifications2. Correct derivation of design specifications

3. Clarifying relationship of verification results, demands, and design specifications3. Clarifying relationship of verification results, demands, and design specifications

J
u
st e

n
o
u
gh

 de
rivatio

n
 o

f syste
m

 de
m

an
ds

J
u
st e

n
o
u
gh

 de
rivatio

n
 o

f syste
m

 de
m

an
ds

1.J
u
st e

n
o
u
gh

 de
rivatio

n
 o

f syste
m

 de
m

an
ds

J
u
st e

n
o
u
gh

 de
rivatio

n
 o

f syste
m

 de
m

an
ds

1.

Guaranty by Verification ResultsGuaranty by Verification Results

Provision DefinitionProvision Definition

Cause DefinitionCause Definition

Scene of Threat DefinitionScene of Threat Definition

Threat to Dependability DefinitionThreat to Dependability Definition

Top Goal DefinitionTop Goal Definition

Figure 2-1 Dependable System Development Method by D-Case SysML Collaboration

In this method, D-Case improves quality by reflecting development intents from upper

process to lower process. SysML models can be made by reflecting the system demands

derived from D-Case decomposition. As the sub-goals derived from the D-Case

decomposition contain activities needed by the development, the accuracy of

development plan can be enhanced by reflecting the activities to the plan.

This method is guided in the following documents:

 D-Case Modeling Guide for Target System

 SysML Modeling Guide for Target System

 D-Case Template

 SysML Template

2.2 Target System of Modeling Guide

Target of this guide is the in-vehicle system complying with ISO26262, the global

standard of functional safety for vehicles. The derivational development is assumed in

that the intents such as safety demands or reliability demands are reflected to previous

 5/41

model already developed to adapt functional safety.

2.3 Constitution of Modeling Guide

Relationship of modeling flow by this method and ISO26262 safety lifecycle is shown in

Figure 2-2. The constitution of D-Case decomposition corresponds to ISO26262 part 3

concept phase and part 4 product development: system level.

Figure 2-2 Relationship of Modeling Flow and ISO26262

onstitution of D-Case, SysML modeling guide is shown in Table2-2.

Definition of top goal, precondition about safety

Clarification of threats inhibiting safety

Definition of system environment, operations

Definition of system users and operations

Definition of verification condition

Cause analysis for provision

Definition of system demands by provisions

Definition of functional,
non-functional requirements

Definition of system architecture

Definition of system restrictions

Top Goal DefinitionTop Goal Definition

Threat to Dependability DefinitionThreat to Dependability Definition

Scene of Threat DefinitionScene of Threat Definition

Cause DefinitionCause Definition

Provision DefinitionProvision Definition

Guaranty by Verification ResultsGuaranty by Verification Results

Top Goal DefinitionTop Goal Definition

Threat to Dependability DefinitionThreat to Dependability Definition

Scene of Threat DefinitionScene of Threat Definition

Cause DefinitionCause Definition

Provision DefinitionProvision Definition

Guaranty by Verification ResultsGuaranty by Verification Results

Demonstration of satisfaction of system demands

Use Case DiagramUse Case Diagram

Requirement DiagramRequirement Diagram

Block Definition DiagramBlock Definition Diagram

Parametric DiagramParametric Diagram

Model SimulationModel Simulation

Use Case DiagramUse Case Diagram

Requirement DiagramRequirement Diagram

Block Definition DiagramBlock Definition Diagram

Parametric DiagramParametric Diagram

Model SimulationModel Simulation

System verification by executable model

D-Case

3.5 Item definition
Item identification

3.5 Item definition
Item identification

3.7 Hazard analysis and
risk assessment

Hazard identification

3.7 Hazard analysis and
risk assessment

Hazard identification

3.8 Functional safety concept
Decomposition by

functional safety requirement

3.8 Functional safety concept
Decomposition by

functional safety requirement

4.6 Specification of the
technical safety requirements

Decomposition by
technical safety requirement

4.6 Specification of the
technical safety requirements

Decomposition by
technical safety requirement

4.7 System design
Guaranty by Verification Results

4.7 System design
Guaranty by Verification Results

ISO26262 SysML

C

 6/41

Table2-2. Constitution of Modeling Guides

Target D-Case SysML

Category D-Case Structure Node Notation Association

from D-Case

Association

to D-Case

Item Definition Goal to Achieve,

Environment and

Restriction

- -

Identification of

Hazards

Environment and

Operation of System

Environment and

Operation of System

Use Case

Verification condition

Decomposition by

Functional Safety

Requirements

Detailed Cause to

Take Actions

- -

Decomposition by

Technical Safety

Requirements

System Requirement Func. / non-func.

requirement, System

elements, Restriction

Use Case, Requirement,

Component,

 and Restriction

Item

Guaranty by

Verification Results

Information required

to Verification

Condition and

Processing of Control

Verification Result

This guide mainly guides as follows:

1. D-Case structure based on ISO26262 safety lifecycle

The property which the system for development should satisfy is described as

D-Case top goal in the form of proposition. The whole structure of D-Case

decomposition is considered to accomplish the D-Case. The top goal is divided into

ISO26262 part and other part based on ISO26262. The D-Case of ISO26262 is

divided by utilizing work products made in the activities of safety lifecycle. The

decomposition flow of D-Case is explained in “D-Case Modeling Guide for Target

System”.

2. Notation of D-Case nodes providing information needed by SysML model

The information needed by SysML model is described in the process of D-Case

decomposition. The notation which is suitable for SysML collaboration is explained

in “D-Case Modeling Guide for Target System”.

 7/41

3. Writing procedure of SysML model based on the information of D-Case

SysML models are created or updated by extracting information needed for SysML

model. Procedures are explained in chapter 4, 5, and 6.

Figure 2-3 shows the modeling flow of D-Case and SysML.

SysMLD-Case SysMLD-Case

Requirements DefinitionRequirements Definition

System DesignSystem Design

S/W DevelopmentS/W Development

System VerificationSystem Verification

Item Identification

Hazard Identification

Decomposition by
Functional Safety Requirement

Decomposition by
Technical Safety Requirement

Top Goal DefinitionTop Goal Definition

Threat to Dependability DefinitionThreat to Dependability Definition

Scene of Threat DefinitionScene of Threat Definition

Cause DefinitionCause Definition

Guaranty by
Verification Results Guaranty by Verification ResultsGuaranty by Verification Results

Provision DefinitionProvision Definition

Figure 2-3 Modeling Flow of D-Case and SysML

 8/41

3 Development Process

Requirements Identification / Product Planning

Figure 3-1 Development Process Applying SysML

This document premises that in-vehicle systems are developed following the

development process shown in Figure 5-1. Also premises that derivational development

is applied where new models are developed by deriving former models utilizing former

work products such as specifications and models.

（Requirements Definition Phase）

In requirements definition phase, use case diagrams and requirement diagrams are

updated. Use case diagrams define relationships between users and operations of a

system, and boundaries of external systems. Requirement diagrams define detailed

functional requirements and non-functional requirements of a system. The way of

definition and example about use case diagram and requirement diagram is shown in

chapter 4.

（System Design Phase）

In system design phase, block definition diagrams, parametric diagrams, internal block

Requirements Validation

Requirements Definition
 Safety Requirements Checking Safety Requirements

 Checking Reliability requirements Reliability Requirements

Software Design / Equivalence Checking

 Implementing Requirements
 Verification Spec

Implementation and Verification Spec

System Verification
 Checking Functions

System Design

Use case Diagram

Requirement Diagram

Model Simulation

Verification Scenario
(Test Case) Block Definition Diagram Internal Block Diagram

Parametric Diagram State Machine Diagram

 9/41

diagrams, and state machine diagrams are updated. Block definition diagrams define

system architecture. Parametric diagrams define restrictions, related values and

mathematical expressions of a system. Internal block diagrams define internal design of

blocks defined in the block definition diagram. State machine diagrams define

dynamical behavior of a system. The way of definition and example about block

definition diagram, parametric diagram, internal block diagram, and state machine

diagram is shown in chapter 5.

（System Verification Phase）

In system verification phase, model simulations are executed based on verification

scenarios defined in state machine diagrams and source codes automatically generated

from state machine diagrams. The way of definition and example about verification

scenario is shown in chapter 6.

 10/41

4 Requirements Definition

4.1 Use Case Diagram

Use case diagram defines system users and external systems. Use case diagram consists

of actor, use case, communication path, and subject. The way of definition and example

about the elements is shown below.

Use Case Diagram

Figure 4-1 Example of a Use Case Diagram

（Actor）

An actor defines system user and external system. The way of defining actors is shown

below.

 Basing on specifications and models of a former system, system users and external

systems are defined as actors.

 In case where D-Case sub-goal “When ▼, ● system is safe for hazard X.” is

derived from D-Case strategy describing generation scene of threat inhibiting

dependability “Argue about ● system's safety for every scene of threat.”, extract

systems users and external systems from the description corresponding to “When

uc [パッケージ] Design [UC_CC]

Subject

CC

CC stop

Target speed
setting

Target
speed-down

Target speed-up

CC resume

Speed control
<<include>>

<<include>>

<<include>>

<<include>>

CC pause

CC boot

CC condition monitor

<<include>>

<<include>>

<<include>>

<<include>> CC emergency stop

<<include>>

Speed monitor

<<include>>

<<include>>

<<include>>
Driver

Actor Use Case

Driver

ThrottleThrottle

PCS

Communication Path

PCS

 11/41

▼” and define them as actors.

（Use Case）

A use case defines system function. The way of defining use cases is shown below.

 Extract system functions from specifications and models of a former model, and

define them as use cases.

 In case where D-Case sub-goal “When ▼, ● system is safe for hazard X.” is

derived from D-Case strategy describing generation scene of threat inhibiting

dependability “Argue about ● system's safety for every scene of threat.”, extract

system functions from the description corresponding to “When ▼” and define them

as use cases.

 In case where D-Case sub-goal “When ▼ , control which keeps ● value in

tolerance level can be performed by ■ block even when a failure occurs at ▲

block.” is derived from D-Case strategy describing provisions for causes deriving

threats inhibiting dependability “Divide ● system's safety for every provision.”,

extract system functions from the description corresponding to “by ■ block” and

define them as use cases if needed.

 In cases where D-Case is solved by each functional requirement based on “split by

function pattern”, extract system functions from them and define as use cases.

* Define use case from actor’s point of view, not from system’s point of view.

* Use case names should be defined, so that the sentence “actor name + use case name”

makes sense.

* Use case description should be added, if needed.

（Communication Path）

Relationships between an actor and a use case used by that actor are defined as

communication paths.

* Also define generalization, include, extend, etc, if needed.

（Subject）

Subsystems bundling multiple use cases configuring a single function are defined as

Subjects.

 12/41

（Association with D-Case）

If D-Case contains goal nodes associated with a use case defined in the use case diagram,

traceability can be defined by associating that goal with the use case using context

nodes of D-Case. At this time, the use case ID is written in “Desc” column or

“Attachment” column of the context node. D-Case data collaboration function on SW

development environment [1] is available.

（Correspondence check between D-Case and requirements）

Avoid lacks and mistakes of requirements definition activity by checking consistency

between contents of requirement described in the D-Case goal nodes and contents of the

use case diagrams.

 13/41

（Example）

Figure 4-2 Example of Updating a Use Case Diagram

D-Case

uc [パッケージ] Design [UC_CC]

CC

CC stop

Target speed
setting

Target
speed-down

Target speed-up

CC resume

Speed control
<<include>>

<<include>>

<<include>>

<<include>>

CC pause

CC boot

CC condition monitor

<<include>>

<<include>>

<<include>>

<<include>> CC emergency stop

<<include>>

Speed monitor

<<include>>

<<include>>

<<include>>
DriverDriver

ThrottleThrottle

PCSPCS

Actor

Use Case Diagram

UUssee ccaassee ddiiaaggrraamm iiss uuppddaatteedd bbyy rreeffeerrrriinngg aa

tteecchhnniiccaall ssaaffeettyy rreeqquui

Technical safety requirement about function

irreemmeenntt aabboouutt ffuunnccttiioonn

AAssssoocciiaattiioonn

Update ISO 26262 parts

D-Case

AAvvooiidd llaacckkss aanndd mmiissttaakkeess bbyy cchheecckkiinngg

ccoonnssiisstteennccyy bbeettwweeeenn uussee ccaasseess,, ggooaallss,,

aanndd ccoonntteexxttss..

 14/41

An example of updating a use case diagram is shown in Figure 4-2. In this example, a

description about functional safety is written in D-Case goal as a technical safety

requirement (TSR) derived from FMEA results “CC urgently stops if a break is stepped

on by CC emergency stop even when CC failure occurs after CC boots.” Based on this

TSR, a function which is needed in point of functional safety “CC emergency stop” is

extracted, and defined as a use case. This use case is associated as a D-Case context.

This use case has compatibility with an involved D-Case goal “CC urgently stops if a

break is stepped on by CC emergency stop even when CC failure occurs after CC boots.”

Thus requirement definition is proved to be correct and to have no lacks.

 15/41

4.2 Requirement Diagram

Requirement diagram defines system functional requirements. Requirement diagram

consists of requirement such as functional requirement and non-functional requirement,

and path. The way of definition and example about the elements is shown below.

req [パッケージ] Design [REQ_CC]

Requirement Diagram

CC

Figure 4-3 Example of a Requirement Diagram

（Functional Requirements）

A functional requirement defines functional viewpoint of demand for the system. The

way of defining functional requirements is shown below.

 Extract functional requirements from specifications and models of a former model,

and define them as requirement classes.

 In case where D-Case sub-goal “When ▼ , control which keeps ● value in

tolerance level can be performed by ■ block even when a failure occurs at ▲

block.” is derived from D-Case strategy describing provisions for causes deriving

threats inhibiting dependability “Divide ● system's safety for every provision.”,

extract functional requirements from the description corresponding to “by ■

block” and define them as requirement classes.

 In cases, where D-Case is solved by each functional requirement based on “split by

function pattern”, extract system functional requirements from them, and define as

requirements.

* Functional requirement names must be detailed, unique and consistent.

<<Requirement>>

ID = REQ_01

Vehicle has cruise control features that
support a driver.

CC boot (Cruise)
<<Requirement>>

ID = REQ_02

If a driver
pushes the
Cruise button
when CC stops,
CC should boot.

<<derive>>

CC stop (Cruise)
<<Requirement>>

ID = REQ_08

If a driver
pushes Cruise
button when CC
runs, CC
should stop.

<<derive>>

Target speed setting (Set)
<<Requirement>>

ID = REQ_03

If a driver pushes
the Set button when
CC boots, CC should
set the current
speed as a target
speed.

<<derive>>

Target speed-down (Decel)
<<Requirement>>

ID = REQ_04

If a driver pushes
the Decel button
when CC boots, the
target speed should
decrease.

Functional Requirement

<<derive>>
Target speed-up (Accel)

<<Requirement>>

ID = REQ_05

If a driver pushes
Accel button when
CC boots, the
target speed
should increase.

<<derive>>

CC pause
<<Requirement>>

ID = REQ_06

If a driver
puts on the
break when CC
runs, CC
should pause.

<<derive>>

CC resume (Resume)
<<Requirement>>

ID = REQ_07

If a driver
pushes Resume
button when CC
pauses, CC
should resume
with the same
setting as
before pause.

<<derive>>

Quick response to operation
<<Requirement>>

ID = REQ_12

CC responds within 1ms
when driver operates.

<<derive>>
<<derive>> <<derive>><<derive>> <<derive>>

Operability
<<Requirement>>

ID = REQ_11

CC can be
operated by
one-touch.

<<derive>> <<derive>><<derive>>

Speed limit
<<Requirement>>

ID = REQ_18

Target
speed is
restricted
from 50
km/h to
100km/h.

<<derive>><<derive>> <<derive>>

Acceleration limit
<<Requirement>>

ID = REQ_13

Acceleration
is less than
0.35G.

<<derive>> <<derive>>

Continuous duty
<<Requirement>>

ID = REQ_15

Continuous
duty of CC
is carried
out for
more than
100 hours.

<<derive>>

Priority of driver operation
<<Requirement>>

ID = REQ_16

Top priority is given to
the driver operation :
accelerator operation,
brake operation, and
steering operation.

<<derive>> <<derive>>

Config Integrity
<<Requirement>>

ID = REQ_17

Configurati
on data
should not
be changed
unjustly.

<<derive>>

Acceleration performance
<<Requirement>>

ID = REQ_14

When the difference
of speed and target
speed is more than
20km/h, acceleration
should be more than
0.080G.

<<derive>>
<<derive>>

CC stop (PCS)
<<Requirement>>

ID = REQ_09

If a stop
request is
received from
PCS when CC
runs, CC
should stop.

<<derive>>

Acceleration suppression control
<<Requirement>>

ID = REQ_21

Acceleration suppression
control is performed
so that acceleration is
less than threshold.

<<derive>>

<<derive>>

Speed monitor
<<Requirement>>

ID = REQ_22

Speed is
monitored.

<<derive>>

<<derive>>

CC emergency stop
<<Requirement>>

ID = REQ_23

CC urgently
stops when
trouble is
detected.

<<derive>>

CC condition monitor
<<Requirement>>

ID = REQ_24

CC condition is
monitored.

<<derive>>

Path

Non-Functional
Requirement

 16/41

（Non-Functional Requirements）

A non-functional requirement defines non-functional viewpoint of demand for the

system. The way of defining non-functional requirements is shown below.

 Extract descriptions on dependability attributions such as safety, reliability,

availability, integrity, and maintainability, and also, descriptions on other

non-functional attributions shown in Table 1 such as functionality, usability,

efficiency, portability, security, etc, from specifications and models of former model,

and define them as requirement classes.

 In case where D-Case sub-goal “When ▼ , control which keeps ● value in

tolerance level can be performed by ■ block even when a failure occurs at ▲

block.” is derived from D-Case strategy describing provisions for causes deriving

threats inhibiting dependability “Divide ● system's safety for every provision.”,

extract non-functional requirements from the description corresponding to “control

which keeps ● value in tolerance level” and define them as requirement classes.

Table 1 Attribution of Non-Functional Requirement

Attribution Description

Safety No destructive influences to users or environment.

No injury to users.

Reliability Continuity of proper service.

Little chance of trouble.

Availability Conformity nature of proper service.

Immediate response to users’ service request.

Integrity No inadequate system changes.

Maintainability Acceptable changes or repairs.

Functionality Provide functions meeting explicit or implicit needs.

Usability Understandable, acquirable, usable and attractive to users.

Efficiency Reasonable performance against the resource consumed.

Portability Attribution to transfer from one environment to another.

Enable to operate in different environment without modification.

Security Only allow authorized users to access restricted information.

（Path）

Define relations between requirement classes or relations with other SysML model

 17/41

elements as requirement containment relationship, copy dependency, derive dependency,

satisfy dependency, verify dependency, refine dependency or trace dependency, etc.

（Association with D-Case）

If D-Case contains goal nodes associated with functional or non-functional requirements

defined in the requirement diagram, traceability can be kept by associating those

functional or non-functional requirements with the goals using D-Case context nodes.

At this time, the requirement ID is written in “Desc” column or “Attachment” column of

the context node. D-Case data collaboration function on SW development environment

[1] is available.

（Correspondence check between D-Case and requirements）

Avoid lacks and mistakes in requirement definition by checking consistency between

requirement contents defined in D-Case goal nodes and requirement diagrams.

Avoid lacks in requirements definition by checking if each of the goals divided by

D-Case is associated to one or more functional or non-functional requirements.

 18/41

 19/41

Figure 4-4 Example of Updating a Requirement Diagram

An example of updating a requirement diagram is shown in Figure 4-4. In this example,

a description about functional safety is written in D-Case goal as a technical safety

requirement (TSR) derived from FMEA results “CC urgently stops if a break is stepped

on by CC emergency stop even when CC failure occurs after CC boots.” Based on this

req [パッケージ] Design [REQ_CC]

CC
<<Requirement>>

ID = REQ_01

Vehicle has cruise control features that
support a driver.

CC boot (Cruise)
<<Requirement>>

ID = REQ_02

If a driver
pushes the
Cruise button
when CC stops,
CC should boot.

<<derive>>

CC stop (Cruise)
<<Requirement>>

ID = REQ_08

If a driver
pushes Cruise
button when CC
runs, CC
should stop.

<<derive>>

Target speed setting (Set)
<<Requirement>>

ID = REQ_03

If a driver pushes
the Set button when
CC boots, CC should
set the current
speed as a target
speed.

<<derive>>

Target speed-down (Decel)
<<Requirement>>

ID = REQ_04

If a driver pushes
the Decel button
when CC boots, the
target speed should
decrease.

<<derive>>
Target speed-up (Accel)

<<Requirement>>

ID = REQ_05

If a driver pushes
Accel button when
CC boots, the
target speed
should increase.

<<derive>>

CC pause
<<Requirement>>

ID = REQ_06

If a driver
puts on the
break when CC
runs, CC
should pause.

<<derive>>

CC resume (Resume)
<<Requirement>>

ID = REQ_07

If a driver
pushes Resume
button when CC
pauses, CC
should resume
with the same
setting as
before pause.

<<derive>>

Quick response to operation
<<Requirement>>

ID = REQ_12

CC responds within 1ms
when driver operates.

<<derive>>
<<derive>> <<derive>><<derive>> <<derive>>

Operability
<<Requirement>>

ID = REQ_11

CC can be
operated by
one-touch.

<<derive>> <<derive>><<derive>>

Speed limit
<<Requirement>>

ID = REQ_18

Target
speed is
restricted
from 50
km/h to
100km/h.

<<derive>><<derive>> <<derive>>

Acceleration limit
<<Requirement>>

ID = REQ_13

Acceleration
is less than
0.35G.

<<derive>> <<derive>>

Continuous duty
<<Requirement>>

ID = REQ_15

Continuous
duty of CC
is carried
out for
more than
100 hours.

<<derive>>

Priority of driver operation
<<Requirement>>

ID = REQ_16

Top priority is given to
the driver operation :
accelerator operation,
brake operation, and
steering operation.

<<derive>> <<derive>>

Config Integrity
<<Requirement>>

ID = REQ_17

Configurati
on data
should not
be changed
unjustly.

<<derive>>

Acceleration performance
<<Requirement>>

ID = REQ_14

When the difference
of speed and target
speed is more than
20km/h, acceleration
should be more than
0.080G.

<<derive>>
<<derive>>

CC stop (PCS)
<<Requirement>>

ID = REQ_09

If a stop
request is
received from
PCS when CC
runs, CC
should stop.

<<derive>>

Acceleration suppression control
<<Requirement>>

ID = REQ_21

Acceleration suppression
control is performed
so that acceleration is
less than threshold.

<<derive>>

<<derive>>

Speed monitor
<<Requirement>>

ID = REQ_22

Speed is
monitored.

<<derive>>

<<derive>>

CC emergency stop
<<Requirement>>

ID = REQ_23

CC urgently
stops when
trouble is
detected.

<<derive>>

CC condition monitor
<<Requirement>>

ID = REQ_24

CC condition is
monitored.

<<derive>>

Update ISO 26262 parts

D-Case

Requirement Diagram

RReeqquuiirreemmeenntt ddiiaaggrraamm iiss uuppddaatteedd bbyy rreeffeerrrriinngg

aa tteecchhnniiccaall ssaaffeettyy rreeqquuiirreemmeenntt aabboouutt ffuunnccttiioonn

 Technical safety requirement about function

AAssssoocciiaattiioonn

D-Case

（Example）

AAvvooiidd llaacckkss aanndd mmiissttaakkeess bbyy cchheecckkiinngg

ccoonnssiisstteennccyy bbeettwweeeenn rreeqquuiirreemmeennttss,,

ggooaallss,, aanndd ccoonntteexxttss..

TSR, a function which is needed in point of functional safety “CC emergency stop” is

extracted, and defined as a functional requirement. This functional requirement is

associated as a D-Case context.

This functional requirement has compatibility with an involved D-Case goal “CC

urgently stops if a break is stepped on by CC emergency stop even when CC failure

occurs after CC boots.” Thus requirement definition is proved to be correct and to have

no lacks.

 20/41

5 System Design

5.1 Block Definition Diagram

Block definition diagram defines system architecture. Block definition diagram consists

of block and path. The way of definition and example about the elements is shown

below.

Figure 5-1 Example of a Block Definition Diagram

（Block）

A block defines system configuration element. The way of defining blocks is shown

below.

 Extract system configuration elements from specifications and models of former

model, and define them as blocks.

 In case where D-Case sub-goal “When ▼ , control which keeps ● value in

tolerance level can be performed by ■ block even when a failure occurs at ▲

block.” is derived from D-Case strategy describing provisions for causes deriving

Block Definition Diagram
bdd [パッケージ] Design

[BDD]

Vehicle
<<Block>>

Values

Operations

CC controller
<<Block>>

Values

Operations

1

Break
<<Block>>

Values

Operations

1

CC User I/F
<<Block>>

Values

Operations

1

Speed sensor
<<Block>>

Values

Operations

1

Vehicle dynamics controller
<<Block>>

Values

Operations

Electronic throttle
<<Block>>

Values

Operations

1

Throttle actuator
<<Block>>

Values

Operations

1

PCS controller
<<Block>>

Values

Operations

1

Front obstacle detection
<<Block>>

Values

Operations

1

Integration control
<<Block>>

Values

Operations

1

1

CC condition monitor circuit
<<Block>>

Values

Operations

1

1

Acceleration
<<Block>>

Values

Operations

1

Electronic break
<<Block>>

Values

Operations

1

Break actuator
<<Block>>

Values

Operations

1

Speed monitor circuit
<<Block>>

Values

Operations

1

1

Path

Block

 21/41

threats inhibiting dependability “Divide ● system's safety for every provision.”,

extract system elements from the description corresponding to “by ■ block” and

define them as blocks.

 If D-Case is solved by each system component based on “split by architecture

pattern”, extract system configuration elements from them, and define these

elements as blocks.

* Define compartments or properties if needed.

（Path）

Define meaningful relationships between multiple blocks as dependency, part

association (composition), shared association (composition), reference association,

generalization, and etc.

* Define path ends, multiplicity and etc, if needed.

（Association with D-Case）

If D-Case contains goal nodes associated to blocks defined in block diagrams,

traceability should be kept by associating the blocks to corresponding goals by using

context nodes. At this time, the block ID is written in “Desc” column or “Attachment”

column of the context node. D-Case data collaboration function on SW development

environment [1] is available.

（Correspondence check between D-Case and design specifications）

Avoid lacks and mistakes in system design by checking the consistency between the

contents of requirements defined in D-Case goal nodes and contents of block definition

diagrams.

Avoid lacks in system design by checking if each of the goals divided by D-Case is

associated to one or more blocks.

 22/41

 23/41

Figure 5-2 Example of Updating a Block Definition Diagram

bdd [パッケージ] Design
[BDD]

Vehicle
<<Block>>

Values

Operations

CC controller
<<Block>>

Values

Operations

1

Break
<<Block>>

Values

Operations

1

CC User I/F
<<Block>>

Values

Operations

1

Speed sensor
<<Block>>

Values

Operations

1

Vehicle dynamics controller
<<Block>>

Values

Operations

Electronic throttle
<<Block>>

Values

Operations

1

Throttle actuator
<<Block>>

Values

Operations

1

PCS controller
<<Block>>

Values

Operations

1

Front obstacle detection
<<Block>>

Values

Operations

1

Integration control
<<Block>>

Values

Operations

1

1

CC condition monitor circuit
<<Block>>

Values

Operations

1

1

Acceleration
<<Block>>

Values

Operations

1

Electronic break
<<Block>>

Values

Operations

1

Break actuator
<<Block>>

Values

Operations

1

Speed monitor circuit
<<Block>>

Values

Operations

1

1

Update ISO 26262 parts

D-Case

Block Definition Diagram

BBlloocckk ddeeffiinniittiioonn ddiiaaggrraamm iiss uuppddaatteedd bbyy rreeffeerrrriinngg

aa tteecchhnniiccaall ssaaffeettyy rreeqquuiirreemmeenntt aabboouutt tthhee

SSyysstteemm ccoonnffiigguurraattiioonn rreeqquuiirreemmeenntt

Technical safety requirement about

the system configuration requirement

AAssssoocciiaattiioonn D-Case

（Example）

AAvvooiidd llaacckkss aanndd mmiissttaakkeess bbyy cchheecckkiinngg

ccoonnssiisstteennccyy bbeettwweeeenn ddeessiiggnn ssppeecciiffiiccaattiioonnss,,

ggooaallss,, aanndd ccoonntteexxttss..

An example of updating a block definition diagram is shown in Figure 5-2. In this

example, a description about functional safety is written in D-Case goal as a technical

safety requirement (TSR) derived from FMEA results “Control which keeps acceleration

in tolerance level can be performed by speed monitor circuit even when an operation

failure occurs by CC controller after CC boots.” This TSR is an example of the system

configuration requirements. Based on this TSR, a block which is needed in point of

functional safety “Speed monitor circuit” is extracted, and defined as a block. This block

is associated as a D-Case context.

This block has compatibility with an involved D-Case goal “Control which keeps

acceleration in tolerance level can be performed by speed monitor circuit even when an

operation failure occurs by CC controller after CC boots.”, with an involved D-Case

context “Requirement : Speed monitor: Speed is monitored.”, or with other involved

D-Case nodes. Thus system design is proved to be correct and to have no lacks.

 24/41

5.2 Parametric Diagram

Parametric diagram defines system constraints, related values and mathematical

formulas. Parametric diagram consists of constraint block and connector. The way of

definition and example about the elements is shown below.

Figure 5-3 Example of a Parametric Diagram

（Constraint Block）

A constraint block defines block describing system constraints, related values and

mathematical formulas. The way of defining constraint blocks is shown below.

 Extract system constraints, related values and mathematical formulas from

specifications or models in the former model, and define these as constraint blocks.

 In case where D-Case sub-goal “When ▼ , control which keeps ● value in

tolerance level can be performed by ■ block even when a failure occurs at ▲

block.” is derived from D-Case strategy describing provisions for causes deriving

threats inhibiting dependability “Divide ● system's safety for every provision.”,

par [パッケージ] Design [PAR_Vehicle
]

Bre ak
<<Block>>

Values

Operations

breakPowerTarget
breakPower

CC contro ller
<<Block>>

Values

Operations

powerOFF ccBtn
ccPower

speed

Speed senso r
<<Block>>

Values

Operations

speed

Accel eratio n
<<Block>>

Values

Operations

accelPowerTarget
accelPower

Elect ronic thrott le
<<Block>>

Values

Operations

pwr
throttleTorque

Thrott le act uator
<<Block>>

Values

Operations

pwr

CC Us er I/F
<<Block>>

Values

Operations

ccBtn

Acceleration limit :

a < 0.35G.

Acceleration
performance :
a > 0.080G.

Target speed limit :

50km/h <= vt <= 100km/h.

<<allocate>>

Inte gratio n cont rol
<<Block>>

Values

Operations

breakPowerTarget

accelPowerTarget

breakTorque

throttleTorque

ccPower

breakPower

accelPower

<<allocate>><<allocate>>

Ele ctroni c brea k
<<Block>>

Values

Operations

pwrbreakTorque

Break actua tor
<<Block>>

Values

Operations

pwr

Vehic le dyn amics contro ller
<<Block>>

Values

Operations

pwrspeed

Sp eed mo nitor circui t
<<Block>>

Values

Operations

powerOFF speed

<<allocate>>CC co nditio n moni tor ci rcuit
<<Block>>

Values

Operations

ccBtn

speedpowerOFF

Parametric Diagram

pwr =
Kp (Vp - Vt)
+ Ki ∫(Vp - Vt) dt

<<allocate>>

a =
 (thrust + drag) / mass

<<allocate>>

thrust =
pwr / actualSpeed

<<allocate>>

actualSpeed =

∫ a dt + v0

Connector

<<allocate>>

drag =

 -1/2 * Cd * A

 * densityOfAir

* actualSpeed^2

<<allocate>>

Sedan :
mass = 1700 kg
Wagon :
mass = 2500 kg

<<allocate>>

Sedan :
Cd = 0.44
Wagon :
Cd = 0.50

<<allocate>>

Sedan :
A = 1.8 m 2̂
Wagon :
A = 2.0 m 2̂

<<allocate>> <<allocate>>

densityOfAir = 1.2 kg/m^3

Constraint Block

 25/41

extract system constraints, related values and mathematical formulas from the

description corresponding to “control which keeps ● value in tolerance level” and

define them as constraint blocks.

 Consider system constraints, related values and mathematical formulas based on

D-Case goal nodes, and define them as constraint blocks.

（Connector）

Connect the associated constraint blocks using connectors by following the block

structure designed in block definition diagrams.

（Association with D-Case）

If D-Case contains goal nodes associated with constraint blocks defined in the

parametric diagram, traceability should be kept by associating these goals with

corresponding blocks using D-Case context nodes. At this time, the constraint block ID

is written in “Desc” column or “Attachment” column of the context node. D-Case data

collaboration function on SW development environment [1] is available.

（Correspondence check between D-Case and design specifications）

Avoid lacks and mistakes in system design by checking the consistency between the

contents of requirements defined in D-Case goal nodes and contents of parametric

diagrams.

 26/41

 27/41

Figure 5-4 Example of Updating a Parametric Diagram

par [パッケージ] Design [PAR_Vehicle
]

Bre ak
<<Block>>

Values

Operations

breakPowerTarget
breakPower

CC contro ller
<<Block>>

Values

Operations

powerOFF ccBtn
ccPower

speed

Speed senso r
<<Block>>

Values

Operations

speed

Accel eratio n
<<Block>>

Values

Operations

accelPowerTarget
accelPower

Elect ronic thrott le
<<Block>>

Values

Operations

pwr
throttleTorque

Thrott le act uator
<<Block>>

Values

Operations

pwr

CC Us er I/F
<<Block>>

Values

Operations

ccBtn

Acceleration limit :

a < 0.35G.

Acceleration
performance :
a > 0.080G.

Target speed limit :

50km/h <= vt <= 100km/h.

<<allocate>>

Inte gratio n cont rol
<<Block>>

Values

Operations

breakPowerTarget

accelPowerTarget

breakTorque

throttleTorque

ccPower

breakPower

accelPower

<<allocate>><<allocate>>

Ele ctroni c brea k
<<Block>>

Values

Operations

pwrbreakTorque

Break actua tor
<<Block>>

Values

Operations

pwr

Vehic le dyn amics contro ller
<<Block>>

Values

Operations

pwrspeed

Sp eed mo nitor circui t
<<Block>>

Values

Operations

powerOFF speed

<<allocate>>CC co nditio n moni tor ci rcuit
<<Block>>

Values

Operations

ccBtn

speedpowerOFF

pwr =
Kp (Vp - Vt)
+ Ki ∫(Vp - Vt) dt

<<allocate>>

a =
 (thrust + drag) / mass

<<allocate>>

thrust =
pwr / actualSpeed

<<allocate>>

actualSpeed =

∫ a dt + v0

<<allocate>>

drag =

 -1/2 * Cd * A

 * densityOfAir

* actualSpeed^2

<<allocate>>

Sedan :
mass = 1700 kg
Wagon :
mass = 2500 kg

<<allocate>>

Sedan :
Cd = 0.44
Wagon :
Cd = 0.50

<<allocate>>

Sedan :
A = 1.8 m 2̂
Wagon :
A = 2.0 m 2̂

<<allocate>>

densityOfAir = 1.2 kg/m^3

<<allocate>>

Update ISO 26262
parts

D-Case

PPaarraammeettrriicc ddiiaaggrraamm iiss uuppddaatteedd bbyy

rreeffeerrrriinngg ffuunnccttiioonnaall ssaaffeettyy

rreeqquuiirreemmeennttss..

Parametric Diagram

Functional safety requirement

AAssssoocciiaattiioonn D-Case

（Example）

AAvvooiidd llaacckkss aanndd mmiissttaakkeess bbyy

cchheecckkiinngg ccoonnssiisstteennccyy bbeettwweeeenn

ddeessiiggnn ssppeecciiffiiccaattiioonnss,, ggooaallss,, aanndd

ccoonntteexxttss..

An example of updating a parametric diagram is shown in Figure 5-4. In this example, a

description about functional safety is written in D-Case goal as a functional safety

requirement (FSR) derived from hazard analysis “Control which keeps acceleration in

tolerance level can be performed by acceleration suppression control even when an

operation failure occurs by CC controller after CC boots.” Based on this FSR, a

constraint block which is needed in point of functional safety is refined as “Acceleration

limit: a < 0.35G.”, and defined as a constraint block. This constraint block is associated

as a D-Case context.

This constraint block has compatibility with an involved D-Case goal “Control which

keeps acceleration in tolerance level can be performed by acceleration suppression

control even when an operation failure occurs by CC controller after CC boots.”, with an

involved D-Case context “Requirement : Acceleration suppression control: Acceleration

suppression control is performed so that acceleration is less than threshold.”, or with

other involved D-Case nodes. Thus system design is proved to be correct and to have no

lacks.

 28/41

5.3 Internal Block Diagram

Internal block diagram defines internal structure of blocks clarified by block definition

diagram. Internal block diagram consists of block and connector. The way of definition

and example about the elements is shown below.

Figure 5-5 Example of an Internal Block Diagram

（Block）

A block defines system element of internal structure. The way of defining blocks is

shown below.

 Extract blocks through detailing of internal structure from specifications and

models of former model based on the blocks defined in the block definition diagram

or constraint blocks defined in the parametric diagram.

 Define blocks by extracting system configuration elements from D-Case, similar to

the block definition diagram shown in section 5.1.

Internal Block Diagram

ibd [Block] Speed monitor circuit [IBD_Speed monitor circuit]

powerOFFspeed powerOFF

<<flow>>

speed

<<flow>>

Read speed Judge1

Attributes

Operations

speed Speed

1

Attributes

Operations

ResultSpeed

Send failure message1

Attributes

Operations

powerOFFResult

BBlloocckk

CCoonnnneeccttoorr

 29/41

（Connector）

Connect the associated blocks using connectors, based on the block structure designed

in block definition diagrams or constraint blocks defined in the parametric diagram.

* The path defined in the block definition diagram, the connector defined in the

parametric diagram, and the connector defined in the internal block diagram should be

compatible.

（Association with D-Case）

Traceability should be kept if needed, by associating the blocks defined in internal block

diagrams with corresponding goals by using D-Case context nodes. At this time, the

block ID is written in “Desc” column or “Attachment” column of the context node.

D-Case data collaboration function on SW development environment [1] is available.

（Correspondence check between D-Case and design specifications）

Avoid lacks and mistakes in system design by checking the consistency between the

contents of requirements defined in D-Case goal nodes and contents of internal block

diagrams.

 30/41

（Example）

D-Case

Figure 5-6 Example of Updating an Internal Block Diagram

An example of updating an internal block diagram is shown in Figure 5-6. In this

example, a description about the block is written in D-Case context as “Block : Speed

monitor circuit”. An internal block diagram is updated by clarifying the internal

structure of the block.

This internal block diagram has compatibility with an involved D-Case goal “Control

ibd [Block] Speed monitor circuit [IBD_Speed monitor circuit]

powerOFFspeed powerOFF

<<flow>>

speed

<<flow>>

Read speed1

Attributes

Operations

speed Speed

Judge1

Attributes

Operations

ResultSpeed

Send failure message1

Attributes

Operations

powerOFFResult

Internal Block Diagram

IInntteerrnnaall bblloocckk ddiiaaggrraamm iiss uuppddaatteedd bbyy

rreeffeerrrriinngg ddeessccrriippttiioonnss aabboouutt bblloocckk..

Update ISO 26262 parts

AAvvooiidd llaacckkss aanndd mmiissttaakkeess bbyy cchheecckkiinngg

ccoonnssiisstteennccyy bbeettwweeeenn ddeessiiggnn

ssppeecciiffiiccaattiioonnss,, ggooaallss,, aanndd ccoonntteexxttss..

 31/41

which keeps acceleration in tolerance level can be performed by speed monitor circuit

even when an operation failure occurs by CC controller after CC boots.”, with an

involved D-Case context “Requirement : Speed monitor : Speed is monitored.”, or with

other involved D-Case nodes. Thus system design is proved to be correct and to have no

lacks.

 32/41

5.4 State Machine Diagram

State machine diagram defines dynamical behavior of a block. State machine diagram

consists of state and transition. The way of definition and example about the elements

is shown below.

State Machine Diagram

stm [Block] AccController [statechart_0]

Figure 5-7 Example of a State Machine Diagram

（State）

A state defines a particular status for certain time. The way of defining states is shown

below.

 Define state to a block in block definition diagram, if the block behaves in particular

status for certain time.

 If specifications or models for former model contain any state definition, these can

be reused.

init

running

cycle1ms tm(1)/
if (this->isWorking) {

double diffVelocity = (this->targetVelocity - this->velocity) / 3.6; // [m/s]
this->sumDVelocity += diffVelocity;
this->power += Kp * diffVelocity + Ki * this->sumDVelocity;
if(this->power > this->maxPower) this->power = this->maxPower;
if(this->power < -this->maxPower) this->power = -this->maxPower;

}
else {

this->power = 0.0;
}

evAccPowerRequest(this->power) to itsArbitrationController

Off

On

Working

evAccSetBtn/
set(this->velocity);

evAccAccelBtn/
accel();

evAccDecelBtn/
decel();

Unset

evAccSetBtn[valid(this->velocity)]/
set(this->velocity);

Sleeping
evAccBreakPedal

evAccResumeBtn

evAccSetBtn/
set(this->velocity);

evAccAccelBtn/
accel();

evAccDecelBtn/
decel();

evAccCruiseBtn

evAccCruiseBtn

evAccOFF

sensoring

State

evPowerOFF

Transition

evSpeedChanged/
this->velocity = params->velocity;

 33/41

* Add start status or end status, if needed.

（Transition）

Define the following to each of the state; trigger for a state transition to different state,

guard conditions to decide whether the state transition is valid, action to execute when

the state transition occurs and continuous activities during particular state.

If specifications or models for former model contain any state transition, these can be

reused.

* Organize the state transitions by creating state transition table, if needed.

（Association with D-Case）

Traceability should be kept if needed, by associating states or transitions defined in

state machine diagrams with corresponding goals by using D-Case context nodes. At

this time, the state or transition is written in “Desc” column or “Attachment” column of

the context node. D-Case data collaboration function on SW development environment

[1] is available.

（Correspondence check between D-Case and design specifications）

Lacks and mistakes in system design should be avoided by checking the consistency

between requirement contents defined in D-Case goal nodes and contents of state

machine diagrams.

 34/41

（Example）

D-Case

Figure 5-8 Example of Updating a State Machine Diagram

An example of updating a state machine diagram is shown in Figure 5-8. In this

example, a description about a block is written in D-Case context as “Block : CC

controller”. The state machine diagram is updated by clarifying the dynamical behavior

of the block.

stm [Block] CcController [statechart_0]

init

running

cycle1ms

evAccPowerRequest(this->power) to itsArbitrationController

tm(1)/
if (this->isWorking) {

double diffVelocity = (this->targetVelocity - this->velocity) / 3.6; // [m/s]
this->sumDVelocity += diffVelocity;
this->power += Kp * diffVelocity + Ki * this->sumDVelocity;
if(this->power > this->maxPower) this->power = this->maxPower;
if(this->power < -this->maxPower) this->power = -this->maxPower;

}
else {

this->power = 0.0;
}

Off

On

Working

evAccSetBtn/
set(this->velocity);

evAccAccelBtn/
accel();

evAccDecelBtn/
decel();

Unset

evAccSetBtn[valid(this->velocity)]/
set(this->velocity);

Sleeping
evAccBreakPedal

evAccResumeBtn

evAccSetBtn/
set(this->velocity);

evAccAccelBtn/
accel();

evAccDecelBtn/
decel();

evAccCruiseBtn

evAccCruiseBtn

evAccOFF

sensoring

evSpeedChanged/
this->velocity = params->velocity;

evPowerOFF

State Machine Diagram

SSttaattee mmaacchhiinnee ddiiaaggrraamm iiss uuppddaatteedd

bbyy rreeffeerrrriinngg ddeessccrriippttiioonnss aabboouutt

bblloocckk ssttaatteess..

Update ISO
26262 parts

AAvvooiidd llaacckkss aanndd mmiissttaakkeess bbyy

cchheecckkiinngg ccoonnssiisstteennccyy bbeettwweeeenn

ddeessiiggnn ssppeecciiffiiccaattiioonnss,, ggooaallss,, aanndd

ccoonntteexxttss..

 35/41

This state machine diagram has compatibility with an involved D-Case goal “Different

acceleration from driver's intention is not carried out by CC emergency stop even when

transmission route of speed sensor has a failure.”, with an involved D-Case context

“Requirement : CC emergency stop : CC urgently stops when trouble is detected.”, or

with other involved D-Case nodes. Thus system design is proved to be correct and to

have no lacks.

 36/41

6 System Verification

6.1 Verification Scenario

Verification scenario defines the way of verification. In this guide, verification scenario

is described in state machine diagram. The way of defining verification scenario is

shown below.

Figure 6-1 Example of a Verification Scenario

（Verification Scenario）

A verification scenario defines verification procedure, and is described in state machine

diagram and so on. The way of defining verification scenario is shown below.

 If specifications or models for the former model contain any verification scenarios

related to the system verification, these scenarios can be reused,

 In case where D-Case sub-goal “When ▼, ● system is safe for hazard X.” is

derived from D-Case strategy describing generation scene of threat inhibiting

dependability “Argue about ● system's safety for every scene of threat.”, extract

verification conditions from the description corresponding to “When ▼ ” and

express these scenarios in state machine diagrams.

Verification Scenario

stm [Block] Driver [statechart_1]

init

evAccelPedalPressDown(1.0) to itsAccelPedal

evCarPowerON to itsCar

tm(10)

evCarPowerOFF to itsCarevSimulationStart to itsDynamics

evSimulationEnd to itsDynamics

evAccelPedalTakeOff to itsAccelPedal

tm(5100)

evAccSetBtn to itsAccPanel

evAccCruiseBtn to itsAccPanel

tm(1000)

tm(10)

tm(10)/
for (int idx = 0; idx < 50/3; ++idx) {

itsAccPanel->GEN(evAccAccelBtn);
}

tm(10000)

evAccAccelBtn to itsAccPanel

 37/41

（System Verification）

Create source codes from state machine diagrams, and execute model simulation to

verify the system.

（Association with D-Case）

Traceability should be kept by associating system verification results with goals, by

using D-Case context nodes or evidence nodes. At this time, the verification scenario ID

is written in “Desc” column or “Attachment” column of the context node. D-Case OSLC

add-on [2] is available.

（Correspondence check between D-Case and requirements）

Avoid lacks and mistakes in system verification, by checking consistency between

requirement contents stated in D-Case goal nodes with the contents of system

verification.

Avoid lacks in system verification by checking if each of the goals divided by D-Case is

associated to one or more system verification results.

 38/41

（Example）

Figure 6-2 Example of Updates of Verification Scenario

D-Case

stm [Block] Driver [statechart_1]

init

evAccelPedalPressDown(1.0) to itsAccelPedal

evCarPowerON to itsCar

tm(10)

evCarPowerOFF to itsCarevSimulationStart to itsDynamics

evSimulationEnd to itsDynamics

evAccelPedalTakeOff to itsAccelPedal

tm(5100)

evAccCruiseBtn to itsAccPanel

tm(1000)

evAccSetBtn to itsAccPanel

tm(10) evAccAccelBtn to itsAccPanel

tm(10000)

tm(10)/
for (int idx = 0; idx < 50/3; ++idx) {

itsAccPanel->GEN(evAccAccelBtn);
}

Verification Scenario

VVeerriiffiiccaattiioonn sscceennaarriioo iiss ccrreeaatteedd..

AAvvooiidd llaacckkss aanndd mmiissttaakkeess bbyy

cchheecckkiinngg ccoonnssiisstteennccyy bbeettwweeeenn

vveerriiffiiccaattiioonn rreessuullttss,, ggooaallss,, aanndd

ccoonntteexxttss..

 39/41

An example of updates of verification scenario is shown in Figure 6-2. In this example, a

description about verification scenario is written in D-Case goal as a functional safety

requirement (FSR) derived from hazard analysis “Control which keeps acceleration in

tolerance level can be performed by acceleration suppression control even when an

operation failure occurs by CC controller after CC boots.” Based on this FSR, “Test case:

Acceleration performance Acceleration is less than 0.35G even when CC failure occurs.”

is defined and is associated as a D-Case context. Based on this verification scenario,

state machine diagrams which are needed in model simulation are described, and the

verification is carried out.

The verification result is written as a D-Case evidence “Test result of CC acceleration

performance (CC failure)”. This evidence has compatibility with an involved D-Case

context “Requirement: Acceleration suppression control: Acceleration suppression

control is performed so that acceleration is less than threashold.”, or with other involved

D-Case nodes. Thus system verification is proved to be correct and to have no lacks.

 40/41

41/41

Reference

[1] D-Case data collaboration function on SW development environment,

http://www.dependable-os.net/tech/D-Case-OSLC/index.html

[2] D-Case OSLC add-on,

http://www.dependable-os.net/tech/D-Case-OSLC/index.html

http://www.dependable-os.net/tech/D-Case-OSLC/index.html
http://www.dependable-os.net/tech/D-Case-OSLC/index.html

	Table of Contents
	Change History
	1 Scope
	2 Overview of D-Case and SysML Modeling Guide
	2.1 Background and Purpose
	2.2 Target System of Modeling Guide
	2.3 Constitution of Modeling Guide

	3 Development Process
	4 Requirements Definition
	4.1 Use Case Diagram
	4.2 Requirement Diagram

	5 System Design
	5.1 Block Definition Diagram
	5.2 Parametric Diagram
	5.3 Internal Block Diagram
	5.4 State Machine Diagram

	6 System Verification
	6.1 Verification Scenario

	Reference

