

D-Case Collaboration with Modeling Environment

Demonstration

SysML Model Specification

 version: 1.0
revision: 1

1/7

Table of Contents

1 Scope ...4

2 SysML...4

3 Demonstration..4

3.1 Use Case Diagram ..4

3.2 Requirement Diagram ..5

3.3 Block Definition Diagram...5

3.4 Parametric Diagram ...6

3.5 State Machine Diagram..6

 version: 1.0
revision: 1

2/7

Change History

Modification

Date

Modifications

2014/01/06 Created

 version: 1.0
revision: 1

3/7

1 Scope

This document describes the outline of SysML models for Demonstration of D-Case

Collaboration with Modeling Environment.

2 SysML

SysML (Systems Modeling Language) describes requirements for system, and structure

or behavior of system for specifying, analyzing, designing, and verifying system.

Below URL describes the detail about SysML.

http://www.omgsysml.org/

3 Demonstration

This demonstration has SysML modeling for Cruise Control System of Automotive.

Models are focused on Safety Requirements and Reliability Requirements of Functional

Safety.

This model includes 5 kinds of diagrams as below.

1. Use Case Diagram

2. Requirement Diagram

3. Block Definition Diagram

4. Parametric Diagram

5. State Machine Diagram

3.1 Use Case Diagram

Use Case Diagram includes association of System User and Operation.

It clearly identifies the border of User and system (Figure 1).

uc [パッケージ] Design [UC_ACC]

CC

CC stop

Target speed
setting

Target
speed-down

Target speed-up

CC resume

speed control
<<include>>

<<include>>

<<include>>

<<include>>

CC pause

CC boot

CC emergency stop

<<include>>

CC monitor

<<include>>

driverdriver

throttlethrottle

PCSPCS

Figure 1 Use Case Diagram

 version: 1.0
revision: 1

4/7

3.2 Requirement Diagram

Requirement Diagram includes structure of requirements for System.

Use Case Diagram mainly includes functional requirements, and Requirement Diagram

includes both functional requirements and non-functional requirements (Figure 2).

req [パッケージ] Design [REQ_ACC]

CC
<<Requirement>>

ID = REQ_01

Vehicle has cruise control features
that support a driver.

CC boot (Cruise)
<<Requirement>>

ID = REQ_02

If a driver
pushes the Cruise
button when CC
stops, CC should
boot.

<<derive>>

CC stop (Cruise)
<<Requirement>>

ID = REQ_08

If a driver
pushes
Cruise
button when
CC runs, CC
should stop.

<<derive>>

Target speed setting (S
<<Requirement>>

ID = REQ_03

If a driver
pushes the Set
button when CC
boots, CC should
set the current
speed as a target

d

<<derive>>

Target speed-down (Decel)
<<Requirement>>

ID = REQ_04

If a driver pushes
the Decel button
when CC boots, the
target speed should
decrease.

<<derive>>

Target speed-up (Acce
<<Requirement>>

ID = REQ_05

If a driver
pushes Accel
button when CC
boots, the
target speed
should increase

<<derive>>

CC pause
<<Requirement>>

ID = REQ_06

If a driver
puts on the
break when CC
runs, CC should
pause.

<<derive>>

CC resume (Resume)
<<Requirement>>

ID = REQ_07

If a driver pushes
Resume button when CC
pauses, CC should
resume with the same
setting as before
pause

<<derive>>

Quick response to
<<Requirement>>

ID = REQ_12

CC responds
within 1ms
when driver
operates.

<<derive>><<derive>> <<derive>><<derive>> <<derive>>

Operability
<<Requirement>>

ID = REQ_11

CC can be
operated by
one-touch.

<<derive>> <<derive>>
<<derive>>

Speed limit
<<Requirement>>

ID = REQ_18

Target
speed is
restricted
from 50
k /h t

<<derive>><<derive>> <<derive>>

Acceleration lim
<<Requirement>>

ID = REQ_13

Acceleration
is less than
0.35G.

<<derive>> <<derive>>

continuous duty
<<Requirement>>

ID = REQ_15

Continuous
duty of ACC
is carried
out for
more than
100 hours.

<<derive>>

Priority of driver operation
<<Requirement>>

ID = REQ_16

Top priority is given to
the driver operation :
accelerator operation,
brake operation, and
steering operation.

<<derive>> <<derive>>

Config Integrity
<<Requirement>>

ID = REQ_17

Configurati
on data
should not
be changed
unjustly.

<<derive>>

Acceleration performanc
<<Requirement>>

ID = REQ_14

When the
difference of
speed and target
speed is more
than 20km/h,
acceleration
should be more

<<derive>>
<<derive>>

CC stop (PCS)
<<Requirement>>

ID = REQ_09

If a stop
request is
received from
PCS when CC
runs, CC should
stop

<<derive>>

Acceleration suppression
<<Requirement>>

ID = REQ_21

Acceleration
should not exceed
a threshold.

<<derive>>

<<derive>>

Monitor
<<Requirement>>

ID = REQ_22

Acceleration
should be
monitored.

<<derive>>

<<derive>>

Emergency stop
<<Requirement>>

ID = REQ_23

CC should
stop during
an
emergency.

<<derive>>

Operation check
<<Requirement>>

ID = REQ_24

CC operation
should be
monitored.

<<derive>>

Figure 2 Requirement Diagram

3.3 Block Definition Diagram

Block Definition Diagram includes static structure of System.

It identifies blocks of system components, association of blocks, and hierarchy of blocks

(Figure 3).

bdd [パッケージ] Design
[]

Vehicle
<<Block>>

Values

Operations

ACC controller
<<Block>>

Values

Operations

1

Break
<<Block>>

Values

Operations

1

User I/F
<<Block>>

Values

Operations

1

Speed sensor
<<Block>>

Values

Operations

1

PI controller
<<Block>>

Values

Operations

1

1

Vehicle dynamics controller
<<Block>>

Values

Operations

Electronic throttle
<<Block>>

Values

Operations

1

Throttle actuator
<<Block>>

Values

Operations

1

PCS controller
<<Block>>

Values

Operations

1

Front obstacle detection
<<Block>>

Values

Operations

1

Monitor circuit
<<Block>>

Values

Operations

1

1

Acceleration suppression control
<<Block>>

Values

Operations

1

1

Figure 3 Block Definition Diagram

 version: 1.0
revision: 1

5/7

3.4 Parametric Diagram

Parametric Diagram includes restrictions, preconditions of System, parameter, and

mathematical formula.

It identifies external environment and characteristics of System (Figure 4).

par [パッケージ] Design

Thrust calculation
1 <<ConstraintProperty>>

thrust

actualSpeed

desiredSpeed

CC controller
1 <<ConstraintProperty>>

desiredSpeed

Equation of motion
1 <<ConstraintProperty>>

actualSpeed

dragthrust

Speed sensor
1 <<ConstraintProperty>>

actualSpeed

thrust =
pwr / actualSpeed

<<allocate>>

drag =

 -1/2 * Cd * A

 * densityOfAir

 * actualSpeed^2

<<allocate>>

a =
 (thrust + drag) / mass

<<allocate>>

actualSpeed = ∫ a dt + v0

<<allocate>>

Acceleration limit :

a < 0.35G.

<<allocate>>

Acceleration performance :
a > 0.080G.

<<allocate>>

Sedan :
mass = 1700 kg
Wagon :
mass = 2500 kg

<<allocate>>

Sedan :
Cd = 0.44
Wagon :
Cd = 0.50

<<allocate>>

Sedan :
A = 1.8 m 2̂
Wagon :
A = 2.0 m 2̂

<<allocate>>

densityOfAir = 1.2 kg/m^3

<<allocate>>

Figure 4 Parametric Diagram

3.5 State Machine Diagram

State Machine Diagram includes behavior of System.

It identifies state transition of blocks (Figure 5).

 version: 1.0
revision: 1

6/7

 version: 1.0
revision: 1

7/7

stm [Block] AccController [statechart_0]

init

running

cycle1ms

evAccPowerRequest(this->power) to itsArbitrationController

tm(1)/
if (this->isWorking) {

double diffVelocity = (this->targetVelocity - this->velocity) / 3.6; // [m/s]
this->sumDVelocity += diffVelocity;
this->power += Kp * diffVelocity + Ki * this->sumDVelocity;
if(this->power > this->maxPower) this->power = this->maxPower;
if(this->power < -this->maxPower) this->power = -this->maxPower;

}
else {

this->power = 0.0;
}

Off

On

Working

evAccSetBtn/
set(this->velocity);

evAccAccelBtn/
accel();

evAccDecelBtn/
decel();

Unset

evAccSetBtn[valid(this->velocity)]/
set(this->velocity);

Sleeping
evAccBreakPedal

evAccResumeBtn

evAccSetBtn/
set(this->velocity);

evAccAccelBtn/
accel();

evAccDecelBtn/
decel();

evAccCruiseBtn

evAccCruiseBtn

evAccOFF

sensoring

evSpeedChanged/
this->velocity = params->velocity;

evPowerOFF

Figure 5 State Machine Diagram

	Table of Contents
	Change History
	1 Scope
	2 SysML
	3 Demonstration
	3.1 Use Case Diagram
	3.2 Requirement Diagram
	3.3 Block Definition Diagram
	3.4 Parametric Diagram
	3.5 State Machine Diagram

