目 次

エグゼクティブサマリー

1. 目的と構成
1.1 「研究開発の俯瞰報告書」作成の目的
1.2 俯瞰対象分野設定 · · · · · · · · · · · · · · · · · · ·
1.3 構成 · · · · · · · · · · · · · · · · · ·
 (4) (1) (1) (2) (1) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
2.1 分野の範囲と構造····································
2.1.1 ナノテクノロジー・材料の定義と特徴
2.1.2 ナノテクノロジー・材料への社会的期待と実現への課題・・・・・・・・・・・・5
2.1.3 ナノテクノロジー・材料分野の俯瞰図 · · · · · · · · · · · · · · · · · · ·
2.2 分野の歴史、現状と今後の方向性
2.2.1 分野の変遷~国際動向と日本~
2.2.1.1 ナノテクノロジー・材料の進化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.2.1.2 主要国の基本政策と代表的な研究開発プログラム・プロジェクト16
2.2.1.3 研究コミュニティと研究者の動向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・46
2.2.1.4 世界の研究開発の動向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2. 2. 1. 5 産業動向 · · · · · · · · · · · · · · · · · · ·
2.2.1.6 世界の研究開発・イノベーション促進方策(環境整備) ・・・・・・・・・・ 86
2.2.2 今後の展望と日本の課題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.2.2.1 ナノテクノロジー・材料の今後の方向性と技術的な挑戦課題 95
っ II応問惑符は 101
3. 切九開光限域 101
3.1 環境・エイル+ー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.1.1 太陽电池····································
3.1.2 入工元百成
3.1.3 燃料電池····································
3.1.4 款电変換・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
0.1.0 番电ナハイ A ···································
3.1.0 ハワー干得14····································
3.1.1 クリーン 咄哚 155

3.2 健康	₹・医療・・・・・・・・・・・・・・・・163
3. 2. 1	生体材料(バイオマテリアル)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・164
3. 2. 2	再生医療用材料 · · · · · · · · · · · · · · · · · · ·
3. 2. 3	ナノ薬物送達システム(ナノ DDS)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・178
3. 2. 4	バイオ計測・診断デバイス
3. 2. 5	イメージング・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・194
3. 2.	5.1 バイオイメージング・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・194
3. 2.	5.2 生体イメージング・・・・・・203
3.3 社会	€インフラ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3. 3. 1	構造材料
3.3.	1.1 構造材料(金属系) · · · · · · · · · · · · · · · · · · ·
3.3.	1.2 構造材料(複合材料) · · · · · · · · · · · · · · · · · · ·
3. 3. 2	水処理用分離膜 · · · · · · · · · · · · · · · · · · ·
3. 3. 3	高温超伝導送電 · · · · · · · · · · · · · · · · · · ·
3. 3. 4	センシングデバイス・システム
3.3.5	放射性物質の除染・減容化など基盤的技術 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 241
3.4 情報	通信・エレクトロニクス・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3. 4. 1	超低消費電力ナノエレクトロニクス・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 249
3.4.2	二次元機能性原子薄膜(グラフェンなど)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・263
3.4.3	スピントロニクス · · · · · · · · · · · · · · · · · · ·
3. 4. 4	フォトニクス ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.4.5	有機エレクトロニクス・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 296
3.4.6	MEMS / NEMS · · · · · · · · · · · · · · · · · · ·
3. 4. 7	異種機能三次元集積チップ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.5 基盤	科学技術 · · · · · · · · · · · · · · · · · · ·
3. 5. 1	界面制御
3. 5. 2	空間・空隙構造制御
3. 5. 3	分子技術 · · · · · · · · · · · · · · · · · · ·
3. 5. 4	バイオミメティクス・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・346
3. 5. 5	分子ロボティクス・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・355
3. 5. 6	元素戦略・希少元素代替技術
3. 5. 7	データ駆動型材料設計(マテリアルズ・インフォマティクス) ・・・・・・・・・ 368
3. 5. 8	トップダウン型プロセス(半導体超微細加工)・・・・・・・・・・・・・・・・・・・・・・・・376
3. 5. 9	ボトムアップ型プロセス・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 384

3. 5. 10	ナノ	計測 · · · · · · · · · · · · · · · · · · ·
3. 5. 1	0. 1	走査型プローブ顕微鏡 (SPM) ······ 392
3. 5. 1	0. 2	電子顕微鏡
3. 5. 1	0.3	放射光・X線・粒子線······413
3. 5. 1	0.4	超高速時間分解分光 · · · · · · · · · · · · · · · · · · ·
3. 5. 11	物質	〔・材料シミュレーション・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・434
3. 5. 12	ナノ	テクノロジーのリスク評価・リスク管理・リスクコミュニケーションと社会
	受容	۶۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰

(付録1)	検討の経緯・・・・・・・・・・・
(付録 2)	執筆協力者一覧 · · · · · · · · · · · · · · · · · · ·
(付録3)	索引 · · · · · · · · · · · · · · · · · · ·
(付録 4)	研究開発の俯瞰報告書(2015 年)
	全分野で対象としている研究開発領域一覧 ························ 489
謝辞・・・・・	