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1 Scope 

This document describes the outline of SysML models for Demonstration of D-Case 

Collaboration with Modeling Environment. 

 

2 SysML 

SysML (Systems Modeling Language) describes requirements for system, and structure 

or behavior of system for specifying, analyzing, designing, and verifying system. 

Below URL describes the detail about SysML. 

http://www.omgsysml.org/ 

 

3 Demonstration 

This demonstration has SysML modeling for Cruise Control System of Automotive. 

Models are focused on Safety Requirements and Reliability Requirements of Functional 

Safety. 

This model includes 5 kinds of diagrams as below. 

1. Use Case Diagram 

2. Requirement Diagram 

3. Block Definition Diagram 

4. Parametric Diagram 

5. State Machine Diagram 

 

3.1 Use Case Diagram 

Use Case Diagram includes association of System User and Operation. 

It clearly identifies the border of User and system (Figure 1). 

uc [パッケージ] Design [UC_ACC]

CC

CC stop

Target speed
setting

Target
speed-down

Target speed-up

CC resume

speed control
<<include>>

<<include>>

<<include>>

<<include>>

CC pause

CC boot

CC emergency stop

<<include>>

CC monitor

<<include>>

driverdriver

throttlethrottle

PCSPCS

 

Figure 1 Use Case Diagram 

 version: 1.0 
revision: 1 

4/7



 
 

 

 

3.2 Requirement Diagram 

Requirement Diagram includes structure of requirements for System. 

Use Case Diagram mainly includes functional requirements, and Requirement Diagram 

includes both functional requirements and non-functional requirements (Figure 2). 
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Figure 2 Requirement Diagram 

 

3.3 Block Definition Diagram  

Block Definition Diagram includes static structure of System. 

It identifies blocks of system components, association of blocks, and hierarchy of blocks 

(Figure 3). 
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Figure 3 Block Definition Diagram 
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3.4 Parametric Diagram 

Parametric Diagram includes restrictions, preconditions of System, parameter, and 

mathematical formula. 

It identifies external environment and characteristics of System (Figure 4). 
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Figure 4 Parametric Diagram 

 

3.5 State Machine Diagram 

State Machine Diagram includes behavior of System. 

It identifies state transition of blocks (Figure 5). 
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Figure 5 State Machine Diagram 

 


	Table of Contents
	Change History
	1 Scope
	2 SysML
	3 Demonstration
	3.1 Use Case Diagram
	3.2 Requirement Diagram
	3.3 Block Definition Diagram 
	3.4 Parametric Diagram
	3.5 State Machine Diagram


